JP7343996B2 - Zirconium oxide ceramics and biochemical sample collection parts - Google Patents

Zirconium oxide ceramics and biochemical sample collection parts Download PDF

Info

Publication number
JP7343996B2
JP7343996B2 JP2019070640A JP2019070640A JP7343996B2 JP 7343996 B2 JP7343996 B2 JP 7343996B2 JP 2019070640 A JP2019070640 A JP 2019070640A JP 2019070640 A JP2019070640 A JP 2019070640A JP 7343996 B2 JP7343996 B2 JP 7343996B2
Authority
JP
Japan
Prior art keywords
open pores
less
diameter
average value
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019070640A
Other languages
Japanese (ja)
Other versions
JP2020169105A (en
Inventor
万平 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2019070640A priority Critical patent/JP7343996B2/en
Publication of JP2020169105A publication Critical patent/JP2020169105A/en
Application granted granted Critical
Publication of JP7343996B2 publication Critical patent/JP7343996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本開示は、酸化ジルコニウム質セラミックスおよび生化学試料採取用部材に関する。 The present disclosure relates to zirconium oxide ceramics and members for collecting biochemical samples.

液体試料を分析対象とする液体クロマトグラフ等の分析装置では、液体試料を採取して運ぶための試料採取用ノズル(以下、この試料採取用ノズルを単にノズルという。)が設けられている。このようなノズルとしては、鉄を主成分とするステンレス鋼が主に用いられている。鉄は水酸基を吸着する性質を有しているので、液体試料が水酸基を含んでいると、液体試料はノズルの表面に固着しやすい。タンパク質を含む血液等の生化学試料は、タンパク質が水酸基を含むので、ノズルの表面に固着しやすく、採取した生化学試料をノズルから吐出しようとしても、固着した生化学試料がノズル内に残留してしまい、ノズルからの吐出量が不足したり、吐出量にばらつきが生じたりするおそれがあった。このようなノズルの表面のおける生化学試料の固着を抑制するノズルとして、本件出願人は、特許文献1で、酸化ジルコニウムを主成分とするセラミックスからなる生化学試料採取用ノズルを提案している。 BACKGROUND ART Analyzers such as liquid chromatographs that analyze liquid samples are provided with a sample collection nozzle (hereinafter, this sample collection nozzle will be simply referred to as a nozzle) for collecting and transporting a liquid sample. Stainless steel whose main component is iron is mainly used for such nozzles. Since iron has the property of adsorbing hydroxyl groups, if the liquid sample contains hydroxyl groups, the liquid sample tends to stick to the surface of the nozzle. Biochemical samples such as blood that contain proteins tend to stick to the nozzle surface because the proteins contain hydroxyl groups, and even if you try to eject the collected biochemical sample from the nozzle, the stuck biochemical sample will remain inside the nozzle. As a result, there is a risk that the amount of ejection from the nozzle may be insufficient or that the amount of ejection may vary. As a nozzle that suppresses the adhesion of biochemical samples on the surface of such a nozzle, the applicant of the present application has proposed in Patent Document 1 a biochemical sample collection nozzle made of ceramics containing zirconium oxide as a main component. .

特開2018-87747号公報JP2018-87747A

特許文献1で提案されている生化学試料採取用ノズルは、その製造工程で押出成形を用いていることから、内周面における開気孔同士の間隔が狭くなりやすく、生化学試料によって開気孔が広げられるように浸食されると、開気孔同士の間隔が狭くなった部分が脱落するおそれが高くなることがあり、更なる耐食性の向上が求められている。 Since the biochemical sample collection nozzle proposed in Patent Document 1 uses extrusion molding in its manufacturing process, the interval between open pores on the inner circumferential surface tends to become narrow, and the open pores may be closed depending on the biochemical sample. If it is eroded in such a way that it spreads out, there is a high risk that the parts where the distance between the open pores is narrow will fall off, and further improvement in corrosion resistance is required.

