JP2006090910A - Microchemical chip and its manufacturing method - Google Patents

Microchemical chip and its manufacturing method Download PDF

Info

Publication number
JP2006090910A
JP2006090910A JP2004278632A JP2004278632A JP2006090910A JP 2006090910 A JP2006090910 A JP 2006090910A JP 2004278632 A JP2004278632 A JP 2004278632A JP 2004278632 A JP2004278632 A JP 2004278632A JP 2006090910 A JP2006090910 A JP 2006090910A
Authority
JP
Japan
Prior art keywords
flow path
main surface
opening
open end
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004278632A
Other languages
Japanese (ja)
Inventor
Katsuyuki Yoshida
克亨 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004278632A priority Critical patent/JP2006090910A/en
Publication of JP2006090910A publication Critical patent/JP2006090910A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microchemical chip manufacturable inexpensively, and having little contamination of an impurity and high reliability. <P>SOLUTION: This microchemical chip 10 is equipped with the first passage 3 for circulating a fluid to be treated, formed from a cavity 14 to the main surface of a semiconductor substrate 8, and having an opening part 12 on the main surface; a fine electronic machine mechanism 6 in the cavity 14; an electrode 7 on the main surface of the semiconductor substrate 8; an external connection member 1 wherein the second passage 9 having one open end 2 on the upper surface and having the other open end 5 on the other surface is formed inside and one open end 2 is arranged oppositely to the opening part 12; and a connection material 11 for communicating the first and second passages together by enclosing airtightly and the interval between the opening part 12 of the first passage 13 and one open end 2 of the second passage 15 and connecting them. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体基板に形成された微小電子機械機構と、これに被処理流体を流す流路とを備えて成るマイクロ化学チップ、およびその製造方法に関する。   The present invention relates to a microchemical chip comprising a microelectromechanical mechanism formed on a semiconductor substrate, and a flow path for flowing a fluid to be processed, and a manufacturing method thereof.

近年、化学分析の高精度化、高効率化の背景から、従来の実験室で行なっていた電位の測定、流量の測定、クロマトグラフや電気泳動に必要な試料の注入、排出、評定などを微小なサイズで実行可能にする、所謂マイクロ化学チップが提案されている。   In recent years, with the background of higher precision and higher efficiency in chemical analysis, the measurement of potential, flow rate, injection, discharge, and evaluation required for chromatographs and electrophoresis, which have been performed in conventional laboratories, are very small. So-called microchemical chips have been proposed that can be implemented in various sizes.

従来、マイクロ化学チップとして一般的なものは、流路が形成された半導体やガラス等から成る基板と、流路に被処理流体を流すためのマイクロポンプ等の動力源と、被処理流体に対して各種測定、分析を行なう機能部分とを備えた構成である。   Conventionally, as a general microchemical chip, a substrate made of a semiconductor, glass or the like in which a flow path is formed, a power source such as a micropump for flowing a processed fluid through the flow path, and a processed fluid And a functional part for performing various measurements and analyses.

マイクロ化学チップのうち、電位等の測定や試料の移送等の機械的な動き等の機能を1つの半導体基板で実施可能にするものとして、所謂MEMS(Micro Electro Mechanical System:微小電子機械機構)が提案されている。マイクロ化学チップ用のMEMSとは、例えば、一つの半導体基板の主面に、化学変化に応じて発生する気体や液体の圧力変化などを検出するための加速度計,圧力センサ,アクチュエータ等のセンサ、化学変化に応じて生じる変化を光学的に検出する際に高精度での検出等を目的とする光軸の変更のために使用される微細な鏡面体を可動式に形成したマイクロミラーデバイス、光デバイス等の機能部分に、マイクロポンプ等を合わせて形成し組み込んだ構造を有するもの等であり、非常に多岐にわたる構造を有する。   Among the micro chemical chips, what is called MEMS (Micro Electro Mechanical System) is one that can perform functions such as measurement of potential and mechanical movement such as sample transfer on a single semiconductor substrate. Proposed. For example, MEMS for microchemical chips are sensors such as accelerometers, pressure sensors, actuators, etc. for detecting changes in pressure of gases and liquids generated in response to chemical changes on the main surface of one semiconductor substrate. A micromirror device, which is a movable micro mirror that is used to change the optical axis for the purpose of high-precision detection when optically detecting changes that occur in response to chemical changes, light It has a structure in which a micropump or the like is formed and incorporated in a functional part such as a device, and has a very wide variety of structures.

このようなMEMSが形成された半導体基板に、流路が形成されている流路基板等を接続し、流路とMEMSや機能部分が形成された部分とを連通させた構造とすることにより、MEMSが備えるマイクロポンプ等の動力で流路中を被処理流体を流すことが可能となり、流路を流れて供給された被処理流体をMEMSが備える機能部分で分析、測定することが可能なマイクロ化学チップが形成される。   By connecting a flow path substrate or the like in which a flow path is formed to a semiconductor substrate in which such a MEMS is formed, and a structure in which the flow path and the part in which the MEMS or functional part is formed are communicated, It is possible to flow the fluid to be processed through the flow path by the power of the micro pump or the like provided in the MEMS, and the micro fluid capable of analyzing and measuring the fluid to be processed supplied through the flow path by the functional part provided in the MEMS. A chemical chip is formed.

上記MEMSは、例えば、電極用やDNA吸着用等の微細な突起、微小反応槽、マイクロミラー、マイクロポンプ等の微細な構造体、可動体等を備えたものである。   The MEMS includes, for example, fine protrusions for electrodes and DNA adsorption, fine structures such as a micro reaction tank, a micro mirror, and a micro pump, a movable body, and the like.

流路基板は、シリコン等の半導体やPDMS(ポリジメチルシロキサン)、ガラス等の基板の一主面に溝状の流路を形成したり、一主面から他主面にかけて貫通するような流路を形成した構造である。   The channel substrate is a channel that forms a groove-like channel on one main surface of a semiconductor such as silicon, PDMS (polydimethylsiloxane), or glass, or penetrates from one main surface to another main surface. It is the structure which formed.

なお、MEMSおよび流路は、外気からの異物の進入を防いで分析、測定等の化学的な処理を高精度に行なわせるために、ガラス板等から成る蓋体で覆われる。蓋体で覆われた後、外部に露出している流路の開口部分が被処理流体の供給口や排出口となり、供給口から被処理流体が供給される。   Note that the MEMS and the flow path are covered with a lid made of a glass plate or the like in order to prevent foreign substances from entering from outside air and perform chemical processing such as analysis and measurement with high accuracy. After being covered with the lid, the opening portion of the flow channel exposed to the outside serves as a supply port and a discharge port for the fluid to be processed, and the fluid to be processed is supplied from the supply port.

シリコン、PDMS等から成る基板に開口した供給口に対する被処理流体(生体物質等の試料を含む液体)の供給は、外部から液体ノズルや液体吐出装置等の送液装置を用いて加圧送液し、流路を介してMEMSに被処理流体を流して化学反応や検出等を行わせる。   Supply of a fluid to be processed (liquid containing a sample such as a biological material) to a supply port opened in a substrate made of silicon, PDMS, or the like is performed under pressure using a liquid delivery device such as a liquid nozzle or a liquid ejection device from the outside. Then, a fluid to be treated is caused to flow through the MEMS through the flow path to cause chemical reaction, detection, or the like.

また、マイクロ化学チップは、一般に、外部接続用の接続パッドが半導体基板の主面等に、MEMS部分と電気的に接続されて形成されており、この接続パッドをプリント回路基板等の外部電気回路基板の電気回路に電気的に接続しておくことにより、分析、測定等の化学処理の結果に応じてMEMSから発信される電気信号が接続パッドから外部の電気回路に送信される。   In addition, the microchemical chip is generally formed by connecting a connection pad for external connection to the main surface of the semiconductor substrate and the like and electrically connected to the MEMS portion, and the connection pad is connected to an external electric circuit such as a printed circuit board. By electrically connecting to the electrical circuit of the substrate, an electrical signal transmitted from the MEMS according to the result of chemical processing such as analysis and measurement is transmitted from the connection pad to an external electrical circuit.

このMEMSを用いたマイクロ化学チップは、化学反応、分析システムを小型化し、シリコン基板やPDMS基板上に形成したもので、マイクロ流路、マイクロポンプ、マイクロリアクタ等からなる。流路基板の化学反応部をマイクロ化し単位体積あたりの表面積を増大させることで、反応時間の大幅な削減を可能にしている。また、流量の精密な制御が可能なため高精度検出を行うことができる。   This microchemical chip using MEMS is formed on a silicon substrate or PDMS substrate by downsizing a chemical reaction / analysis system, and includes a microchannel, a micropump, a microreactor, and the like. By making the chemical reaction part of the flow path substrate micro and increasing the surface area per unit volume, the reaction time can be greatly reduced. In addition, since the flow rate can be precisely controlled, highly accurate detection can be performed.

