WO2011099386A1 - Sample analyzing chip, and sample analyzing system - Google Patents

Sample analyzing chip, and sample analyzing system Download PDF

Info

Publication number
WO2011099386A1
WO2011099386A1 PCT/JP2011/051805 JP2011051805W WO2011099386A1 WO 2011099386 A1 WO2011099386 A1 WO 2011099386A1 JP 2011051805 W JP2011051805 W JP 2011051805W WO 2011099386 A1 WO2011099386 A1 WO 2011099386A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
solution
sample analysis
sample
analysis chip
Prior art date
Application number
PCT/JP2011/051805
Other languages
French (fr)
Japanese (ja)
Inventor
義昭 矢澤
隆 穴沢
亜希子 白鳥
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2011099386A1 publication Critical patent/WO2011099386A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • G01N21/763Bioluminescence

Definitions

  • the present invention relates to a small apparatus for detecting or measuring an immune reaction or a gene reaction comprising a sensor chip integrated with a sensor and a signal processing function and a sample / reagent solution flow path.
  • a color reaction or an agglutination reaction is used in a detection system for an immunological reaction or a chemical reaction, and a light source (LED: Light Emitting Diode or LD: Laser Diode) and a sensor (PD: Photo Diode,
  • LED Light Emitting Diode
  • PD Photo Diode
  • a stationary apparatus using an optical system composed of a CCD (Charge Coupled Device) or a PMT (Photomultiplier tube) is known.
  • Patent Document 1 a probe for a biological material is fixed on a chip on which a functional block having a sensor and a wireless transmission / reception function is formed, a captured target is detected by the sensor, and a sensing result is transmitted to an external control device by the wireless transmission / reception function.
  • a transmitting measuring device is disclosed.
  • Patent Document 2 discloses a sensor chip in which a sensor, a signal processing function, and a wireless communication function are integrated.
  • Non-Patent Documents 1 and 2 describe an analysis of the effect of flow velocity and flow channel shape on the efficiency with which sample molecules in a flow channel are captured by a probe fixed to the flow channel inner wall.
  • Patent Document 1 The problem here is fluctuations in measured values caused by temperature fluctuations in the POCT detection system and reaction field.
  • the power supply means for the integrated sensor may be either wired or wireless, but an example of wireless supply will be taken up.
  • the device of Patent Document 1 wirelessly supplies electromagnetic energy from an external reader to the POCT device.
  • the sensor chip temperature rises as power is supplied by inductive coupling between the reader side coil and the sensor chip side coil.
  • the performance of a detection system that measures minute signals is strongly influenced by temperature.
  • the Joule heat can be reduced by the technology for reducing the power consumption of the integrated sensor, it cannot be reduced to zero.
  • temperature fluctuations derived from the reaction field will be examined. The temperature fluctuates when a reagent solution or a sample solution is supplied from the outside to a reaction field where various chemical and biological reactions for detecting a target object are performed.
  • heat of reaction such as heat of mixing or chemical reaction.
  • the temperature fluctuations derived from the detection system or reaction field described here affect sensor elements, amplifiers, control circuits, or chemical / biological reactions, cause fluctuations in measured values and require countermeasures.
  • the problem described above is a problem peculiar to a sample analysis chip in which an integrated sensor chip, a solution reaction field, and a sample solution are in close contact with each other, which are suitable for realizing a small, inexpensive and highly sensitive POCT. That is, it is required to suppress fluctuations in measured values by suppressing the influence of temperature fluctuation factors derived from the detection system and reaction field without impairing the essential characteristics of POCT such as small size and low cost.
  • a solution reaction field and a sensor are formed by causing a solution reaction field and a sensor to be in thermal contact with each other, and forming a solution reaction field by a flow path, and flowing a sample / reagent solution therein.
  • a dynamic temperature equilibrium state is achieved in the sample solution in a short time.
  • the sample analysis chip includes, as detectors, a first detector that detects the reaction of the sample solution and a second detector that detects the temperature of the sample solution.
  • a sample analysis system comprising: calculation means for correcting a signal from a solution acquired by the first detector using a temperature measurement value acquired by the second detector with respect to the temperature dependence data of the signal.
  • the flow path 16 constituting the solution reaction field 10 the photodetector 11, and the flowing sample / reagent solution 12 are in thermal and optical contact.
  • the reaction field refers to a part of the flow path where a substance to be detected reacts, and holds molecules that contribute to an antigen / antibody reaction or an enzyme reaction for detecting a sample. 1-4 corresponds to the area indicated by 10.
  • the solution in the flow path constituting the solution reaction field is flowing.
  • the solution reaction field, the detector, and the sample / reagent solution are in thermal contact. Therefore, the photodetector 11 and the solution 12 are not necessarily in direct contact as shown in FIG.
  • the substrate may be formed of a heat conductive material or the like.
  • the material constituting the flow path in this case include inorganic materials such as glass and silicon, and resin materials such as epoxy and acrylic.
  • the heat conductivity of the heat conducting material is desirably 0.1 W / mK or more.
  • a detector can be arranged. Thermal and optical contact can be made more ideal by sandwiching a transparent filler or matching oil between the photodetector and the channel material.
  • FIG. 2 shows a case where the potential detector 13 is used as a detector. In the potential detector, it is necessary to bring the surface of the detector into contact with the sample / reagent solution. The potential detector is kept in thermal contact with the solution reaction field 10.
  • the sample analysis chip substrate 51, the detectors 11 and 13, and the sample / reagent solution 12 are brought into thermal contact with each other, the sample / reagent solution 12 is flowed.
  • a temperature equilibrium state can be dynamically achieved among the liquid reaction field 10, the detectors 11 and 13, and the sample / reagent solution 12.
  • FIG. 11 An example of the configuration of the sample analysis chip when an integrated photodetector is used will be described with reference to FIG.
  • the configuration of the integrated detector is shown in FIG.
  • the signal detected by the optical sensor is amplified by the analog circuit block 17, AD (Analog-to-digital) converted, encoded so that the digital signal can be transmitted by the control logic circuit block 18, the controller through the interface block 19 and the cable 26. 14 to analyze, display and store data.
  • AD Analog-to-digital
  • FIG. 4 shows an application example of an integrated optical sensor incorporating a sensor and a signal processing circuit and an integrated detector incorporating a wireless function.
  • control signal transmission to the detector and data reception from the detector are performed wirelessly.
  • As a general classification of wireless communication there are an active type in which a detector is equipped with a battery and an oscillator and the detector itself generates a communication carrier wave, and a passive type in which wireless communication is received from an external reader. Any method may be applied.
  • FIG. 4B shows a configuration of an integrated detector having a radio reception function.
  • Each circuit block included in the detector 21 is driven by electric power sent from the reader 23 via the reader coil 22.
  • the sample analysis chip substrate 51, the solution reaction field 10, the detector 21, and the sample / reagent solution 12, which are three components related to the accuracy of the measurement value, are brought into thermal contact with each other, and then the solution 12 is added.
  • the point of flowing is the same as in Example 1.
  • the solution can be flowed by capillary action when the inside is not filled with the solution.
  • a flow rate control structure shown in Example 7 described later is introduced.
  • FIG. 5 shows the time change of the temperature at the location of the detector and the dark state output of the photodetector when the sample analysis chip having this structure is operated.
  • three measurement results are shown in an overlapping manner.
  • the temperature and the output of the photodetector become stable after about 200 s in the solution flow state.
  • FIG. 6 shows an example of performing immunoassay using the sample analysis chip of the present invention.
  • An antibody 31 specific to the antigen to be measured is immobilized at a position corresponding to the upper part of the photodetector inside the flow path constituting the solution reaction field.
  • the sample solution is flowed to bind the antigen 33 to the immobilized antibody 31, and the labeled antibody 32 is bound to the antigen 33 to form a sandwich structure.
  • Luminescent substrate catalyzed by the last labeled enzyme for example alkaline phosphatase, for example AMPPD: 3- (2′-spiradamantane) -4-methyl-4- (3 ”-phosphoroxy) phenyl-1,2-dioxetane disodium salt solution
  • AMPPD 3- (2′-spiradamantane) -4-methyl-4- (3 ”-phosphoroxy) phenyl-1,2-dioxetane disodium salt solution
  • FIG. 7 shows an example of carrying out gene measurement using the sample analysis chip of the present invention.
  • a DNA probe 41 complementary to the DNA to be measured is immobilized at a position corresponding to the upper part of the photodetector inside the flow path constituting the solution reaction field.
  • the sample solution is flowed to hybridize the DNA 42 to be measured to the probe.
  • all the DNA in the sample solution is enzyme-labeled in advance, and after hybridization and washing, the luminescent substrate is flowed and the luminescence is observed by the detector 21. .
  • FIG. 8 shows another example in which gene measurement is performed using the sample analysis chip of the present invention.
  • a potential detector 25 incorporating a potential sensor is used as the detector.
  • the potential sensor for example, an Ion Sensitive Field Effective Transistor (ISFET) in which the gate of a MOS transistor is floated and exposed on the surface of the detector chip can be used.
  • ISFET Ion Sensitive Field Effective Transistor
  • the DNA probe 41 is fixed on the floating gate, the sample solution is flowed, and the target DNA 42 is hybridized to the probe. Since DNA has a negative charge, when the target DNA is hybridized to the probe, the channel resistance of the MOS transistor that constitutes the potential sensor changes, so that the target DNA is detected by reading this.
  • FIG. 9 and 10 show configuration examples of the sample analysis chip.
  • FIG. 9 shows an example in which the flow path 16 is formed on a sample analysis substrate 51 made of glass or resin.
  • the sample analysis substrate 51 is made of resin, polycarbonate, acrylic, COC (Cyclic Olefin Copolymer), PDMS (polydimethylsiloxane), or the like can be used.
  • Integrated detectors 54 and 55 are fixed to the sample analysis substrate 51.
  • the sensors shown in the third to fifth embodiments can be used.
  • 54 is an integrated detector equipped with an optical sensor for detecting signal light
  • 55 is an integrated detector equipped with a reference optical sensor.
  • the path 16 is formed above the integrated detectors 54, 55.
  • the probe can be composed of an antibody, DNA or the like as described in the above examples.
  • the sample or reagent solution is dropped and supplied from the supply solution reservoir 57 and discharged from the drain solution reservoir 58.
  • These solution reservoirs 57 and 58 use absorbent membranes (FIG. 9A), or hold the solution by making the periphery of the solution reservoir convex or by making the solution reservoir concave (FIG. 9).
  • FOG. 9A absorbent membranes
  • an external pump an electroosmotic flow, an electrowetting effect, or the like can be used.
  • 54 is an integrated detector equipped with an optical sensor for detecting signal light
  • 55 is an integrated detector equipped with a temperature sensor.
  • the dark current fluctuation due to the temperature fluctuation fluctuates depending on the presence or absence of the solution flowing through the flow path even during measurement. In the case of detecting a fine signal, it is essential to compensate for this temperature fluctuation.
  • By measuring the temperature of the measurement system by providing a temperature dependency of dark current inherent to the optical sensor acquired in advance and a correction means for correcting using the temperature measurement value obtained by the 54 temperature sensors. Even when the fluctuation is large, an optical sensor output value faithful to the optical signal excluding the dark current fluctuation can be obtained.
  • FIG. 10 is an example specifically showing the flow path forming method.
  • (A) is a top view
  • (b) and (c) are cross-sectional views taken along lines A-A ′ and B-B ′ in (a).
  • the channel 16 is formed by a sample analysis chip substrate 51 and a channel shape defining structure 60 installed thereon.
  • the substrate 51 and the flow path shape defining structure 60 are in contact with each other by the contact surface 52. It is desirable that an adhesive, a filler, a highly adhesive sheet, or the like is inserted into the contact surface 52 so that the solution does not penetrate.
  • the flow path can be formed without providing the flow path shape defining structure 60 on the upper part. There is also.
  • Fig. 11-13 shows a configuration example of a structure for controlling the flow velocity in the flow path.
  • a flow rate limiting structure 59 is provided between the detector 54 and the drain reservoir 58 as a flow rate control means.
  • the flow rate limiting structure 59 may be configured by a solution permeable membrane or a channel having a smaller cross-sectional area compared to the channel near the reaction field.
  • Nitrocellulose, nylon, polyether sulfone, glass fiber, etc. can be used as the membrane material.
  • the arrangement location of the flow rate limiting structure 59 may be on the downstream side of the detector 54 as shown in FIG. 11A or on the upstream side of the detector 54 as shown in FIG.
  • the flow rate can be arbitrarily set according to the length and width of the flow rate limiting structure 59.
  • FIGS. 12 and 13 show structures in the case where a plurality of targets are simultaneously measured by a plurality of probes.
  • FIG. 12B shows an example of a construction method of the flow rate limiting structure.
  • the flow rate limiting structure is arranged in parallel by hydrophobizing a part 61 of the membrane.
  • FIG. 14 shows the relationship between the flow rate of the solution in the channel and the amount of analyte (antigen) captured by the immobilized antibody by simulation (Non-patent Document 2).
  • This relationship varies depending on the type of antigen / antibody and the shape of the flow path.
  • the amount of analyte captured by the immobilized antibody is as follows. Decrease. In order to shorten the temperature equilibrium arrival time without impairing the trapping amount, it is necessary to set the maximum flow rate within a range where the trapping amount does not change with respect to the flow rate.
  • a measuring apparatus for measuring a biological sample targeted by the present invention for example, a sensor, a signal processing circuit, and a wireless communication circuit are combined with an integrated detector integrated on a silicon chip and a flow path to reduce the size. Cost reduction is possible. At the same time, it is possible to perform highly accurate measurement at the site where samples are collected. POCT devices that measure infectious diseases, pathogens in food, agricultural chemicals, etc. are promising applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