なお、これら従来のマイクロ化学チップに用いられるMEMSは、例えば、シリコン等の半導体基板の主面に、焼付け、エッチング等の所謂半導体マイクロマシニング技術を用いて電極用やDNA吸着用等の微細な突起や微小反応槽、マイクロミラー、マイクロポンプ等の微細な構造体、可動体を形成することにより製作される。   Note that the MEMS used in these conventional microchemical chips are, for example, fine projections for electrodes and DNA adsorption on the main surface of a semiconductor substrate such as silicon using so-called semiconductor micromachining techniques such as baking and etching. And a minute structure such as a micro reaction vessel, a micro mirror, and a micro pump, and a movable body.

また、流路部分は、シリコンやPDMS、ガラス等の基板の主面に、フォトリソグラフィーを応用した、所謂鋳型加工やスタンプ加工等の加工を施して溝状、孔状等の構造を形成することにより製作される。
特開2002−214241号公報(第4−5頁、第1図) 特開2002−108619号公報(第4−5頁、第1図)
In addition, the channel portion is formed with a groove-like or hole-like structure by applying so-called mold processing or stamping processing using photolithography to the main surface of a substrate such as silicon, PDMS, or glass. It is manufactured by.
JP 2002-214241 (page 4-5, FIG. 1) JP 2002-108619 A (page 4-5, FIG. 1)

しかしながら、上記従来のマイクロ化学チップにおいては、検出などに用いられる被処理流体は外部の液体ノズルや液体吐出装置などの装置でマイクロ化学システムに供給されており、被処理流体である試薬は一度外気にさらされることが一般的であった。このため、マイクロ化学チップの外部から被処理流体を流路に供給する際に、外部からの被処理流体中への雑菌やゴミなどの異物の混入(所謂コンタミネーション)の問題があった。   However, in the above-described conventional microchemical chip, the fluid to be processed used for detection or the like is supplied to the microchemical system by an external liquid nozzle, a liquid discharge device or the like, and the reagent as the fluid to be processed is once outside air. It was common to be exposed to For this reason, when the fluid to be treated is supplied to the flow path from the outside of the microchemical chip, there is a problem of contamination of foreign matters such as germs and dust (so-called contamination) into the fluid to be treated from the outside.

また、大型の液体供給装置を使用するため、被処理流体の流量の微小量化に制限があり、被処理流体を小さく抑えることによる処理速度の向上等に制約を受けるという問題があった。   In addition, since a large liquid supply apparatus is used, there is a limit to miniaturization of the flow rate of the fluid to be processed, and there is a problem that the processing speed is increased by limiting the fluid to be processed to be small.

また、大型の液体供給装置を別途用意する必要があるので、マイクロ化学システムを低コストで作製しても液体供給装置に多額のコストがかかるという問題があった。   In addition, since it is necessary to separately prepare a large liquid supply apparatus, there is a problem that even if a microchemical system is manufactured at a low cost, the liquid supply apparatus is expensive.

本発明は、上記従来の問題点に鑑みて完成されたものであり、その目的は、低コストで作製できるとともに不純物の混入が少なく、多種の実装形態を採用できるマイクロ化学チップおよびその製造方法を提供することである。   The present invention has been completed in view of the above-described conventional problems, and an object of the present invention is to provide a microchemical chip that can be manufactured at a low cost, has less impurities, and can employ various mounting forms, and a manufacturing method thereof. Is to provide.

本発明のマイクロ化学チップは、内部に空洞を有する半導体基板と、前記空洞から前記半導体基板の主面にかけて形成されるとともに前記半導体基板の主面に開口部を有する被処理流体を流通させるための第1の流路と、前記空洞内に形成された微小電子機械機構と、前記半導体基板の主面に形成されて前記微小電子機械機構に電気的に接続された電極と、上面に一方の開口端を有し他面に他方の開口端を有する第2の流路が内部に形成されているとともに前記開口部に前記一方の開口端が対向するように配置された外部接続部材と、前記第1の流路の前記開口部と前記第2の流路の前記一方の開口端との間を気密に取り囲んで接続することによって前記第1および第2の流路を連通させる接続材とを具備していることを特徴とする。   A microchemical chip according to the present invention is provided to circulate a semiconductor substrate having a cavity therein, and a fluid to be processed which is formed from the cavity to the main surface of the semiconductor substrate and has an opening in the main surface of the semiconductor substrate. A first flow path; a microelectromechanical mechanism formed in the cavity; an electrode formed on a main surface of the semiconductor substrate and electrically connected to the microelectromechanical mechanism; A second flow path having an end and the other open end on the other surface, and an external connection member disposed so that the one open end faces the opening; and A connecting member that allows the first and second flow paths to communicate with each other by hermetically surrounding and connecting between the opening of the first flow path and the one open end of the second flow path; It is characterized by that.

本発明のマイクロ化学チップは好ましくは、前記第2の流路は、流通方向に垂直な断面における幅が0.05乃至0.5mmであることを特徴とする。   The microchemical chip of the present invention is preferably characterized in that the second channel has a width in a cross section perpendicular to the flow direction of 0.05 to 0.5 mm.

また、本発明のマイクロ化学チップは好ましくは、前記接続材は、横断面形状が円環状であることを特徴とする。   The microchemical chip of the present invention is preferably characterized in that the connecting material has an annular shape in cross section.

また、本発明のマイクロ化学チップは好ましくは、前記微小電子機械機構は、前記空洞内に前記第1の流路から湧出した前記被処理流体を化学的に分析するためのものであることを特徴とする。   In the microchemical chip of the present invention, preferably, the microelectromechanical mechanism is for chemically analyzing the fluid to be processed that has flowed out of the first flow path into the cavity. And

本発明のマイクロ化学チップの製造方法は、半導体母基板に、その内部に形成された空洞と、該空洞から主面にかけて形成されるとともに該主面に開口部を有する被処理流体を流通させるための第1の流路と、前記空洞内に形成された微小電子機械機構と、前記主面に形成されて前記微小電子機械機構に電気的に接続された電極とを一組とした微小電子機械機構領域を多数個縦横に配列形成した多数個取り微小電子機械機構基板を準備する工程と、
上面に一方の開口端を有し他面に他方の開口端を有する第2の流路が内部に形成されている外部接続部材を前記開口部に前記一方の開口端が対向するようにそれぞれ配置するとともに、前記第1の流路の開口部と前記第2の流路の一方の開口端との間を接続材によって気密に取り囲んで接続することによって前記第1および第2の流路を連通させる工程と、
前記外部接続部材が接続された前記多数個取り微小電子機械機構基板を前記微小電子機械機構領域毎に分割して個々のマイクロ化学チップを得る工程とを具備していることを特徴とする。
In the method for producing a microchemical chip of the present invention, a cavity formed in a semiconductor mother substrate and a fluid to be processed which is formed from the cavity to the main surface and has an opening in the main surface are circulated. A first micro-mechanical mechanism formed in the cavity and an electrode formed on the main surface and electrically connected to the micro-electromechanical mechanism. A step of preparing a multi-electron mechanical mechanism substrate in which a large number of mechanism areas are arranged vertically and horizontally;
An external connection member in which a second flow path having one open end on the upper surface and the other open end on the other surface is formed is disposed so that the one open end faces the opening. In addition, the first and second flow paths are communicated by airtightly surrounding and connecting the opening of the first flow path and one open end of the second flow path with a connecting material. A process of
Dividing the multi-chip microelectromechanical substrate to which the external connection member is connected into each microelectromechanical region to obtain individual microchemical chips.

本発明のマイクロ化学チップは、内部に空洞を有する半導体基板と、空洞から半導体基板の主面にかけて形成されるとともに半導体基板の主面に開口部を有する被処理流体を流通させるための第1の流路と、空洞内に形成された微小電子機械機構と、半導体基板の主面に形成されて微小電子機械機構に電気的に接続された電極と、上面に一方の開口端を有し他面に他方の開口端を有する第2の流路が内部に形成されているとともに開口部に一方の開口端が対向するように配置された外部接続部材と、第1の流路の開口部と第2の流路の一方の開口端との間を気密に取り囲んで接続することによって第1および第2の流路を連通させる接続材とを具備していることから、被処理流体の供給から化学反応まで一貫して密閉状態を保つことができるので、外部から異物が混入することを防ぎ、所謂コンタミネーション等の問題の発生を効果的に防止することができる。   The microchemical chip of the present invention is a semiconductor substrate having a cavity inside, and a first fluid for forming a fluid to be processed which is formed from the cavity to the main surface of the semiconductor substrate and has an opening in the main surface of the semiconductor substrate. A flow path, a microelectromechanical mechanism formed in the cavity, an electrode formed on the main surface of the semiconductor substrate and electrically connected to the microelectromechanical mechanism, and the other surface having one open end on the upper surface A second flow path having the other opening end formed therein, and an external connection member disposed so that one opening end faces the opening, and the opening of the first flow path and the first flow path And a connecting material that allows the first and second flow paths to communicate with each other by hermetically surrounding and connecting between one open end of the two flow paths. Can keep sealed until reaction In, prevents foreign matter from the outside is mixed, it is possible to effectively prevent occurrence of problems such as so-called contamination.

また、マイクロ化学チップが備える微小電子機械機構(MEMS)部分の送液機能により、別途大型の液体供給装置を使用することなく、流路に被処理流体を流すことができ、微細な流路に見合った微量の被処理流体を準備すればよく、所望の化学処理に要するコストを低く抑えることもできる。   In addition, the liquid feeding function of the micro electromechanical mechanism (MEMS) part of the microchemical chip allows the fluid to be processed to flow through the flow path without using a separate large liquid supply device. A suitable amount of fluid to be treated may be prepared, and the cost required for the desired chemical treatment can be kept low.

また、液体供給用装置を別途用いて外部から流路に被処理流体を供給する際に、外部環境をクリーンにする必要が無く、供給される被処理流体の液量をより微小量化でき、その結果一般的に高価な化学検出用の被処理流体を少量で効率よく使用することができる。   In addition, when the fluid to be processed is supplied from the outside to the flow path by using a liquid supply apparatus separately, it is not necessary to clean the external environment, and the amount of the fluid to be processed to be supplied can be further reduced. As a result, a generally expensive process fluid for chemical detection can be efficiently used in a small amount.

本発明において好ましくは、第2の流路は、流通方向に垂直な断面における幅が0.05乃至0.5mmであることから、化学反応を効率的に行うことのできる大きさでかつ加工性を保てる小ささなので、絶縁基板中の流路形成がより容易になり、液量制御に有効である。   Preferably, in the present invention, the width of the second flow path in the cross section perpendicular to the flow direction is 0.05 to 0.5 mm, so that the chemical reaction can be efficiently performed and the workability is improved. Therefore, it is easier to form a flow path in the insulating substrate, which is effective for controlling the liquid amount.

また、本発明において好ましくは、接続材は、横断面形状が円環状であることから、半導体基板の第1の流路の開口部と外部接続部材の第2の流路の一方の開口端との接続部分において局部的な応力集中が起こらないため、より強固でかつ信頼性の高い第1および第2の流路の接続が可能になり、信頼性の高いマイクロ化学チップを得ることができる。   Preferably, in the present invention, since the connecting member has an annular cross-sectional shape, the opening of the first flow path of the semiconductor substrate and one open end of the second flow path of the external connection member Since local stress concentration does not occur at the connection portion, the first and second flow paths can be connected more firmly and highly reliably, and a highly reliable microchemical chip can be obtained.

また、本発明において好ましくは、微小電子機械機構は、空洞内に第1の流路から湧出した被処理流体を化学的に分析するためのものであるため、第1の流路の開口部と、第2の流路の開口端および接続材とで囲まれた狭い空間内を流通する少量の被処理流体を効率よく化学分析することができるので、化学分析を効率的に少量の被処理流体でもって行なうことができる。   In the present invention, preferably, the microelectromechanical mechanism is for chemically analyzing the fluid to be treated that has flowed out of the first flow path into the cavity, and therefore, the opening of the first flow path and Since a small amount of fluid to be processed flowing in a narrow space surrounded by the opening end of the second flow path and the connecting material can be efficiently analyzed chemically, chemical analysis can be efficiently performed with a small amount of fluid to be processed. You can do that.

本発明のマイクロ化学チップの製造方法によれば、上記各工程を具備することから、縦横に配列形成された多数個のマイクロ化学チップについて、多数個取り微小電子機械機構基板とそれぞれの外部接続部の接続と、微小電子機械機構の封止とを同時に行なうことができるため、マイクロ化学チップを、容易かつ確実に製造することができる。   According to the method for producing a microchemical chip of the present invention, since each of the above steps is provided, a large number of microchemical chips arranged in rows and columns are taken and a micro-electromechanical substrate and each external connection portion are taken. And the sealing of the microelectromechanical mechanism can be performed simultaneously, so that the microchemical chip can be easily and reliably manufactured.

また、外部接続部材が接続された多数個取り微小電子機械機構基板を微小電子機械機構領域毎に分割することにより、空洞部と第1の流路と第2の流路と接続材とで囲まれた微小空間内に微小電子機械機構を封止するとともに、微小空間内に被処理流体を供給し微小空間内から被処理流体を排出するための流路を備えて成る個々のマイクロ化学チップを多数個同時に製造することができる。この分割の際、微小電子機械機構領域の各微小電子機械機構は外部接続部材によりそれぞれ封止されているので、ダイシング加工等による分割で発生するシリコン等の半導体基板の切削粉が微小電子機械機構に付着するようなことはなく、分割後のマイクロ化学チップにおいて微小電子機械機構を確実に作動させることができる。   Further, by dividing the multi-electron mechanical mechanism substrate to which the external connection member is connected into each micro electro mechanical mechanism region, the substrate is surrounded by the cavity, the first flow path, the second flow path, and the connection material. In addition to sealing the micro electromechanical mechanism in the micro space, each micro chemical chip comprising a flow path for supplying a fluid to be processed into the micro space and discharging the fluid to be processed from the micro space Many can be manufactured simultaneously. At the time of this division, each micro electro mechanical mechanism in the micro electro mechanical mechanism region is sealed by an external connection member, so that the cutting powder of the semiconductor substrate such as silicon generated by the dicing process is generated by the micro electro mechanical mechanism. The microelectromechanical mechanism can be reliably operated in the divided microchemical chip.

また、分割して得られたマイクロ化学チップは、半導体基板の主面に電極が導出されているので、この導出された電極に金属バンプ等の端子を取着するだけで、外部電子回路基板に実装することができるものとなり、実装の工程を非常に短くかつ容易なものとすることができるマイクロ化学チップとなる。   In addition, since the microchemical chip obtained by dividing has an electrode led out to the main surface of the semiconductor substrate, it is possible to attach the terminal such as a metal bump to the leaded electrode to the external electronic circuit board. The microchemical chip can be mounted, and the mounting process can be made extremely short and easy.

本発明のマイクロ化学チップおよびその製造方法について以下に詳細に説明する。図1は本発明のマイクロ化学チップの実施の形態の一例を示す断面図である。図1において、1は外部接続部材、2は一方の開口端、3は第1の流路、4は空洞、5は他方の開口端、6は微小電子機械機構、7は電極、8は半導体基板、9は第2の流路、10はマイクロ化学チップ、11は接続材、12は開口部である。   The microchemical chip and the manufacturing method thereof of the present invention will be described in detail below. FIG. 1 is a cross-sectional view showing an example of an embodiment of a microchemical chip of the present invention. In FIG. 1, 1 is an external connection member, 2 is one open end, 3 is a first flow path, 4 is a cavity, 5 is the other open end, 6 is a microelectromechanical mechanism, 7 is an electrode, and 8 is a semiconductor. A substrate, 9 is a second flow path, 10 is a microchemical chip, 11 is a connecting material, and 12 is an opening.

外部接続部材1と半導体基板8とは、半導体基板8にある第1の流路3と外部接続部材1にある第2の流路9とを接続する接続材11を介して接合されている。また、半導体基板8の内部には空洞4が存在し、空洞4内に微小電子機械機構6が形成されている。第2の流路9を通って、接続材11によって囲まれた空間に供給される被処理流体が、第1の流路3を介して空洞4内にある微小電子機械機構6で処理され、処理に応じて生じる電気信号が電極7から外部に伝送され、処理の結果がわかる仕組みになっている。   The external connection member 1 and the semiconductor substrate 8 are joined via a connection material 11 that connects the first flow path 3 in the semiconductor substrate 8 and the second flow path 9 in the external connection member 1. In addition, the cavity 4 exists inside the semiconductor substrate 8, and the microelectromechanical mechanism 6 is formed in the cavity 4. The fluid to be processed that is supplied to the space surrounded by the connecting material 11 through the second flow path 9 is processed by the microelectromechanical mechanism 6 in the cavity 4 via the first flow path 3. An electric signal generated in accordance with the process is transmitted from the electrode 7 to the outside, and the result of the process is known.

本発明における微小電子機械機構6は、例えばバイオセンサー、DNAチップ、マイクロリアクタ、プリントヘッドなどの流体を用いたMEMSデバイスや化学センサ、ガスセンサ等の各種センサなどの機能を有するものであり、半導体微細加工技術を基本とした、所謂マイクロマシニングで作る部品であり、1素子あたり10μm〜数100μm程度の寸法を有する。   The microelectromechanical mechanism 6 in the present invention has functions of various sensors such as a MEMS device using a fluid such as a biosensor, a DNA chip, a microreactor, and a print head, a chemical sensor, and a gas sensor. It is a part made by so-called micromachining based on technology, and has a size of about 10 μm to several 100 μm per element.