A reproducible measurement value is obtained by means of a rapid and simple analyzing chip while preventing the precision of measurement from dropping due to temperature changes. Once a sensor and a reaction field for a solution system are brought into thermal contact, a sample/reagent solution is made to flow through the reaction field for a solution system functioning as a micro channel, thereby stabilizing the temperature of the reaction field, a detector, and the sample/reagent solution in a short period of time. As a consequence, a target molecule is measured rapidly and at a high precision.

Description

試料分析チップ及び試料分析システムSample analysis chip and sample analysis system
 本発明は、センサや信号処理機能を集積化したセンサチップと試料・試薬溶液流路からなる免疫反応や遺伝子の反応を検出または測定する小型装置に関するものである。 The present invention relates to a small apparatus for detecting or measuring an immune reaction or a gene reaction comprising a sensor chip integrated with a sensor and a signal processing function and a sample / reagent solution flow path.
 従来技術としては、免疫学的反応や化学反応の検出系に呈色反応や凝集反応を利用し、検出部として光源(LED:Light Emitting DiodeあるいはLD:Laser Diode)とセンサ(PD:Photo Diode、CCD: Charge Coupled Device あるいはPMT:Photo multiplier tube)からなる光学系を用いた据え置き型の装置が知られている。 As a conventional technique, a color reaction or an agglutination reaction is used in a detection system for an immunological reaction or a chemical reaction, and a light source (LED: Light Emitting Diode or LD: Laser Diode) and a sensor (PD: Photo Diode, A stationary apparatus using an optical system composed of a CCD (Charge Coupled Device) or a PMT (Photomultiplier tube) is known.
 特許文献1では、センサ、無線送受信機能を有する機能ブロックが形成されたチップ上に生体物質に対するプローブを固定し、補足されたターゲットをセンサによって検出し、センシング結果を無線送受信機能によって外部制御機器に伝達する計測装置が開示されている。 In Patent Document 1, a probe for a biological material is fixed on a chip on which a functional block having a sensor and a wireless transmission / reception function is formed, a captured target is detected by the sensor, and a sensing result is transmitted to an external control device by the wireless transmission / reception function. A transmitting measuring device is disclosed.
 特許文献2では、センサや信号処理機能、無線通信機能を集積化したセンサチップが開示されている。 Patent Document 2 discloses a sensor chip in which a sensor, a signal processing function, and a wireless communication function are integrated.
 非特許文献1と2には、流路内の試料分子が流路内壁に固定されたプローブに捕獲される効率について流速や流路形状の影響を解析したものが記載されている。 Non-Patent Documents 1 and 2 describe an analysis of the effect of flow velocity and flow channel shape on the efficiency with which sample molecules in a flow channel are captured by a probe fixed to the flow channel inner wall.
特開2007-333695号公報JP 2007-333695 A 特開2004-101253号公報JP 2004-101253 A
 疾患マーカーとなる各種タンパク質やウィルス・細菌の検体検査では、省力化によるコスト削減のために、大規模病院や検査センタに設置された集中検査装置が利用されてきた。一方で、検体採取の現場で結果を出す迅速性が要求される緊急検査や感染症検査,あるいは簡便性・小型性が求められる自己検査(自宅で実施する血糖値など)においてPOCT(Point of Care Testing)が普及しつつある。利用拡大に伴い、迅速・簡便性・小型性に加えて高い測定感度もPOCTに求められるようになっている。これに応えるために半導体集積回路技術やMEMS技術を使ったセンサによる信号検出系と,検出信号を発生するための反応(抗原抗体反応、酵素反応、核酸ハイブリダイゼーション反応)を行う溶液系反応場を組み合わせることによって小型化を図るPOCTデバイスが提案されている。(例えば特許文献1)
 ここで問題となるのが、POCTによる検出系および反応場における温度変動が原因となる測定値の変動である。まず検出系についてみると、単体のセンサ素子に加えて増幅器や制御回路を集積した集積化センサでは、電力供給によって発生するジュール熱が温度変動の原因となる。集積化センサへの電力供給手段は有線あるいは無線いずれでもよいが、無線による供給の一例を取り上げる。
In specimen testing of various proteins, viruses, and bacteria that serve as disease markers, centralized testing devices installed in large-scale hospitals and testing centers have been used to reduce costs through labor saving. On the other hand, POCT (Point of Care) is used in emergency tests and infectious disease tests that require quickness to obtain results at the site of specimen collection, or self-tests that require simplicity and compactness (such as blood glucose levels performed at home). (Testing) is spreading. With the expansion of use, POCT is required to have high measurement sensitivity in addition to quickness, simplicity, and small size. To meet this demand, a signal detection system using sensors using semiconductor integrated circuit technology and MEMS technology, and a solution reaction field that performs reactions (antigen-antibody reaction, enzyme reaction, nucleic acid hybridization reaction) to generate detection signals There has been proposed a POCT device that is reduced in size by being combined. (For example, Patent Document 1)
The problem here is fluctuations in measured values caused by temperature fluctuations in the POCT detection system and reaction field. First, regarding the detection system, in an integrated sensor in which an amplifier and a control circuit are integrated in addition to a single sensor element, Joule heat generated by power supply causes temperature fluctuation. The power supply means for the integrated sensor may be either wired or wireless, but an example of wireless supply will be taken up.
 特許文献1のデバイスは外部リーダからPOCTデバイスに向けて無線によって電磁的エネルギーを供給している。リーダ側コイルとセンサチップ側コイルの誘導結合による電力の供給に伴いセンサチップ温度が上昇する。一般に、微小信号を測定する検出系の性能は温度の影響を強く受ける。集積化センサの低消費電力化技術によってジュール熱の低減は可能であるが、これをゼロにすることはできない。次に反応場由来の温度変動について検討する。目的物を検出するための各種の化学的・生物的反応を行う反応場に対して試薬溶液や試料溶液が外部から供給されることによって温度が変動する。さらに反応系によっては混合熱や化学反応などの反応熱等の影響がある。ここで述べた検出系あるいは反応場由来の温度変動は、センサ素子、増幅器、制御回路、あるいは化学・生物反応に影響を与え、測定値の変動の原因となり対策が必要である。 The device of Patent Document 1 wirelessly supplies electromagnetic energy from an external reader to the POCT device. The sensor chip temperature rises as power is supplied by inductive coupling between the reader side coil and the sensor chip side coil. In general, the performance of a detection system that measures minute signals is strongly influenced by temperature. Although the Joule heat can be reduced by the technology for reducing the power consumption of the integrated sensor, it cannot be reduced to zero. Next, temperature fluctuations derived from the reaction field will be examined. The temperature fluctuates when a reagent solution or a sample solution is supplied from the outside to a reaction field where various chemical and biological reactions for detecting a target object are performed. Furthermore, depending on the reaction system, there is an influence of heat of reaction such as heat of mixing or chemical reaction. The temperature fluctuations derived from the detection system or reaction field described here affect sensor elements, amplifiers, control circuits, or chemical / biological reactions, cause fluctuations in measured values and require countermeasures.
 以上述べた課題は、小型、安価で高感度のPOCTの実現に適した集積型センサチップと溶液反応場そして試料溶液が密着した状態にある試料分析チップに特有の問題である。すなわち、小型、安価というPOCT必須の特性を損なわずに検出系および反応場由来の温度変動要因の影響を抑制することによって測定値の変動を抑制することが求められる。 The problem described above is a problem peculiar to a sample analysis chip in which an integrated sensor chip, a solution reaction field, and a sample solution are in close contact with each other, which are suitable for realizing a small, inexpensive and highly sensitive POCT. That is, it is required to suppress fluctuations in measured values by suppressing the influence of temperature fluctuation factors derived from the detection system and reaction field without impairing the essential characteristics of POCT such as small size and low cost.
 上記課題を解決するため、溶液系反応場とセンサを熱的に接触させた上で溶液系反応場を流路で構成し、ここに試料・試薬溶液を流動させることで、溶液反応場、センサそして試料溶液において動的な温度平衡状態を短時間で達成する。この動的温度平衡状態が達成された期間内にターゲット分子を計測することによって迅速かつ高精度の測定を実現する。 In order to solve the above-mentioned problems, a solution reaction field and a sensor are formed by causing a solution reaction field and a sensor to be in thermal contact with each other, and forming a solution reaction field by a flow path, and flowing a sample / reagent solution therein. A dynamic temperature equilibrium state is achieved in the sample solution in a short time. By measuring the target molecule within the period in which this dynamic temperature equilibrium state is achieved, rapid and highly accurate measurement is realized.