外部接続部材1は、微小電子機械機構6を封止するための部材として機能するとともに、一方の開口端2および他方の開口端5を有し、第2の流路9を形成するための部材として機能する。   The external connection member 1 functions as a member for sealing the microelectromechanical mechanism 6 and has one open end 2 and the other open end 5 to form the second flow path 9. Function as.

この外部接続部材1は、鉄−ニッケル−コバルト合金や鉄−ニッケル合金(42アロイ)等の鉄−ニッケル系合金、無酸素銅、アルミニウム、ステンレス、銅−タングステン合金、銅−モリブ合金等の金属材料、あるいは酸化アルミニウム質焼結体(アルミナセラミックス)、窒化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化珪素質焼結体、ガラスセラミックス焼結体等のセラミック材料や、パイレックス(登録商標)ガラス等の無機材料、ポリイミド、ガラスエポキシ樹脂等の樹脂材料、セラミックスやガラス等の無機粉末をエポキシ樹脂等の樹脂で結合して成る複合材等により形成される。   This external connection member 1 is made of an iron-nickel alloy such as an iron-nickel-cobalt alloy or iron-nickel alloy (42 alloy), an oxygen-free copper, aluminum, stainless steel, a copper-tungsten alloy, a copper-molyb alloy, or the like. Materials or ceramic materials such as aluminum oxide sintered body (alumina ceramic), aluminum nitride sintered body, mullite sintered body, silicon carbide sintered body, silicon nitride sintered body, glass ceramic sintered body, etc. Alternatively, it is formed of an inorganic material such as Pyrex (registered trademark) glass, a resin material such as polyimide or glass epoxy resin, or a composite material obtained by bonding inorganic powder such as ceramics or glass with a resin such as epoxy resin.

例えば、外部接続部材1は、外部接続部材1にある第2の流路9と半導体基板8にある第1の流路3とを接続する接続材11を介して半導体基板8に機械的に接合されるので、半導体基板8との接合の信頼性、つまり外部接続部材1と半導体基板8との間に形成される空間の外部との遮蔽性や、マイクロ化学チップ10として長期間の使用に耐える長期信頼性を高くするためには、ムライト質焼結体、または例えばガラス成分の種類や添加量を調整することにより熱膨張係数を半導体基板8に近似させるようにした酸化アルミニウム−ホウ珪酸ガラス系等のガラスセラミックス焼結体等のような、半導体基板8との熱膨張係数の差が小さい材料で形成することが好ましい。   For example, the external connection member 1 is mechanically joined to the semiconductor substrate 8 via a connection material 11 that connects the second flow path 9 in the external connection member 1 and the first flow path 3 in the semiconductor substrate 8. Therefore, the reliability of bonding with the semiconductor substrate 8, that is, the shielding property to the outside of the space formed between the external connection member 1 and the semiconductor substrate 8, and the long-term use as the microchemical chip 10 are endured. In order to increase the long-term reliability, a mullite sintered body, or an aluminum oxide-borosilicate glass system in which the thermal expansion coefficient is approximated to the semiconductor substrate 8 by adjusting, for example, the kind and addition amount of the glass component. It is preferable to use a material having a small difference in thermal expansion coefficient from the semiconductor substrate 8, such as a glass ceramic sintered body.

また、外部接続部材1は、被処理流体に対する保温性を高めて、微小電子機械機構6で施される処理、例えば化学反応等の処理の安定性を高める上では、エポキシ樹脂やポリイミド樹脂等の熱伝導率の低い材料で形成することが好ましい。また、外部接続部材1は、微小電子機械機構6で行なわれる処理を目視で確認したり、処理のために光を照射するような場合、ガラス材等の透光性を有するものであることが好ましい。   In addition, the external connection member 1 is made of an epoxy resin, a polyimide resin, or the like in order to enhance the heat retention of the fluid to be treated and to improve the stability of the treatment performed by the microelectromechanical mechanism 6, such as a chemical reaction. It is preferable to form with a material with low heat conductivity. In addition, the external connection member 1 may have a light-transmitting property such as a glass material when visually confirming the processing performed by the micro electro mechanical mechanism 6 or irradiating light for the processing. preferable.

上記のように本発明のマイクロ化学チップ10は、用途等に応じて種々の材料を選択することが可能で、機械的強度等の特性が良好であるとともに取り扱いが容易な外部接続部材1を用いることができ、外部接続部材1に被処理流体を流すための第2の流路9の開口端が形成されているため、取り扱いが容易である。   As described above, the microchemical chip 10 of the present invention uses the external connection member 1 that can select various materials according to the use and the like, has good characteristics such as mechanical strength and is easy to handle. In addition, since the open end of the second flow path 9 for allowing the fluid to be processed to flow through the external connection member 1 is formed, handling is easy.

また、外部接続部材1と半導体基板8とは、外部接続部材1にある第2の流路9と半導体基板8にある第1の流路3とを接続する接続材11を介して互いに接合されており、それらの接合部には接続材11を密閉された側壁とした内部空間が形成される。   The external connection member 1 and the semiconductor substrate 8 are joined to each other via a connection material 11 that connects the second flow path 9 in the external connection member 1 and the first flow path 3 in the semiconductor substrate 8. In these joint portions, an internal space having the connecting material 11 as a sealed side wall is formed.

半導体基板8は、シリコン、ポリシリコン等の半導体材料を板状に加工して成り、内部には空洞4が存在し、空洞4内に微小電子機械機構6が形成されている。微小電子機械機構6は、シリコン、ポリシリコン等から成る半導体基板8の一主面に対してフォトリソグラフィー技術やレーザ加工などの所謂マスクレスエッチング技術、フッ酸エッチング、ドライエッチングなどのエッチング技術を用いて所望の構造を形成することにより作製される。   The semiconductor substrate 8 is formed by processing a semiconductor material such as silicon or polysilicon into a plate shape. The cavity 4 exists inside, and the microelectromechanical mechanism 6 is formed in the cavity 4. The microelectromechanical mechanism 6 uses so-called maskless etching technology such as photolithography technology or laser processing, etching technology such as hydrofluoric acid etching, dry etching, etc. on one main surface of a semiconductor substrate 8 made of silicon, polysilicon or the like. To form a desired structure.

微小電子機械機構6は、例えば、化学処理用のものであれば、その用途に応じてエッチング加工で所定の構造に成形した後、スピンコートやディップコートなどのコーティング技術を用いて表面状態を変化させることによって薬品の濡れ性や化学反応性などを制御することができ、そして化学分析やDNAの同定、クロマトグラフィーなどの各種分析などに用いられる。   For example, if the microelectromechanical mechanism 6 is for chemical processing, the surface state is changed using a coating technique such as spin coating or dip coating after being formed into a predetermined structure by etching according to the application. This makes it possible to control the wettability and chemical reactivity of chemicals, and is used for various analyzes such as chemical analysis, DNA identification, and chromatography.

また、半導体基板8の一方の主面には、微小電子機械機構6に電気的に接続された電極7が形成されている。この電極7は、微小電子機械機構6で行なわれた化学処理等の処理の結果に応じて発信される電気信号を半導体基板8の外部に伝える機能をなし、アルミニウムや金等の金属材料等の導電性材料で形成されている。   An electrode 7 electrically connected to the micro electro mechanical mechanism 6 is formed on one main surface of the semiconductor substrate 8. The electrode 7 has a function of transmitting an electrical signal transmitted in accordance with the result of processing such as chemical processing performed by the microelectromechanical mechanism 6 to the outside of the semiconductor substrate 8, and is made of a metal material such as aluminum or gold. It is made of a conductive material.

上述した外部接続部材1と半導体基板8との接合は、外部接続部材1にある第2の流路9と半導体基板8にある第1の流路3とを接続する接続材11を介して接合することにより行なわれる。   The connection between the external connection member 1 and the semiconductor substrate 8 described above is performed via the connection material 11 that connects the second flow path 9 in the external connection member 1 and the first flow path 3 in the semiconductor substrate 8. It is done by doing.

接続材11は、錫−銀合金半田、錫−銀−銅合金半田等の半田、金−錫合金ろう材等の低融点ろう材、銀−ゲルマニウム合金ろう材等の高融点ろう材、銀,銅等の導電性粉末を樹脂で結合して成る導電性樹脂接着剤等により形成されている。   The connecting material 11 is composed of solder such as tin-silver alloy solder, tin-silver-copper alloy solder, low melting point brazing material such as gold-tin alloy brazing material, high melting point brazing material such as silver-germanium alloy brazing material, silver, It is formed of a conductive resin adhesive formed by bonding conductive powder such as copper with a resin.

また、外部接続部材1の内部には、外部接続部材1の上面に開口部12に対向するように一方の開口端2が形成されるとともに、外部接続部材1の他面に他方の開口端5が形成されている第2の流路9が形成されている。第2の流路9を通って被処理流体が接続材11に囲まれた空間に供給され、続いて第1の流路3を介して空洞4内にある微小電子機械機構6に供給される。これにより、化学分析を行なう試料等の被処理流体を流し、電位測定、DNAの検出,同定、クロマトグフィー、光化学反応等の化学処理等の処理の機能を有するマイクロ化学チップ10が形成される。   Further, inside the external connection member 1, one open end 2 is formed on the upper surface of the external connection member 1 so as to face the opening 12, and the other open end 5 is formed on the other surface of the external connection member 1. A second flow path 9 in which is formed is formed. The fluid to be processed is supplied to the space surrounded by the connecting material 11 through the second flow path 9, and then supplied to the microelectromechanical mechanism 6 in the cavity 4 through the first flow path 3. . As a result, a microchemical chip 10 having a processing function such as chemical processing such as potential measurement, detection and identification of DNA, chromatography, photochemical reaction, and the like is formed by flowing a fluid to be processed such as a sample for chemical analysis.

本発明のマイクロ化学チップ10は、上記の構成により、主として処理等の機能を有する半導体基板8側と、被処理流体の通り道および外部接続の機能を有する外部接続部材1側との機械的な接続、接合を容易に行なうことができ、マイクロ化学チップ10としての生産性を優れたものとすることができる。   The microchemical chip 10 of the present invention has a mechanical connection between the semiconductor substrate 8 side mainly having a processing function and the external connection member 1 side having a function of a fluid to be processed and an external connection. Bonding can be easily performed, and the productivity as the microchemical chip 10 can be improved.

本発明において、例えば、半導体基板8側および外部接続部材1側をそれぞれ予め多数個縦横に配列しておき、これらを互いに一括して接続、接合することも容易であり、マイクロ化学チップ10を多数個同時に気密封止することができ、生産性を極めて優れたものとすることができる。   In the present invention, for example, it is also easy to arrange a large number of semiconductor substrates 8 and external connection members 1 in the vertical and horizontal directions, and to connect and bond them together. The individual can be hermetically sealed, and the productivity can be made extremely excellent.

第2の流路9は、レーザ加工やドリル加工若しくはエッチング加工を用いて作製したり、セラミック材料等の無機材料の場合は、グリーンシート上にプレス金型、NCパンチングやレーザ加工を用いて窪みを作製し、その後グリーンシートを複数積層することによって作製される。   The second flow path 9 is produced using laser processing, drilling, or etching, or in the case of an inorganic material such as a ceramic material, a depression is formed on the green sheet using a press die, NC punching, or laser processing. And then stacking a plurality of green sheets.

また、第2の流路9は、流通方向に垂直な断面形状が矩形状であると、グリーンシートの状態での断面をSEMや金属顕微鏡を用いて観察する際に観察、評価が容易となることから、流通方向に垂直な断面形状が矩形状であるのがよく、さらに流通方向に垂直な断面における幅が0.05乃至0.5mmであることが好ましい。0.05mm未満の場合、第2の流路9を加工形成することが困難になり、生産性の低下やコストの上昇等を招くおそれがある。0.5mmを超えると、第2の流路9の断面積が大きくなり、微小化して化学反応を効率的に行なわせることに対して支障をきたす。そのため、微量の被処理流体で高精度、高効率の化学分析を行なうマイクロ化学チップ10としての機能が低下するおそれがある。   In addition, when the second channel 9 has a rectangular cross-sectional shape perpendicular to the flow direction, it is easy to observe and evaluate the cross section in a green sheet state using an SEM or a metal microscope. Accordingly, the cross-sectional shape perpendicular to the flow direction is preferably rectangular, and the width in the cross-section perpendicular to the flow direction is preferably 0.05 to 0.5 mm. When the thickness is less than 0.05 mm, it is difficult to process and form the second flow path 9, which may cause a decrease in productivity, an increase in cost, and the like. If the thickness exceeds 0.5 mm, the cross-sectional area of the second flow path 9 becomes large, which hinders miniaturization and efficient chemical reaction. Therefore, there is a possibility that the function as the microchemical chip 10 that performs high-precision and high-efficiency chemical analysis with a small amount of fluid to be processed may be deteriorated.

ここで、第2の流路9について、外部接続部材1を厚さが0.5mmの円筒状の酸化アルミニウム質で形成し、その一方主面から他方主面にかけて、流通方向に垂直な断面の形状が円形状の流路を形成したときの、加工性や化学反応性を試験した具体例を以下に示す。   Here, for the second flow path 9, the external connection member 1 is formed of a cylindrical aluminum oxide having a thickness of 0.5 mm, and has a cross section perpendicular to the flow direction from one main surface to the other main surface. Specific examples of testing the workability and chemical reactivity when a circular channel is formed are shown below.

グリーンシートは、酸化アルミニウムと酸化ケイ素を主成分とする原料粉末を有機溶剤、樹脂バインダとともにシート状に成形して作製し、第2の流路9はNCパンチング加工により形成した。加工性の判断基準は、グリーンシートに円形状の穴が作製できるかの外観検査で判断しており、マイクロスコープを用いて観察し判断した。穴が全域にわたり貫通しているか否か、また、穴の内面の垂直方向(軸方向)からの傾斜角度(所謂テーパー角)が、穴の縦断面において、穴の内面が垂直方向に完全に平行である場合(テーパー角=0°)の仮想線と、実際の内面の線との間に形成される三角形状について、三角形状の部分の{幅(三角形の上端側または下端側の底辺)}:{長さ(三角形の穴の軸方向の辺の長さ:穴の深さ)}の比率で1:3以下を○とした。   The green sheet was produced by forming a raw material powder mainly composed of aluminum oxide and silicon oxide into a sheet shape together with an organic solvent and a resin binder, and the second flow path 9 was formed by NC punching. Judgment criteria for workability were determined by visual inspection of whether a circular hole could be produced in the green sheet, and were observed and determined using a microscope. Whether or not the hole penetrates the entire region, and the inclination angle (so-called taper angle) of the inner surface of the hole from the vertical direction (axial direction) is completely parallel to the vertical direction in the vertical section of the hole. For the triangular shape formed between the imaginary line (taper angle = 0 °) and the line on the actual inner surface, the {width of the triangular portion (the bottom side of the triangle on the upper end side or the lower end side)} : The ratio of {length (the length of the side of the triangular hole in the axial direction: the depth of the hole)} is 1: 3 or less.

また、化学反応性は、半導体基板8であるSi基板上に作製されたMEMS6において化学反応を行う際に、必要最小な送液量に対して実際にMEMS6に供給される被処理流体の量が2倍以下になる場合を○とし、2倍を超える場合を△とした。表1に上記の加工性、化学反応性の結果を示す。

Figure 2006090910
The chemical reactivity is such that when the chemical reaction is performed in the MEMS 6 manufactured on the Si substrate which is the semiconductor substrate 8, the amount of the fluid to be processed that is actually supplied to the MEMS 6 with respect to the minimum necessary liquid feeding amount. The case where it was 2 times or less was marked with ◯, and the case where it was doubled was marked with △. Table 1 shows the results of the above processability and chemical reactivity.
Figure 2006090910

表1より、第2の流路9の流通方向に垂直な断面における幅が0.05mm未満では、加工性に不具合を生じやすくなる傾向があり、0.5mmを超えると、化学反応性に不具合が生じる傾向が見られた。   From Table 1, if the width in the cross section perpendicular to the flow direction of the second flow path 9 is less than 0.05 mm, there is a tendency that defects are likely to occur in workability, and if it exceeds 0.5 mm, defects in chemical reactivity occur. There was a tendency to occur.

また、本発明において、接続材11は、横断面形状が円環状であることが好ましい。これにより、半導体基板8内部の第1の流路3の開口部12と、外部接続部材1内部の第2の流路9の一方の開口端2の接続部分において、局部的な応力集中が起こらないため、より強固でかつ信頼性の高い接合が可能になり、信頼性の高いマイクロ化学チップ10を得ることができる。   In the present invention, the connecting member 11 preferably has an annular cross-sectional shape. As a result, local stress concentration occurs at the connection portion between the opening 12 of the first flow path 3 inside the semiconductor substrate 8 and one opening end 2 of the second flow path 9 inside the external connection member 1. Therefore, stronger and more reliable bonding is possible, and the highly reliable microchemical chip 10 can be obtained.

また、本発明において、微小電子機械機構6は、空洞4内に第1の流路3から湧出した被処理流体を化学的に分析するためのものであることが好ましい。これにより、第1の流路3の開口部12と、第2の流路9の一方の開口端2と、接続材11とで囲まれた狭い空間内を流通する少量の被処理流体を効率よく化学分析することができるので、化学分析を効率的に少量の被処理流体で行うことができる。   In the present invention, the microelectromechanical mechanism 6 is preferably for chemically analyzing the fluid to be processed that has flowed out of the first flow path 3 into the cavity 4. As a result, a small amount of fluid to be processed that circulates in a narrow space surrounded by the opening 12 of the first flow path 3, the one open end 2 of the second flow path 9, and the connecting material 11 is efficiently produced. Since chemical analysis can be performed well, chemical analysis can be efficiently performed with a small amount of fluid to be processed.