 すなわち、上記手段の一例としては、以下が挙げられる。
(1)第1の基板と、第1の基板に設けられた検出器と、第1の基板上に設けられ、試料を含む溶液の導入口及び排出口を有し、導入される前記溶液が流動するように形成した流路と、導入される溶液と、検出器とが熱的に接触するよう配置されていることを特徴とする試料分析チップ。
(2)上記の試料分析チップは、検出器として、試料溶液の反応を検出する第1の検出器と、試料溶液の温度を検出する第2の検出器とを備え、第1の検出器の信号の温度依存性データに対し、第2の検出器で取得した温度測定値を用いて、第1の検出器が取得した溶液からの信号を補正する計算手段とを備えた試料分析システム。
That is, the following is mentioned as an example of the said means.
(1) A first substrate, a detector provided on the first substrate, and an inlet and an outlet for a solution containing a sample provided on the first substrate. A sample analysis chip characterized in that a flow path formed to flow, a solution to be introduced, and a detector are arranged in thermal contact.
(2) The sample analysis chip includes, as detectors, a first detector that detects the reaction of the sample solution and a second detector that detects the temperature of the sample solution. A sample analysis system comprising: calculation means for correcting a signal from a solution acquired by the first detector using a temperature measurement value acquired by the second detector with respect to the temperature dependence data of the signal.
 POCTデバイスにおける小型・低コスト化に伴う制限の中で、集積化検出器からの発熱、あるいは溶液反応場における反応熱にともなう測定系全体の温度変動の影響を抑制して測定値の変動を低減することが可能になる。 Reduced fluctuations in measured values by suppressing the influence of temperature fluctuations in the entire measurement system due to heat generated from integrated detectors or reaction heat in solution reaction fields, while limiting the size and cost of POCT devices. It becomes possible to do.
光センサ搭載の試料分析チップの構造の例を示す図。The figure which shows the example of the structure of the sample analysis chip | tip mounted with an optical sensor. 電位センサ搭載の試料分析チップの構造の例を示す図。The figure which shows the example of the structure of the sample analysis chip | tip mounted with an electric potential sensor. 光センサを内蔵した集積化センサの適用例を示す図。The figure which shows the example of application of the integrated sensor which incorporated the optical sensor. 光センサと無線機能を内蔵した集積化センサの適用例を示す図。The figure which shows the application example of the integrated sensor which incorporated the optical sensor and the wireless function. 電位センサ搭載の試料分析チップにおける温度とセンサ出力の変動を示す図。The figure which shows the fluctuation | variation of the temperature and sensor output in the sample analysis chip | tip mounted with an electric potential sensor. 光センサと無線機能を内蔵した集積化センサを免疫計測に適用した例を示す図。The figure which shows the example which applied the integrated sensor which incorporated the optical sensor and the radio | wireless function to immunoassay. 光センサと無線機能を内蔵した集積化センサを遺伝子計測に適用した例を示す図。The figure which shows the example which applied the integrated sensor which incorporated the optical sensor and the wireless function to gene measurement. 電位センサと無線機能を内蔵した集積化センサを遺伝子計測に適用した例を示す図。The figure which shows the example which applied the integrated sensor which incorporated the electric potential sensor and the wireless function to gene measurement. 試料分析チップの構造の例を示す図。The figure which shows the example of the structure of a sample analysis chip | tip. 試料分析チップにおける流路構造の例を示す図。The figure which shows the example of the flow-path structure in a sample analysis chip | tip. 流速制御構造を具備する試料分析チップの構造の例を示す図。The figure which shows the example of the structure of the sample analysis chip | tip which comprises a flow-rate control structure. 並列型の流速制御構造を具備する試料分析チップの構造の例を示す図。The figure which shows the example of the structure of the sample analysis chip | tip which comprises a parallel type flow velocity control structure. 並列型の流速制御構造を具備する試料分析チップの構造の例を示す図。The figure which shows the example of the structure of the sample analysis chip | tip which comprises a parallel type flow velocity control structure. 流路内溶液の流速と固定化抗体に捕捉されるanalyte(抗原)の量の関係を示す図。The figure which shows the relationship between the flow rate of the solution in a flow path, and the quantity of the analyte (antigen) capture | acquired by the fixed antibody.
 図1と図2により本発明の基本的部分を説明する。図1では溶液反応場10を構成する流路16と光検出器11および流動する試料・試薬溶液12が熱的、そして光学的に接触している。反応場とは、流路の一部であって検出される物質の反応する場所を指し、試料を検出するための抗原・抗体反応や酵素反応に寄与する分子を保持している。図1-4においては10で示す領域に対応する。ここで、溶液反応場を構成する流路中の溶液は流動している。
そして、溶液反応場と検出器そして試料・試薬溶液が熱的に接触している。したがって、図1のように光検出器11と溶液12は必ずしも直接に接触している必要はない。このように、検出器と溶液との間に基板を挟む場合であっても、基板が熱伝導材料などで形成されていればよい。この場合の流路を構成する材料としては、ガラスやシリコン等の無機材料や、エポキシやアクリル等の樹脂材料が挙げられる。熱伝導材料の熱伝導率としては、0.1 W/mK以上あることが望ましい。光検出器の場合、流路内の光信号が観測できるように溶液反応場10を構成する流路の材料が信号光に対して透明となるようにすれば、流路材を挟む形で光検出器を配置することができる。光検出器と流路材の間に透明充填剤やマッチングオイルを挟むことにより熱的および光学的な接触をより理想的な状態することができる。
The basic part of the present invention will be described with reference to FIGS. In FIG. 1, the flow path 16 constituting the solution reaction field 10, the photodetector 11, and the flowing sample / reagent solution 12 are in thermal and optical contact. The reaction field refers to a part of the flow path where a substance to be detected reacts, and holds molecules that contribute to an antigen / antibody reaction or an enzyme reaction for detecting a sample. 1-4 corresponds to the area indicated by 10. Here, the solution in the flow path constituting the solution reaction field is flowing.
The solution reaction field, the detector, and the sample / reagent solution are in thermal contact. Therefore, the photodetector 11 and the solution 12 are not necessarily in direct contact as shown in FIG. Thus, even when the substrate is sandwiched between the detector and the solution, the substrate may be formed of a heat conductive material or the like. Examples of the material constituting the flow path in this case include inorganic materials such as glass and silicon, and resin materials such as epoxy and acrylic. The heat conductivity of the heat conducting material is desirably 0.1 W / mK or more. In the case of a photodetector, if the material of the flow path constituting the solution reaction field 10 is transparent to the signal light so that the optical signal in the flow path can be observed, the light is sandwiched between the flow path materials. A detector can be arranged. Thermal and optical contact can be made more ideal by sandwiching a transparent filler or matching oil between the photodetector and the channel material.
 図2は検出器として電位検出器13を用いた場合を示す。電位検出器では検出器表面を試料・試薬溶液に接触させる必要がある。電位検出器を溶液反応場10に熱的に接触させておく。 FIG. 2 shows a case where the potential detector 13 is used as a detector. In the potential detector, it is necessary to bring the surface of the detector into contact with the sample / reagent solution. The potential detector is kept in thermal contact with the solution reaction field 10.
 上記のように、溶液反応場10、試料分析チップ基板51、検出器11,13、そして試料・試薬溶液12を互いに熱的に接触させた上で、試料・試薬溶液12を流動させることにより、短時間で、液反応場10、検出器11,13そして試料・試薬溶液12の間で動的に温度の平衡状態が達成することができる。 As described above, after the solution reaction field 10, the sample analysis chip substrate 51, the detectors 11 and 13, and the sample / reagent solution 12 are brought into thermal contact with each other, the sample / reagent solution 12 is flowed. In a short time, a temperature equilibrium state can be dynamically achieved among the liquid reaction field 10, the detectors 11 and 13, and the sample / reagent solution 12.