化学的に分析するものとしては、例えば、多数のピン状の突起体の露出表面に予めそれぞれ異なるDNAの標準試料を被着させておき、被処理流体中のDNAが吸着する突起体により被処理流体中のDNAの同定を行なう、所謂DNAチップのような機能をなすもの、または分子を捕捉する突起状の吸着体を被処理流体の流れる方向に沿って多数個配列しておき、被処理流体中の分子を順次吸着させるクロマトグラフ分析の機能を有するものなどが挙げられる。   For chemical analysis, for example, a different standard sample of DNA is previously deposited on the exposed surface of a large number of pin-shaped projections, and the sample is treated by the projection that adsorbs the DNA in the fluid to be treated. A plurality of adsorbents that function as a so-called DNA chip for identifying DNA in a fluid or that trap molecules are arranged in the direction of flow of the fluid to be treated. Examples include those having a chromatographic analysis function for sequentially adsorbing molecules therein.

次に、本発明のマイクロ化学チップ10の製造方法について、図2(a)〜(d)に基づいて説明する。図2は本発明のマイクロ化学チップの製造方法の実施の形態の一例をそれぞれ工程順に示した断面図であり、図2において図1と同じ部位には同じ符号を付してある。   Next, a method for manufacturing the microchemical chip 10 of the present invention will be described with reference to FIGS. FIG. 2 is a cross-sectional view showing an example of an embodiment of a method for producing a microchemical chip according to the present invention in the order of steps. In FIG. 2, the same parts as those in FIG.

まず、図2(a)に示すように、半導体母基板28の一主面に、微小電子機械機構6およびそれに電気的に接続された電極7が形成されて成る微小電子機械機構領域29を多数個縦横に配列形成した多数個取り微小電子機械機構基板30を準備する。半導体母基板28は、例えば単結晶や多結晶等のシリコン基板から成る。このシリコン基板の表面に酸化シリコン層を形成する際に、その中に微小な振動体等の微小電子機械機構6を形成し、円形状パターン等の導体から成る電極7が形成された微小電子機械機構領域29を多数個配列形成することにより、多数個取り微小電子機械機構基板30が形成される。この例においては、微小電子機械機構6と電極7とは、それぞれ半導体母基板28の一主面に形成された微細配線(図示せず)を介して電気的に接続されている。   First, as shown in FIG. 2A, a large number of micro electro mechanical mechanism regions 29 each having a micro electro mechanical mechanism 6 and electrodes 7 electrically connected thereto are formed on one main surface of a semiconductor mother substrate 28. A plurality of micro-electromechanical mechanism substrates 30 that are arranged vertically and horizontally are prepared. The semiconductor mother substrate 28 is made of, for example, a silicon substrate such as single crystal or polycrystal. When a silicon oxide layer is formed on the surface of the silicon substrate, a microelectromechanical mechanism 6 such as a minute vibrating body is formed therein, and a microelectronic machine in which an electrode 7 made of a conductor such as a circular pattern is formed. By forming a large number of mechanism regions 29, a multi-electron mechanical mechanism substrate 30 is formed. In this example, the microelectromechanical mechanism 6 and the electrode 7 are electrically connected to each other through fine wiring (not shown) formed on one main surface of the semiconductor mother board 28.

次に、図2(b)に示すように、外部接続部材1の上面に一方の開口端2が形成されるとともに、外部接続部材1の他面に他方の開口端5が形成されている第2の流路9が形成されている。   Next, as shown in FIG. 2B, one open end 2 is formed on the upper surface of the external connection member 1, and the other open end 5 is formed on the other surface of the external connection member 1. Two flow paths 9 are formed.

外部接続部材1は、例えば、外部接続部材1が酸化アルミニウム質焼結体から成る場合、酸化アルミニウム、酸化珪素、酸化カルシウム等の原料粉末を、有機溶剤、樹脂バインダとともに混練してスラリーを得て、このスラリーをドクターブレード法やリップコータ法等によりシート状に成形して複数のグリーンシートを形成し、このグリーンシートの表面および必要に応じてグリーンシートに予め形成しておいた貫通孔内に、タングステンのメタライズペーストを印刷塗布、充填し、その後、これらのグリーンシートを積層して焼成することにより形成することができる。   For example, when the external connection member 1 is made of an aluminum oxide sintered body, the external connection member 1 is obtained by kneading raw material powders such as aluminum oxide, silicon oxide, and calcium oxide together with an organic solvent and a resin binder to obtain a slurry. The slurry is formed into a sheet shape by a doctor blade method, a lip coater method or the like to form a plurality of green sheets, and in the surface of the green sheet and in the through holes previously formed in the green sheet as necessary, It can be formed by printing and filling tungsten metallized paste, and then laminating and firing these green sheets.

第2の流路9は、例えば、外部接続部材1が酸化アルミニウム質焼結体から成る場合、外部接続部材1となるグリーンシートにプレス金型やNCパンチング、レーザ加工等の穴あけ加工、打抜き加工、切削加工等の機械的加工を施して、グリーンシートに開口部や貫通孔、溝等を形成しておくことにより形成される。例えば、第2の流路9が図2(b)に示すような、一方主面から他方主面にかけて貫通するような貫通孔であれば、各グリーンシートにNCパンチング加工で貫通孔を形成しておき、この貫通孔が最上層から最下層にかけて連通するようにしてグリーンシートを積層することにより形成される。   For example, when the external connection member 1 is made of an aluminum oxide sintered body, the second flow path 9 is formed by punching or punching a green sheet to be the external connection member 1 such as a press die, NC punching, or laser processing. It is formed by applying mechanical processing such as cutting to form an opening, a through hole, a groove or the like in the green sheet. For example, if the second flow path 9 is a through hole penetrating from one main surface to the other main surface as shown in FIG. 2B, a through hole is formed in each green sheet by NC punching. It is formed by laminating green sheets so that the through holes communicate from the uppermost layer to the lowermost layer.

なお、第2の流路9は、全長にわたって貫通孔である必要はなく、外部接続部材1を分割した後の状態で、外部接続部材1の厚み方向の中央部等から外周の側面にかけて横溝状に導かれたような形態等の他の形態(図示せず)でもよい。この場合、グリーンシートの所定部位に、レーザ加工等で細長い溝状の開口部を形成しておき、この開口部の上下を覆うように他のグリーンシートを積層することにより、外部接続部材1の内部に溝状の第2の流路9を形成することができる。   In addition, the 2nd flow path 9 does not need to be a through-hole over the full length, and is a horizontal groove shape from the center part etc. of the thickness direction of the external connection member 1 to the outer peripheral side surface in the state after dividing the external connection member 1 Other forms (not shown) such as those led to In this case, an elongated groove-like opening is formed at a predetermined portion of the green sheet by laser processing or the like, and another green sheet is laminated so as to cover the upper and lower sides of the opening, thereby forming the external connection member 1. A groove-shaped second flow path 9 can be formed inside.

接続材11としては、錫−銀合金半田、錫−銀(銅)−ビスマス合金半田、錫−鉛合金半田等の半田、または銀、銅、金、白金、パラジウム等の金属の粉末やこのような金属を樹脂等の粉末コア材の表面にめっき等の手段で被着した導電性フィラー粉末をエポキシ樹脂、アクリル樹脂等の樹脂で結合して成る導電性樹脂接着剤等の材料を用いることができる。   As the connecting material 11, solder such as tin-silver alloy solder, tin-silver (copper) -bismuth alloy solder, tin-lead alloy solder, metal powder such as silver, copper, gold, platinum, palladium, or the like A material such as a conductive resin adhesive formed by bonding a conductive filler powder obtained by coating a surface of a powder core material such as a resin by means of plating or the like with a resin such as an epoxy resin or an acrylic resin. it can.

また、接続材11は、導電性を有するものでなくてもよい。例えば、エポキシ樹脂、アクリル樹脂等の樹脂や、樹脂にガラス、シリカ等の無機粉末を添加したものでもよい。   Moreover, the connection material 11 does not need to have electroconductivity. For example, a resin such as an epoxy resin or an acrylic resin, or a resin added with an inorganic powder such as glass or silica may be used.

次に、図2(c)に示すように、多数個取り微小電子機械機構基板30の微小電子機械機構基板領域29において、半導体母基板28の一主面と外部接続部材1の一方主面とを接続材11を介して接合する。この工程において、多数個取り微小電子機械機構基板30と外部接続部材1とが機械的に接合、接続され、各微小電子機械機構領域29と外部接続部材1毎に形成された多数のマイクロ化学チップ10が一括して縦横に配列された状態で形成される。   Next, as shown in FIG. 2C, in the micro electro mechanical mechanism substrate region 29 of the multi-chip micro electro mechanical mechanism substrate 30, one main surface of the semiconductor mother substrate 28 and one main surface of the external connection member 1 Are joined via the connecting material 11. In this step, a multi-chip microelectromechanical mechanism substrate 30 and the external connection member 1 are mechanically joined and connected, and a large number of microchemical chips formed for each microelectromechanical mechanism region 29 and the external connection member 1. 10 are formed in a state of being arranged vertically and horizontally.

このように、半導体母基板28の一主面と外部接続部材1の一方主面とを接続材11を介して接合する工程を一つの工程で行うことにより、多数個取りの状態でマイクロ化学チップ10を形成することを容易なものとすることができる。   In this way, by performing the process of joining one main surface of the semiconductor mother board 28 and one main surface of the external connection member 1 via the connection material 11 in one step, the microchemical chip can be obtained in a multi-cavity state. 10 can be easily formed.

ここで、半導体母基板28の一主面と外部接続部材1の一方主面とを接続材11を介して行う接合は、例えば、接続材11が錫−銀合金半田から成る場合、半導体母基板28の上に外部接続部材1を位置合わせして載せ、これらを約250〜300℃程度の温度のリフロー炉中で熱処理すること等により行なわれる。   Here, the joining performed by connecting one main surface of the semiconductor mother board 28 and one main surface of the external connecting member 1 via the connecting material 11 is, for example, when the connecting material 11 is made of tin-silver alloy solder. The external connection member 1 is positioned and placed on the surface 28, and these are heat-treated in a reflow furnace at a temperature of about 250 to 300 ° C.

このように本発明のマイクロ化学チップ10の製造方法によれば、半導体母基板28(半導体基板8)と外部接続部材1との接合を、多数個配列した状態で行なうことができるため、数時間程度を要する半田(ろう)付け等の接合の工程を1回で済ませることができ、また同時に多数個のマイクロ化学チップを配列させた状態で作製することができるので、マイクロ化学チップの生産性を非常に高めることができる。   As described above, according to the method for manufacturing the microchemical chip 10 of the present invention, since the bonding of the semiconductor mother substrate 28 (semiconductor substrate 8) and the external connection member 1 can be performed in a state in which a large number are arranged, it takes several hours. It is possible to complete the joining process such as soldering that requires a certain degree in one time, and at the same time, it is possible to fabricate in a state where a large number of microchemical chips are arranged. Can be greatly enhanced.

そして、図2(d)に示すように、外部接続部材1および微小電子機械機構領域基板30を、微小電子機械機構領域29毎に分割して、半導体基板8に外部接続部材1が接合されて成る個々のマイクロ化学チップ10を得る。   Then, as shown in FIG. 2D, the external connection member 1 and the micro electro mechanical mechanism region substrate 30 are divided into micro electro mechanical mechanism regions 29 and the external connection member 1 is joined to the semiconductor substrate 8. An individual microchemical chip 10 is obtained.

なお、互いに接合された外部接続部材1と半導体母基板28の接合体の切断は、この接合体に対して、ダイシング加工等の切断加工を施すことにより行なうことができる。本発明のマイクロ化学チップ10の製造方法においては、このダイシング加工等の切断加工の際に、各微小電子機械機構6は、半導体基板8と外部接続部材1とにより形成される内部空間に収納されているので、半導体基板8や絶縁基板1等の切断に伴って発生するシリコン、金属等の切削粉等が微小電子機械機構6に付着することが効果的に防止され、完成したマイクロ化学チップ10において、微小電子機械機構6を確実に正常に作動させることができる。   The joined body of the external connection member 1 and the semiconductor mother substrate 28 joined to each other can be cut by subjecting the joined body to a cutting process such as dicing. In the manufacturing method of the microchemical chip 10 of the present invention, each microelectromechanical mechanism 6 is accommodated in an internal space formed by the semiconductor substrate 8 and the external connection member 1 during the cutting process such as dicing. Therefore, it is possible to effectively prevent silicon, metal, etc. generated by cutting the semiconductor substrate 8, the insulating substrate 1 and the like from adhering to the microelectromechanical mechanism 6, and the completed microchemical chip 10 Thus, the micro electro mechanical mechanism 6 can be operated normally with certainty.

また、切削時に併用される洗浄用の水の流速を速くしたり、流れる方向を流路の開口端に対して直角方向にするなどの対応を行なうことで、より確実に微小電子機械機構6を正常に作動させることができる。   Further, by taking measures such as increasing the flow rate of cleaning water used at the time of cutting or making the flowing direction perpendicular to the opening end of the flow path, the microelectromechanical mechanism 6 can be more reliably configured. Can be operated normally.

このように、本発明のマイクロ化学チップ10の製造方法によれば、微小電子機械機構6が収納される内部空間の形成と、内部空間内に被処理流体を湧出させる流路を開口させる工程とを、一つの工程で行なうことができるので、マイクロ化学チップ10の生産性を非常に高いものとすることができる。また、このようにして製造されたマイクロ化学チップ10は、すでに気密封止されているとともに、その電極7が外部に導出された状態であるので、外部の電気回路に半田ボール等の外部端子を介して接続するだけで、外部電気回路基板に実装して使用することができる。   As described above, according to the method of manufacturing the microchemical chip 10 of the present invention, the formation of the internal space in which the microelectromechanical mechanism 6 is accommodated, and the step of opening the flow path for causing the fluid to be treated to flow into the internal space, Thus, the productivity of the microchemical chip 10 can be made extremely high. Further, since the microchemical chip 10 manufactured in this manner is already hermetically sealed and the electrode 7 is led out to the outside, an external terminal such as a solder ball is attached to an external electric circuit. It can be used by being mounted on an external electric circuit board simply by connecting via.

なお、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨の範囲内であれば種々の変更は可能である。例えば、上述の実施の形態では一つのマイクロ化学チップ内に一つの微小電子機械機構を気密封止したが、一つのマイクロ化学チップ内に複数の微小電子機械機構を気密封止してもよい。   In addition, this invention is not limited to the above-mentioned embodiment, A various change is possible if it is in the range of the summary of this invention. For example, in the above-described embodiment, one microelectromechanical mechanism is hermetically sealed in one microchemical chip, but a plurality of microelectromechanical mechanisms may be hermetically sealed in one microchemical chip.

本発明のマイクロ化学チップの実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the microchemical chip of this invention. (a)〜(d)は、本発明のマイクロ化学チップの製造方法の実施の形態の一例をそれぞれ工程順に示した断面図である。(A)-(d) is sectional drawing which showed an example of embodiment of the manufacturing method of the microchemical chip of this invention in order of a process, respectively.

符号の説明Explanation of symbols

1:外部接続部材
2:一方の開口端
3:第1の流路
4:空洞
5:他方の開口端
6:微小電子機械機構
7:電極
8:半導体基板
9:第2の流路
10:マイクロ化学チップ
11:接続材
12:開口部
1: external connection member 2: one open end 3: first flow path 4: cavity 5: other open end 6: micro electromechanical mechanism 7: electrode 8: semiconductor substrate 9: second flow path 10: micro Chemical chip 11: connecting material 12: opening

Claims (5)