 この平衡状態が保たれた状態で検出器による計測を実施することによって精度の高い計測が可能になる。 ¡Highly accurate measurement is possible by carrying out measurement with a detector in a state where this equilibrium state is maintained.
 図3(a)により、集積型の光検出器を用いた場合の試料分析チップの構成例について述べる。樹脂あるいはガラスを素材とする試料分析チップ基板51と流路の上部形状を規定する構造60によって流路16を形成し、試料分析チップ基板51の一部に光センサを内蔵した集積型検出器11を取付けることによって流路16の検出器近傍を溶液反応場10として、ここで発生する光信号を検出する。集積型検出器の構成を図3(b)に示す。 An example of the configuration of the sample analysis chip when an integrated photodetector is used will be described with reference to FIG. The integrated detector 11 in which the flow path 16 is formed by the sample analysis chip substrate 51 made of resin or glass and the structure 60 that defines the upper shape of the flow path, and a photosensor is built in a part of the sample analysis chip substrate 51. As a solution reaction field 10 in the vicinity of the detector of the flow path 16, the optical signal generated here is detected. The configuration of the integrated detector is shown in FIG.
 光センサで検出した信号をアナログ回路ブロック17で増幅、AD(Analog-to-digital)変換し、制御論理回路ブロック18でディジタル信号伝送できるように符号化し、インターフェースブロック19を経てケーブル26を通して制御器14に送り、データの解析、表示、収納を行う。伝送距離が短く、振幅の大きな信号の場合であればアナログ回路ブロックのアンプの出力信号を直接ケーブル26にのせて制御器14に送ることも可能である。こうした集積型検出器は、光センサで検出した信号をその場で増幅、AD変換するために、信号伝送中でのノイズ混入を最小限にすることができる。 The signal detected by the optical sensor is amplified by the analog circuit block 17, AD (Analog-to-digital) converted, encoded so that the digital signal can be transmitted by the control logic circuit block 18, the controller through the interface block 19 and the cable 26. 14 to analyze, display and store data. In the case of a signal having a short transmission distance and a large amplitude, it is also possible to send the output signal of the amplifier of the analog circuit block directly on the cable 26 to the controller 14. Since such an integrated detector amplifies and AD-converts the signal detected by the optical sensor on the spot, it is possible to minimize noise contamination during signal transmission.
 しかし、アナログ回路、制御論理回路ブロック、インターフェースブロックを駆動するための電力によりこれらのブロックが形成されたチップあるいはモジュール基板からの発熱が問題となる。ここで、試料・試薬溶液12を流動させることにより、流動させない場合より短時間で、互いに熱的に接触する溶液反応場10、検出器11、試料・試薬溶液12の温度はそれぞれ一定の動的平衡温度に達する。室温は常に一定、試料・試薬溶液の温度は室温と同じ、集積化検出器の消費電力は常に一定、と仮定すれば上記動的平衡温度は異なる測定であっても等しいとすることできる。測定にあたってはこの動的平衡温度に達したことを確認して、検出器の信号を読み取ることにより、精度の高い計測値を得ることができる。 However, heat generated from the chip or module substrate on which these blocks are formed due to power for driving the analog circuit, control logic circuit block, and interface block becomes a problem. Here, by causing the sample / reagent solution 12 to flow, the temperatures of the solution reaction field 10, the detector 11, and the sample / reagent solution 12 that are in thermal contact with each other in a shorter time than when the sample / reagent solution 12 is not flowed are constant dynamic. Equilibrium temperature is reached. Assuming that the room temperature is always constant, the temperature of the sample / reagent solution is the same as that of the room temperature, and the power consumption of the integrated detector is always constant, the dynamic equilibrium temperature can be equal even in different measurements. In the measurement, it is confirmed that the dynamic equilibrium temperature has been reached, and a highly accurate measurement value can be obtained by reading the detector signal.
 センサと信号処理回路の集積型
 光センサと無線機能を内蔵した集積化検出器の適用例を図4に示す。図4(a)のように、検出器への制御信号送信や検出器からのデータ受信は無線によって行う。無線通信の一般的分類として、検出器に電池と発振器を搭載して検出器自体が通信搬送波を発生する能動型と、外部リーダから無線で電力供給を受けて通信する受動型があるが、ここではいずれの方法を適用してもよい。
FIG. 4 shows an application example of an integrated optical sensor incorporating a sensor and a signal processing circuit and an integrated detector incorporating a wireless function. As shown in FIG. 4A, control signal transmission to the detector and data reception from the detector are performed wirelessly. As a general classification of wireless communication, there are an active type in which a detector is equipped with a battery and an oscillator and the detector itself generates a communication carrier wave, and a passive type in which wireless communication is received from an external reader. Any method may be applied.
 以下、安価に無線機能付きの検出器を構成できる受動型の場合について説明する。受動型無線の機能を備えた集積型検出器については、特許文献2を参照することができる。図4(b)は受無線の機能を備えた集積型検出器の構成を示す。検出器21に含まれる各回路ブロックは、リーダ23からリーダコイル22を介して送られる電力によって駆動される。試料分析チップ基板51を介することによって、計測値の精度にかかわる3つの構成要素である溶液反応場10、検出器21、試料・試薬溶液12を互いに熱的に接触させた上で、溶液12を流動させる点は実施例1と同様である。たとえば、流路の厚さ20μm、流路幅5mm、流路長6mmとすれば、内部が溶液で満たされていない場合、毛細管現象で溶液を流動させることができる。ここでは、流量を制御し、連続的に試料・試薬溶液を流動させるために後述の実施例7に示す流量制御構造を導入する。 Hereinafter, the case of a passive type capable of configuring a detector with a wireless function at a low cost will be described. Patent Document 2 can be referred to for an integrated detector having a passive wireless function. FIG. 4B shows a configuration of an integrated detector having a radio reception function. Each circuit block included in the detector 21 is driven by electric power sent from the reader 23 via the reader coil 22. Through the sample analysis chip substrate 51, the solution reaction field 10, the detector 21, and the sample / reagent solution 12, which are three components related to the accuracy of the measurement value, are brought into thermal contact with each other, and then the solution 12 is added. The point of flowing is the same as in Example 1. For example, if the thickness of the flow path is 20 μm, the flow path width is 5 mm, and the flow path length is 6 mm, the solution can be flowed by capillary action when the inside is not filled with the solution. Here, in order to control the flow rate and cause the sample / reagent solution to flow continuously, a flow rate control structure shown in Example 7 described later is introduced.
 この構造の試料分析チップを動作させたときの検出器の場所における温度と光検出器の暗状態出力の時間変化を図5に示す。計測ごとばらつきを検討するために3回の計測結果について重ねて示している。最初、溶液反応場10に溶液が満たされていない状態で、集積化検出器にリーダから電力が供給されると(t=0s)、温度は20℃以上急速に上昇する。温度上昇に伴って光検出器の計測値(暗状態の計測なので暗電流に対応する)は増加する。次にt=380sにおいて溶液流動を始めると温度は低下し、対応して光検出器の出力は減少する。溶液流動の状態で約200s経過すると温度そして光検出器の出力が安定することが分かる。t=800sで溶液流動を停止すると再び温度、光検出器出力は増加し始める。以上のことから、溶液反応場10、検出器21そして試料・試薬溶液12を互いに熱的に接触させた上で、試料・試薬溶液12を流動させることの効果を確認できる。 FIG. 5 shows the time change of the temperature at the location of the detector and the dark state output of the photodetector when the sample analysis chip having this structure is operated. In order to examine variation for each measurement, three measurement results are shown in an overlapping manner. First, when power is supplied to the integrated detector from the reader (t = 0 s) in a state where the solution reaction field 10 is not filled with the solution, the temperature rapidly rises by 20 ° C. or more. As the temperature rises, the measured value of the photodetector (corresponding to dark current because it is a dark state measurement) increases. Next, when solution flow is started at t = 380 s, the temperature decreases, and the output of the photodetector decreases correspondingly. It can be seen that the temperature and the output of the photodetector become stable after about 200 s in the solution flow state. When the solution flow is stopped at t = 800 s, the temperature and the photodetector output start increasing again. From the above, after the solution reaction field 10, the detector 21 and the sample / reagent solution 12 are brought into thermal contact with each other, the effect of flowing the sample / reagent solution 12 can be confirmed.
 本発明の試料分析チップを使って免疫計測を実施する例を図6に示す。溶液反応場を構成する流路の内側で、光検出器の上部にあたる場所に計測対象の抗原に特異的な抗体31を固定化する。次に試料溶液を流して抗原33を固定化抗体31に結合し、標識抗体32を抗原33に結合してサンドイッチ構造を形成する。最後に標識とした酵素、たとえばアルカリフォスファターゼで触媒される発光基質たとえばAMPPD:3-(2’-spiroadamantane)-4-methoxy-4-(3”-phosphoryloxy)phenyl-1,2-dioxetane disodium salt溶液を流動させ、温度が動的平衡に達した時点で計測を実行する。 FIG. 6 shows an example of performing immunoassay using the sample analysis chip of the present invention. An antibody 31 specific to the antigen to be measured is immobilized at a position corresponding to the upper part of the photodetector inside the flow path constituting the solution reaction field. Next, the sample solution is flowed to bind the antigen 33 to the immobilized antibody 31, and the labeled antibody 32 is bound to the antigen 33 to form a sandwich structure. Luminescent substrate catalyzed by the last labeled enzyme, for example alkaline phosphatase, for example AMPPD: 3- (2′-spiradamantane) -4-methyl-4- (3 ”-phosphoroxy) phenyl-1,2-dioxetane disodium salt solution When the temperature reaches dynamic equilibrium, the measurement is performed.
 本発明の試料分析チップを使って遺伝子計測を実施する例を図7に示す。溶液反応場を構成する流路の内側で、光検出器の上部にあたる場所に計測対象のDNAに相補的なDNAプローブ41を固定化する。次に試料溶液を流して測定対象とするDNA42をプローブにハイブリダイズさせる。このとき図7の差し込み図に示すようにあらかじめ、試料溶液中のDNAをすべて酵素標識しておき、ハイブリダイゼーションして洗浄を行った後に、発光基質を流動させて検出器21によって発光を観測する。 FIG. 7 shows an example of carrying out gene measurement using the sample analysis chip of the present invention. A DNA probe 41 complementary to the DNA to be measured is immobilized at a position corresponding to the upper part of the photodetector inside the flow path constituting the solution reaction field. Next, the sample solution is flowed to hybridize the DNA 42 to be measured to the probe. At this time, as shown in the inset of FIG. 7, all the DNA in the sample solution is enzyme-labeled in advance, and after hybridization and washing, the luminescent substrate is flowed and the luminescence is observed by the detector 21. .
 本発明の試料分析チップを使って遺伝子計測を実施する他の例を図8に示す。検出器として電位センサを内蔵する電位検出器25を用いる。電位センサとしては、たとえばMOSトランジスタのゲートをフローティングにしてこれを検出器チップの表面に露出したIon Sensitive Field Effective Transistor (ISFET)を利用することができる。 FIG. 8 shows another example in which gene measurement is performed using the sample analysis chip of the present invention. A potential detector 25 incorporating a potential sensor is used as the detector. As the potential sensor, for example, an Ion Sensitive Field Effective Transistor (ISFET) in which the gate of a MOS transistor is floated and exposed on the surface of the detector chip can be used.
 このフローティングゲート上にDNAプローブ41を固定し、試料溶液を流動させてターゲットするDNA 42をプローブにハイブリダイズさせる。DNAは負に電荷を余分にもっているのでターゲットDNAがプローブにハイブリダイズすると、電位センサを構成するMOSトランジスタのチャネル抵抗が変化するため、これを読み取ることによってターゲットDNAを検出する。 The DNA probe 41 is fixed on the floating gate, the sample solution is flowed, and the target DNA 42 is hybridized to the probe. Since DNA has a negative charge, when the target DNA is hybridized to the probe, the channel resistance of the MOS transistor that constitutes the potential sensor changes, so that the target DNA is detected by reading this.
 図9および10に試料分析チップの構成例を示す。図9はガラスあるいは樹脂からなる試料分析基板51の上に流路16を形成した例である。試料分析基板51を樹脂で構成する場合、ポリカーボネート、アクリル、COC(Cyclic Olefin Copolymer)、PDMS(polydimethylsiloxane)等を用いることができる。試料分析基板51には集積化検出器54、55が固定される。
集積化検出器に搭載するセンサは実施例3から5に示したセンサを用いることができる。たとえば、54は信号光検出用光センサを搭載した集積化検出器、55として参照用光センサを搭載した集積化検出器とし、54の上方にターゲットを補足するプローブ56を固定して、チップ流路16は集積化検出器54、55の上方に形成する。
9 and 10 show configuration examples of the sample analysis chip. FIG. 9 shows an example in which the flow path 16 is formed on a sample analysis substrate 51 made of glass or resin. When the sample analysis substrate 51 is made of resin, polycarbonate, acrylic, COC (Cyclic Olefin Copolymer), PDMS (polydimethylsiloxane), or the like can be used. Integrated detectors 54 and 55 are fixed to the sample analysis substrate 51.
As the sensor mounted on the integrated detector, the sensors shown in the third to fifth embodiments can be used. For example, 54 is an integrated detector equipped with an optical sensor for detecting signal light, and 55 is an integrated detector equipped with a reference optical sensor. The path 16 is formed above the integrated detectors 54, 55.
 ここで54と55はともに光センサを搭載した集積化検出器とし、2個の出力の差をとることによりプローブ56に捕捉された試料に対応する光信号だけを抽出することができる。プローブは上記実施例に記載したように抗体あるいはDNA等によって構成するこができる。
試料あるいは試薬溶液は供給用溶液溜め57から滴下・供給され、ドレイン用溶液溜め58において排出される。これらの溶液溜め57,58は、吸収性のメンブレンを用いる(図9(a))、あるいは溶液溜め周囲を凸状にするか、溶液溜め部を凹状にすることによって溶液を保持する(図9(a)(b))。流路中の溶液流動を駆動する他の力としては、外部ポンプ、電気浸透流、エレクトロウェエッティング効果等を用いることもできる。
2個の集積化センサ54と55について他の組み合わせ例として、54は信号光検出用光センサを搭載した集積化検出器、55は温度センサを搭載した集積化検出器とすることで測定精度を向上することができる。温度変動による暗電流の変動は図5に示したように計測中も流路を流れる溶液に有無に応じて変動し、微細信号検出の場合にはこの温度変動を補償することが必須となる。予め取得しておいた光センサに固有の暗電流の温度依存性と54の温度センサによって得た温度計測値を用いて補正する補正手段とを備えた計測システムとすることで、測定系の温度変動が大きい場合でも暗電流変動分を除いた光信号に忠実な光センサ出力値が得ることができる。
Here, 54 and 55 are both integrated detectors equipped with optical sensors, and by taking the difference between the two outputs, only the optical signal corresponding to the sample captured by the probe 56 can be extracted. The probe can be composed of an antibody, DNA or the like as described in the above examples.
The sample or reagent solution is dropped and supplied from the supply solution reservoir 57 and discharged from the drain solution reservoir 58. These solution reservoirs 57 and 58 use absorbent membranes (FIG. 9A), or hold the solution by making the periphery of the solution reservoir convex or by making the solution reservoir concave (FIG. 9). (A) (b)). As other forces for driving the solution flow in the flow path, an external pump, an electroosmotic flow, an electrowetting effect, or the like can be used.
As another example of the combination of the two integrated sensors 54 and 55, 54 is an integrated detector equipped with an optical sensor for detecting signal light, and 55 is an integrated detector equipped with a temperature sensor. Can be improved. As shown in FIG. 5, the dark current fluctuation due to the temperature fluctuation fluctuates depending on the presence or absence of the solution flowing through the flow path even during measurement. In the case of detecting a fine signal, it is essential to compensate for this temperature fluctuation. By measuring the temperature of the measurement system by providing a temperature dependency of dark current inherent to the optical sensor acquired in advance and a correction means for correcting using the temperature measurement value obtained by the 54 temperature sensors. Even when the fluctuation is large, an optical sensor output value faithful to the optical signal excluding the dark current fluctuation can be obtained.
 図10は流路の形成法を具体的に示した例である。(a)は上面図、(b)(c)は(a)におけるA-A’およびB-B’における断面図を示す。流路16は試料分析チップ基板51とその上に設置する流路形状規定構造60によって形成される。基板51と流路形状規定構造60は互いに接触面52によって接触している。接触面52には溶液が浸透することがないように接着剤、充填財、高密着性のシート等が挿入されていることが望ましい。また、図10(b-2)のようなセンサが設けられている基板に凹部によって流路が設けられている場合、上部に流路形状規定構造60を設けなくても流路を形成できる場合もある。 FIG. 10 is an example specifically showing the flow path forming method. (A) is a top view, and (b) and (c) are cross-sectional views taken along lines A-A ′ and B-B ′ in (a). The channel 16 is formed by a sample analysis chip substrate 51 and a channel shape defining structure 60 installed thereon. The substrate 51 and the flow path shape defining structure 60 are in contact with each other by the contact surface 52. It is desirable that an adhesive, a filler, a highly adhesive sheet, or the like is inserted into the contact surface 52 so that the solution does not penetrate. In addition, when the flow path is provided by the recess on the substrate provided with the sensor as shown in FIG. 10B-2, the flow path can be formed without providing the flow path shape defining structure 60 on the upper part. There is also.