内部に空洞を有する半導体基板と、前記空洞から前記半導体基板の主面にかけて形成されるとともに前記半導体基板の主面に開口部を有する被処理流体を流通させるための第1の流路と、前記空洞内に形成された微小電子機械機構と、前記半導体基板の主面に形成されて前記微小電子機械機構に電気的に接続された電極と、上面に一方の開口端を有し他面に他方の開口端を有する第2の流路が内部に形成されているとともに前記開口部に前記一方の開口端が対向するように配置された外部接続部材と、前記第1の流路の前記開口部と前記第2の流路の前記一方の開口端との間を気密に取り囲んで接続することによって前記第1および第2の流路を連通させる接続材とを具備していることを特徴とするマイクロ化学チップ。 A semiconductor substrate having a cavity therein, a first flow path for flowing a fluid to be processed formed from the cavity to the main surface of the semiconductor substrate and having an opening in the main surface of the semiconductor substrate; A microelectromechanical mechanism formed in the cavity; an electrode formed on the main surface of the semiconductor substrate and electrically connected to the microelectromechanical mechanism; and one open end on the upper surface and the other on the other surface. A second flow path having an opening end formed therein, and an external connection member disposed so that the one opening end faces the opening, and the opening of the first flow path And a connecting material that allows the first and second flow paths to communicate with each other by hermetically surrounding and connecting between the first opening end of the second flow path and the one open end of the second flow path. Micro chemical chip. 前記第2の流路は、流通方向に垂直な断面における幅が0.05乃至0.5mmであることを特徴とする請求項1記載のマイクロ化学チップ。 The microchemical chip according to claim 1, wherein the second channel has a width in a cross section perpendicular to the flow direction of 0.05 to 0.5 mm. 前記接続材は、横断面形状が円環状であることを特徴とする請求項1または請求項2記載のマイクロ化学チップ。 3. The microchemical chip according to claim 1, wherein the connecting material has an annular cross-sectional shape. 前記微小電子機械機構は、前記空洞内に前記第1の流路から湧出した前記被処理流体を化学的に分析するためのものであることを特徴とする請求項1乃至請求項3のいずれかに記載のマイクロ化学チップ。 4. The micro electro mechanical mechanism is for chemically analyzing the fluid to be treated that has flowed out of the first flow path into the cavity. A microchemical chip according to 1. 半導体母基板に、その内部に形成された空洞と、該空洞から主面にかけて形成されるとともに該主面に開口部を有する被処理流体を流通させるための第1の流路と、前記空洞内に形成された微小電子機械機構と、前記主面に形成されて前記微小電子機械機構に電気的に接続された電極とを一組とした微小電子機械機構領域を多数個縦横に配列形成した多数個取り微小電子機械機構基板を準備する工程と、
上面に一方の開口端を有し他面に他方の開口端を有する第2の流路が内部に形成されている外部接続部材を前記開口部に前記一方の開口端が対向するようにそれぞれ配置するとともに、前記第1の流路の開口部と前記第2の流路の一方の開口端との間を接続材によって気密に取り囲んで接続することによって前記第1および第2の流路を連通させる工程と、
前記外部接続部材が接続された前記多数個取り微小電子機械機構基板を前記微小電子機械機構領域毎に分割して個々のマイクロ化学チップを得る工程とを具備していることを特徴とするマイクロ化学チップの製造方法。
A cavity formed in the semiconductor mother substrate; a first flow path for flowing a fluid to be processed formed from the cavity to the main surface and having an opening in the main surface; A large number of microelectromechanical mechanism regions formed by arranging a plurality of microelectromechanical mechanisms formed in the main surface and electrodes electrically connected to the microelectromechanical mechanism formed on the main surface, vertically and horizontally. A step of preparing a substrate for micro-electromechanical mechanism,
An external connection member in which a second flow path having one open end on the upper surface and the other open end on the other surface is formed is disposed so that the one open end faces the opening. In addition, the first and second flow paths are communicated by airtightly surrounding and connecting the opening of the first flow path and one open end of the second flow path with a connecting material. A process of
A step of dividing each of the micro-electromechanical mechanism substrates to which the external connection members are connected into each micro-electromechanical mechanism region to obtain individual microchemical chips. Chip manufacturing method.
JP2004278632A 2004-09-27 2004-09-27 Microchemical chip and its manufacturing method Pending JP2006090910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004278632A JP2006090910A (en) 2004-09-27 2004-09-27 Microchemical chip and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004278632A JP2006090910A (en) 2004-09-27 2004-09-27 Microchemical chip and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006090910A true JP2006090910A (en) 2006-04-06

Family

ID=36232038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004278632A Pending JP2006090910A (en) 2004-09-27 2004-09-27 Microchemical chip and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006090910A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008253858A (en) * 2007-03-30 2008-10-23 Kyocera Corp Flow channel member, wiring board, flow channel forming wiring board, forming method of flow channel member, manufacturing method of flow channel member and flow channel member kit
WO2011099386A1 (en) * 2010-02-12 2011-08-18 株式会社日立製作所 Sample analyzing chip, and sample analyzing system
JP2012144387A (en) * 2011-01-07 2012-08-02 Denso Corp Deposition method and deposition apparatus
US8282358B2 (en) 2006-08-31 2012-10-09 Kyocera Corporation Fluidic device
US9316576B2 (en) 2013-03-07 2016-04-19 Kabushiki Kaisha Toshiba Sample detection apparatus and detection method
JP2016105514A (en) * 2010-12-22 2016-06-09 アナログ ディヴァイスィズ インク Vertically integrated system
US9448153B2 (en) 2013-03-07 2016-09-20 Kabushiki Kaisha Toshiba Semiconductor analysis microchip and method of manufacturing the same
US10279348B2 (en) 2013-08-12 2019-05-07 Kabushiki Kaisha Toshiba Semiconductor micro-analysis chip and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989840A (en) * 1995-09-27 1997-04-04 Olympus Optical Co Ltd Small electrophoretic unit
JP2002144300A (en) * 2000-07-27 2002-05-21 Toshiba Tec Corp Pipe joint, method of manufacturing the same, and fluid device using pipe joint
US6443179B1 (en) * 2001-02-21 2002-09-03 Sandia Corporation Packaging of electro-microfluidic devices
JP2003121311A (en) * 2001-08-09 2003-04-23 Olympus Optical Co Ltd Microchannel device, connector and their using method
JP2004058214A (en) * 2002-07-29 2004-02-26 Kawamura Inst Of Chem Res Channel connecting method, member for channel connection, microfluidic device, and connecting structure of microfluidic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989840A (en) * 1995-09-27 1997-04-04 Olympus Optical Co Ltd Small electrophoretic unit
JP2002144300A (en) * 2000-07-27 2002-05-21 Toshiba Tec Corp Pipe joint, method of manufacturing the same, and fluid device using pipe joint
US6443179B1 (en) * 2001-02-21 2002-09-03 Sandia Corporation Packaging of electro-microfluidic devices
JP2003121311A (en) * 2001-08-09 2003-04-23 Olympus Optical Co Ltd Microchannel device, connector and their using method
JP2004058214A (en) * 2002-07-29 2004-02-26 Kawamura Inst Of Chem Res Channel connecting method, member for channel connection, microfluidic device, and connecting structure of microfluidic device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8282358B2 (en) 2006-08-31 2012-10-09 Kyocera Corporation Fluidic device
JP2008253858A (en) * 2007-03-30 2008-10-23 Kyocera Corp Flow channel member, wiring board, flow channel forming wiring board, forming method of flow channel member, manufacturing method of flow channel member and flow channel member kit
WO2011099386A1 (en) * 2010-02-12 2011-08-18 株式会社日立製作所 Sample analyzing chip, and sample analyzing system
JP2011163993A (en) * 2010-02-12 2011-08-25 Hitachi Ltd Sample analysis chip and sample analysis system
JP2016105514A (en) * 2010-12-22 2016-06-09 アナログ ディヴァイスィズ インク Vertically integrated system
JP2012144387A (en) * 2011-01-07 2012-08-02 Denso Corp Deposition method and deposition apparatus
US9316576B2 (en) 2013-03-07 2016-04-19 Kabushiki Kaisha Toshiba Sample detection apparatus and detection method
US9448153B2 (en) 2013-03-07 2016-09-20 Kabushiki Kaisha Toshiba Semiconductor analysis microchip and method of manufacturing the same
US10279348B2 (en) 2013-08-12 2019-05-07 Kabushiki Kaisha Toshiba Semiconductor micro-analysis chip and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US6548895B1 (en) Packaging of electro-microfluidic devices
US6443179B1 (en) Packaging of electro-microfluidic devices
JP3599329B2 (en) Biochip
US5844200A (en) Method for drilling subminiature through holes in a sensor substrate with a laser
JP4683872B2 (en) Microchemical chip and manufacturing method thereof
WO2003098161A2 (en) Integratable fluid flow and property microsensor assembly
US9670445B1 (en) Microfluidics sensor package fabrication method and structure
US8282358B2 (en) Fluidic device
US20140216163A1 (en) Pressure sensor and method for producing a pressure sensor
JP2006090910A (en) Microchemical chip and its manufacturing method
JP2004523124A (en) Method of structuring a flat substrate made of glass-based material
US8414785B2 (en) Methods for fabrication of microfluidic systems on printed circuit boards
TWI355487B (en) Ceramic micro well plate and forming method thereo
JP2009503489A (en) Interconnection and packaging methods for biomedical devices with electronic and fluid functions
EP1144977A1 (en) Method of producing a micro-electromechanical element
JP2006088077A (en) Microchemical chip and its manufacturing method
NL1031465C2 (en) Method for constructing a device with fluidic and electrical functions.
JP2006061823A (en) Microchemical chip and its manufacturing method
CN1236289C (en) Robust fluid flow and property microsensor made of optimal material
JP4757548B2 (en) Microchip mounting device
US11433393B2 (en) Microfluidic flow cell comprising an integrated electrode, and method for manufacturing same
Bergkvist et al. Miniaturized flowthrough microdispenser with piezoceramic tripod actuation
DE102012023379B4 (en) Method for producing a mass spectrometer and corresponding mass spectrometer
JP2009109349A (en) Flow sensor
JP4439407B2 (en) Micro chemical chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A977 Report on retrieval

Effective date: 20091117

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20091201

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100201

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20100720

Free format text: JAPANESE INTERMEDIATE CODE: A02