 図11-13に流路内の流速を制御する構造の構成例を示す。一定の流速を与えることが計測系と反応系の温度の均一化に有効であることは上記で述べたが、流路内で分子がプローブ固定部に拡散して反応するには一定の時間が必要であり、流速が大きすぎると反応効率が低下し、試料・試薬消費量が増加してしまう。反応効率の低下を回避するために、流速は大きくても10μL/minに抑制する必要があり、そのための構造が必要となる。図11(a)は検出器54とドレイン用液溜め58の間に、流動速度制御手段として、流速の制限構造59を設けたものである。ここで流速制限構造59は溶液浸透性のメンブレンあるいは反応場付近の流路に比較して断面積小さくした流路で構成してもよい。メンブレンの材料としてはニトロセルロース、ナイロン、ポリエーテルスルフォン、ガラスファイバなどを用いることができる。 Fig. 11-13 shows a configuration example of a structure for controlling the flow velocity in the flow path. Although it has been described above that giving a constant flow rate is effective for equalizing the temperature of the measurement system and the reaction system, a certain amount of time is required for the molecules to diffuse into the probe fixing part and react in the flow path. Necessary, and if the flow rate is too high, the reaction efficiency decreases and the amount of sample / reagent consumption increases. In order to avoid a decrease in the reaction efficiency, it is necessary to suppress the flow rate to 10 μL / min even if it is large, and a structure for that purpose is required. In FIG. 11A, a flow rate limiting structure 59 is provided between the detector 54 and the drain reservoir 58 as a flow rate control means. Here, the flow rate limiting structure 59 may be configured by a solution permeable membrane or a channel having a smaller cross-sectional area compared to the channel near the reaction field. Nitrocellulose, nylon, polyether sulfone, glass fiber, etc. can be used as the membrane material.
 流速制限構造59の配置場所は図11(a)のように検出器54の下流側でもよいし、図11(b)のように検出器54の上流側でもよい。流速は流速制限構造59の長さと幅によって任意に設定することができる。 The arrangement location of the flow rate limiting structure 59 may be on the downstream side of the detector 54 as shown in FIG. 11A or on the upstream side of the detector 54 as shown in FIG. The flow rate can be arbitrarily set according to the length and width of the flow rate limiting structure 59.
 図12、13は複数ターゲットを複数プローブによって同時計測する場合の構造である。溶液の濃度を各プローブ上において均一にするために流速方向に対して直角方向にプローブを配置することが望ましく流路の幅は拡大する。このとき流速制限構造59を図12(a)の様に並列に設けることにより、流路内において流速を一定にするができる。図12(b)は流速制限構造の構成法の実施例を示すものである。メンブレンの一部61を疎水化することにより流速制限構造を並列化している。
流量制限構造59を設けた場合、例えば図13の63で示す部分に大気への開放口を設けておくことにより、流路内への気泡の滞留を防止することができる。
FIGS. 12 and 13 show structures in the case where a plurality of targets are simultaneously measured by a plurality of probes. In order to make the concentration of the solution uniform on each probe, it is desirable to arrange the probe in a direction perpendicular to the flow rate direction, and the width of the flow path is increased. At this time, by providing the flow rate limiting structure 59 in parallel as shown in FIG. 12A, the flow rate can be made constant in the flow path. FIG. 12B shows an example of a construction method of the flow rate limiting structure. The flow rate limiting structure is arranged in parallel by hydrophobizing a part 61 of the membrane.
When the flow restricting structure 59 is provided, for example, by providing an opening to the atmosphere at a portion indicated by 63 in FIG. 13, bubbles can be prevented from staying in the flow path.
 溶液反応場、センサそして試料溶液において動的な温度平衡状態を短時間で達成するには、流速を大きくすることが有利である。しかし一般に、流速の増加に伴って試料溶液中のanalyte(抗原)の利用効率は低下することが知られている。実際の使用においては利用できる試料溶液量が限られるため、流速を制限して試薬中analyte(抗原)の利用効率を確保しなければならない。 In order to achieve a dynamic temperature equilibrium in the solution reaction field, sensor and sample solution in a short time, it is advantageous to increase the flow rate. However, it is generally known that the utilization efficiency of the analyte (antigen) in the sample solution decreases as the flow rate increases. Since the amount of the sample solution that can be used is limited in actual use, it is necessary to restrict the flow rate to ensure the use efficiency of the analyte (antigen) in the reagent.
 図14は流路内溶液の流速と固定化抗体に捕捉されるanalyte(抗原)の量の関係をシミュレーションによって求めたものである(非特許文献2)。この関係は抗原・抗体の種類や流路形状によって異なるが、一般的な傾向としては図14(b)のように流速が一定の大きさ以上になると、固定化抗体へのanalyteの捕捉量は減少する。捕捉量を損なわずに温度平衡到達時間を短縮するには流速に対して捕捉量が変化しない範囲で、最大の流速に設定することが必要である。 FIG. 14 shows the relationship between the flow rate of the solution in the channel and the amount of analyte (antigen) captured by the immobilized antibody by simulation (Non-patent Document 2). This relationship varies depending on the type of antigen / antibody and the shape of the flow path. However, as a general tendency, when the flow rate exceeds a certain level as shown in FIG. 14 (b), the amount of analyte captured by the immobilized antibody is as follows. Decrease. In order to shorten the temperature equilibrium arrival time without impairing the trapping amount, it is necessary to set the maximum flow rate within a range where the trapping amount does not change with respect to the flow rate.
 本発明が対象とする生体試料の計測を目的とする計測装置では、例えばセンサ・信号処理回路・無線通信回路をシリコンのチップ上に集積した集積化検出器と流路を組み合わせることによって小型化・低コスト化が可能になる。同時に検体を採取する現場において高精度の計測が可能になる。感染症の病原あるいは食品中の病原、農薬などを計測対象とするPOCTデバイスが有力な応用分野である。 In a measuring apparatus for measuring a biological sample targeted by the present invention, for example, a sensor, a signal processing circuit, and a wireless communication circuit are combined with an integrated detector integrated on a silicon chip and a flow path to reduce the size. Cost reduction is possible. At the same time, it is possible to perform highly accurate measurement at the site where samples are collected. POCT devices that measure infectious diseases, pathogens in food, agricultural chemicals, etc. are promising applications.
10: 溶液反応場、
11: 光検出器、
12: 試料・試薬溶液、
13: 電位検出器、
14: 光検出器の制御器、
15: 光検出器に内蔵される光センサ、
16: 流路、
17: 光検出器に内蔵されるアナログ回路ブロック、
18: 光検出器に内蔵される制御論理回路ブロック、
19: 光検出器に内蔵されるインターフェース回路ブロック、
21: 無線機能内蔵の光検出器、
22: リーダコイル、
23: リーダ、
24: 制御器、
25: 無線機能内蔵の電位検出器、
26: ケーブル、
31: 固定化抗体、
32: 標識抗体、
33: 抗原、
41: プローブDNA、
42: ターゲットDNA、
43: 修飾酵素、
51: 試料分析チップ基板、
52: 流路形状規定構造と試料分析チップの接触面、
54: 集積化検出器、
55: 集積化検出器、
56: プローブ固定領域、
57: 検出器上流側の供給用溶液溜め、
58: 検出器下流側のドレイン用溶液溜め、
59: 流速制限構造、
60: 流路の上部形状を規定する構造、
61: 部分的に疎水化されたメンブレン、
62: 検出器上流側の供給用溶液溜めを構成する凸部、
63: 大気開放口。
10: Solution reaction field,
11: photodetector
12: Sample / reagent solution,
13: Potential detector,
14: Controller for photodetectors,
15: an optical sensor built in the photodetector,
16: flow path,
17: Analog circuit block built in the photodetector,
18: a control logic circuit block built in the photodetector;
19: Interface circuit block built in the photodetector;
21: Photo detector with built-in wireless function,
22: Reader coil,
23: Leader
24: Controller
25: Potential detector with built-in wireless function,
26: Cable,
31: immobilized antibody,
32: labeled antibody,
33: antigen,
41: probe DNA,
42: target DNA,
43: modifying enzyme,
51: Sample analysis chip substrate,
52: The flow channel shape defining structure and the contact surface of the sample analysis chip,
54: Integrated detector,
55: Integrated detector,
56: Probe fixing region,
57: Supply solution reservoir upstream of the detector,
58: Drain solution reservoir downstream of the detector,
59: Flow rate limiting structure,
60: Structure that defines the upper shape of the flow path,
61: partially hydrophobized membrane,
62: Convex part constituting the supply solution reservoir upstream of the detector,
63: Open to the atmosphere.

Claims (21)

  1.  第1の基板と、
     前記第1の基板に設けられた検出器と、
     前記第1の基板上に設けられ、試料を含む溶液の導入口及び排出口を有し、導入される前記溶液が流動するように形成した流路と、
     導入される前記溶液と、前記検出器とが熱的に接触するよう配置されていることを特徴とする試料分析チップ。
    A first substrate;
    A detector provided on the first substrate;
    A flow path provided on the first substrate, having an inlet and an outlet for a solution containing a sample, and formed so that the introduced solution flows;
    A sample analysis chip, wherein the solution to be introduced and the detector are arranged in thermal contact with each other.
  2. 前記検出器は、前記試料を含む溶液が反応して発せられる光を検出する光検出器であることを特徴とする請求項1記載の試料分析チップ。 The sample analysis chip according to claim 1, wherein the detector is a photodetector that detects light emitted by a reaction of a solution containing the sample.
  3.  前記第1の基板は、前記光検出器への光に対して透明であることを特徴とする請求項2記載の試料分析チップ。 3. The sample analysis chip according to claim 2, wherein the first substrate is transparent to the light to the photodetector.
  4.  前記検出器は、前記試料を含む溶液が反応して変化する電位を検出する電位検出器であることを特徴とする請求項1記載の試料分析チップ。 The sample analysis chip according to claim 1, wherein the detector is a potential detector that detects a potential that changes when a solution containing the sample reacts.
  5.  前記電位検出器は、前記溶液と接触するように前記第1の基板に設けられていることを特徴とする請求項4記載の試料分析チップ。 The sample analysis chip according to claim 4, wherein the potential detector is provided on the first substrate so as to come into contact with the solution.
  6.  前記検出器は、信号検出部と信号処理部を有する集積化検出器であることを特徴とする請求項1記載の試料分析チップ。 The sample analysis chip according to claim 1, wherein the detector is an integrated detector having a signal detector and a signal processor.
  7.  前記検出器は、無線通信部を有する集積化検出器であることを特徴とする請求項1記載の試料分析チップ。 The sample analysis chip according to claim 1, wherein the detector is an integrated detector having a wireless communication unit.
  8.  前記第1の基板の前記検出器上には、測定対象の抗原に対応する抗体が設けられ、導入される前記試料に含まれる前記抗原を測定することを特徴とする請求項1記載の試料分析チップ。 2. The sample analysis according to claim 1, wherein an antibody corresponding to an antigen to be measured is provided on the detector of the first substrate, and the antigen contained in the introduced sample is measured. Chip.
  9.  前記第1の基板の前記検出器上には、測定対象の核酸をハイブリさせる核酸プローブが設けられ、導入される前記試料に含まれる核酸を測定することを特徴とする請求項1記載の試料分析チップ。 2. The sample analysis according to claim 1, wherein a nucleic acid probe for hybridizing a nucleic acid to be measured is provided on the detector of the first substrate, and the nucleic acid contained in the introduced sample is measured. Chip.
  10.  前記検出器は光検出器であって、ハイブリした前記核酸に標識された酵素からの発光を検出することを特徴とする請求項9記載の試料分析チップ。 10. The sample analysis chip according to claim 9, wherein the detector is a photodetector, and detects light emitted from an enzyme labeled with the hybridized nucleic acid.
  11.  前記検出器は電位検出器であって、前記核酸のハイブリによる電位変化を測定することを特徴とする請求項9記載の試料分析チップ。 10. The sample analysis chip according to claim 9, wherein the detector is a potential detector and measures a potential change due to hybridization of the nucleic acid.
  12.  前記導入口及び前記排出口には、前記溶液の溶液溜めが備えられていることを特徴とする請求項1記載の試料分析チップ。 The sample analysis chip according to claim 1, wherein a solution reservoir for the solution is provided in the introduction port and the discharge port.
  13.  前記溶液溜めの導入口側は、溶液が溜まるように凸上のガイドを有することを特徴とする請求項12記載の試料分析チップ。 13. The sample analysis chip according to claim 12, wherein an inlet side of the solution reservoir has a convex guide so that the solution is accumulated.
  14.  前記導入口側又は/及び前記排出口側の前記溶液溜めと、前記流路との間に、前記溶液の流動速度を制御する流動速度制御手段を備えたことを特徴とする請求項12記載の試料分析チップ。 The flow rate control means for controlling the flow rate of the solution is provided between the solution reservoir on the introduction port side and / or the discharge port side and the flow path. Sample analysis chip.
  15.  前記流動速度制御手段は、狭窄した流路、多孔室材料、又は疎水性加工部分の並列配置のいずれかであることを特徴とする請求項14記載の試料分析チップ。 15. The sample analysis chip according to claim 14, wherein the flow rate control means is any one of a narrow channel and a porous chamber material or a parallel arrangement of hydrophobic processed portions.
  16.  前記排出口側に前記流動速度制御手段を有し、前記流動速度制御手段と前記流露との間に大気への開放口を備えたことを特徴とする請求項14記載の試料分析チップ。 15. The sample analysis chip according to claim 14, wherein the flow rate control means is provided on the discharge port side, and an opening to the atmosphere is provided between the flow rate control means and the dew.
  17.  前記検出器は、前記試料溶液の反応を検出する第1の検出器と、前記試料溶液の温度を検出する第2の検出器であることを特徴とする請求項1記載の試料分析チップ。 The sample analysis chip according to claim 1, wherein the detector is a first detector for detecting a reaction of the sample solution and a second detector for detecting a temperature of the sample solution.
  18.  前記第1の基板に対向して配置され、前記流路の上部を構成する第2の基板とを備えたことを特徴とする請求項1記載の試料分析チップ。 The sample analysis chip according to claim 1, further comprising a second substrate disposed opposite to the first substrate and constituting an upper portion of the flow path.
  19.  前記第2の基板は、前記検出器と対向する面が、前記流路を形成するように凹状に形成
    されていることを特徴とする請求項14記載の試料分析チップ。
    15. The sample analysis chip according to claim 14, wherein a surface of the second substrate facing the detector is formed in a concave shape so as to form the flow path.
  20.  前記第1の基板は、前記検出器と対向する面が、前記流路を形成するように凹状に形成されていることを特徴とする請求項1記載の試料分析チップ。 The sample analysis chip according to claim 1, wherein a surface of the first substrate facing the detector is formed in a concave shape so as to form the flow path.
  21.  請求項1記載の試料分析チップと、
    前記試料分析チップは、前記検出器として、前記試料溶液の反応を検出する第1の検出器と、前記試料溶液の温度を検出する第2の検出器とを備え、
     前記第1の検出器の信号の温度依存性データに対し、前記第2の検出器で取得した温度測定値を用いて、前記第1の検出器が取得した前記溶液からの信号を補正する計算手段とを備えた試料分析システム。
    A sample analysis chip according to claim 1;
    The sample analysis chip includes, as the detector, a first detector that detects a reaction of the sample solution, and a second detector that detects the temperature of the sample solution,
    Calculation for correcting the signal from the solution obtained by the first detector using the temperature measurement value obtained by the second detector with respect to the temperature dependence data of the signal of the first detector. And a sample analysis system.
PCT/JP2011/051805 2010-02-12 2011-01-28 Sample analyzing chip, and sample analyzing system WO2011099386A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-028392 2010-02-12
JP2010028392A JP2011163993A (en) 2010-02-12 2010-02-12 Sample analysis chip and sample analysis system

Publications (1)

Publication Number Publication Date
WO2011099386A1 true WO2011099386A1 (en) 2011-08-18

Family

ID=44367664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051805 WO2011099386A1 (en) 2010-02-12 2011-01-28 Sample analyzing chip, and sample analyzing system

Country Status (2)

Country Link
JP (1) JP2011163993A (en)
WO (1) WO2011099386A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020183948A1 (en) * 2019-03-12 2020-09-17 富士フイルム株式会社 Incubator and microfluidic device operation method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240872A (en) * 1991-11-29 1993-09-21 Canon Inc Device and system for measuring sample
JPH1010088A (en) * 1996-06-26 1998-01-16 Hitachi Ltd Capillary electrophoretic device
JP2006090910A (en) * 2004-09-27 2006-04-06 Kyocera Corp Microchemical chip and its manufacturing method
JP2007024656A (en) * 2005-07-15 2007-02-01 Yokogawa Electric Corp Cartridge for chemical reaction, and information management device
JP2008268107A (en) * 2007-04-24 2008-11-06 Yokogawa Electric Corp Sensor unit and microreactor system
JP2008298598A (en) * 2007-05-31 2008-12-11 Canon Inc Micro fluid element, its usage, and its manufacturing method
JP2009175108A (en) * 2008-01-28 2009-08-06 Sharp Corp Assay-use micro-channel device
JP2009288009A (en) * 2008-05-28 2009-12-10 Konica Minolta Holdings Inc Fluid discrimination device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10111458B4 (en) * 2001-03-09 2008-09-11 Siemens Ag analyzer
EP1542010A4 (en) * 2002-07-12 2007-11-21 Mitsubishi Chem Corp Analytical chip, analytical chip unit, analyzing apparatus, method of analysis using the apparatus, and method of producing the analytical chip
JP4745741B2 (en) * 2005-07-12 2011-08-10 日本特殊陶業株式会社 Relay board and microchip mounting device
EP1946830B1 (en) * 2005-11-07 2019-04-03 Konica Minolta Medical & Graphic, Inc. Microreactor
EP4134667A1 (en) * 2006-12-14 2023-02-15 Life Technologies Corporation Apparatus for measuring analytes using fet arrays

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240872A (en) * 1991-11-29 1993-09-21 Canon Inc Device and system for measuring sample
JPH1010088A (en) * 1996-06-26 1998-01-16 Hitachi Ltd Capillary electrophoretic device
JP2006090910A (en) * 2004-09-27 2006-04-06 Kyocera Corp Microchemical chip and its manufacturing method
JP2007024656A (en) * 2005-07-15 2007-02-01 Yokogawa Electric Corp Cartridge for chemical reaction, and information management device
JP2008268107A (en) * 2007-04-24 2008-11-06 Yokogawa Electric Corp Sensor unit and microreactor system
JP2008298598A (en) * 2007-05-31 2008-12-11 Canon Inc Micro fluid element, its usage, and its manufacturing method
JP2009175108A (en) * 2008-01-28 2009-08-06 Sharp Corp Assay-use micro-channel device
JP2009288009A (en) * 2008-05-28 2009-12-10 Konica Minolta Holdings Inc Fluid discrimination device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020183948A1 (en) * 2019-03-12 2020-09-17 富士フイルム株式会社 Incubator and microfluidic device operation method

Also Published As

Publication number Publication date
JP2011163993A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
Xu et al. Automatic smartphone-based microfluidic biosensor system at the point of care
Schumacher et al. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis
Pires et al. Integrated optical microfluidic biosensor using a polycarbazole photodetector for point-of-care detection of hormonal compounds
KR20110080067A (en) Cartridge for sample assay and cartridge reader for sample assay
Weng et al. Microfluidic biosensor for β-Hydroxybutyrate (βHBA) determination of subclinical ketosis diagnosis
JP6130306B2 (en) Rapid quantification of biomolecules and methods in selectively functionalized nanofluidic biosensors
CN102387863A (en) Single-use microfluidic test cartridge for the bioassay of analytes
CN101821620A (en) Microfluidic sensor complex structure
Delgado et al. The eLoaD platform endows centrifugal microfluidics with on-disc power and communication
WO2011136344A1 (en) Chemical sensor
Gao et al. Development of a portable and sensitive blood serum test system using LED-based absorption photometry and pump-free microfluidic technology
TWI656335B (en) Temperature control module and light measuring device
Zhang et al. Portable, universal, and visual ion sensing platform based on the light emitting diode-based self-referencing-ion selective field-effect transistor
CN110869746A (en) Techniques for performing optical and electrochemical assays using universal circuitry
Matson ELISA-based biosensors
Moon et al. Development and characterization of a microfluidic glucose sensing system based on an enzymatic microreactor and chemiluminescence detection
WO2011099386A1 (en) Sample analyzing chip, and sample analyzing system
US20230001414A1 (en) Clinical spectrophotometer for general chemistry, immuno-assay and nucleic acid detection
Bernacka‐Wojcik et al. Single nucleotide polymorphism detection using gold nanoprobes and bio‐microfluidic platform with embedded microlenses
Palekar et al. Development of an optical detection-based universal biochemical blood analysis platform
CN104422669B (en) Optical waveguide type particle plasma resonance sensing system
JP2007085819A (en) Thermochemical inspection device and reaction chip for the thermochemical inspection device
Kim et al. Smartphone-based medical diagnostics with microfluidic devices
CN114324180B (en) Photoelectric integrated biosensing system
CN112557684A (en) Detection chip, detection device, detection system and detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11742132

Country of ref document: EP

Kind code of ref document: A1