本開示は、耐食性に優れた酸化ジルコニウム質セラミックスおよび生化学試料採取用部材を提供することを目的とする。 An object of the present disclosure is to provide a zirconium oxide ceramic with excellent corrosion resistance and a member for collecting biochemical samples.

本開示の酸化ジルコニウム質セラミックスは、複数の開気孔を有してなり、該開気孔の重心間距離の平均値から前記開気孔の直径の平均値を差し引いた値が70μm以上である。 The zirconium oxide ceramic of the present disclosure has a plurality of open pores, and the value obtained by subtracting the average value of the diameter of the open pores from the average value of the distance between the centers of gravity of the open pores is 70 μm or more.

また、本開示の生化学試料採取用部材は、上記酸化ジルコニウム質セラミックスを用いてなる。 Furthermore, the biochemical sample collection member of the present disclosure uses the above-mentioned zirconium oxide ceramic.

本開示によれば、耐食性に優れた酸化ジルコニウム質セラミックスおよび生化学試料採取用部材を提供することができる。 According to the present disclosure, it is possible to provide a zirconium oxide ceramic with excellent corrosion resistance and a member for collecting a biochemical sample.

本開示の生化学試料採取用部材の一例を示す、(a)は斜視図であり、(b)は中心軸に沿った断面図であり、(c)は拡径部の拡大図である。An example of the member for collecting a biochemical sample according to the present disclosure is shown in FIG. 1 (a) is a perspective view, (b) is a cross-sectional view along the central axis, and (c) is an enlarged view of the enlarged diameter portion. 本開示の生化学試料採取用部材の他の例を示す、(a)は斜視図であり、(b)は中心軸に沿った断面図である。(a) is a perspective view, and (b) is a cross-sectional view along the central axis, showing another example of the biochemical sample collecting member of the present disclosure.

以下、図面を参照して、本開示の酸化ジルコニウム質セラミックスおよび生化学試料採取用部材について詳細に説明する。 Hereinafter, the zirconium oxide ceramic and biochemical sample collection member of the present disclosure will be described in detail with reference to the drawings.

図1は、本開示の生化学試料採取用部材の一例を示す、(a)は斜視図であり、(b)は中心軸に沿った断面図であり、(c)は(b)の拡大図である。 FIG. 1 shows an example of the biochemical sample collection member of the present disclosure, in which (a) is a perspective view, (b) is a cross-sectional view along the central axis, and (c) is an enlarged view of (b). It is a diagram.

また、図2は、本開示の生化学試料採取用部材の他の例を示す、(a)は斜視図であり、(b)は中心軸に沿った断面図である。 Further, FIG. 2 shows another example of the biochemical sample collection member of the present disclosure, in which (a) is a perspective view and (b) is a cross-sectional view along the central axis.

なお、図2では、図1と同様の構成に関して図1と同じ符号で示している。 Note that in FIG. 2, the same components as in FIG. 1 are indicated by the same reference numerals as in FIG.

図1および図2に示す生化学試料採取用部材は、生化学試料を採取するためのノズル10であり、生化学試料を分析対象とする、例えば、液体クロマトグラフ等の分析装置に用いられる。ノズル10は、この分析装置において、分析対象とする試料(以下、この分析対象とする試料を分析試料という。)の採取および搬送に用いられる。ノズル10は、タンパク質を含む血液等の生化学試料を分析試料としている。具体的には、ノズル10は、第1端1a側の一部が、分析試料に浸漬されることによって、第1貫通孔1A内へ分析試料を吸い上げ、第1貫通孔1A内で分析試料を保持する。この分析試料の吸い上げは、毛細管現象によるものである。毛細管現象以外、第1貫通孔1A内を負圧にして圧力差を利用して、分析試料を吸い上げることもできる。 The biochemical sample collecting member shown in FIGS. 1 and 2 is a nozzle 10 for collecting a biochemical sample, and is used in an analysis device such as a liquid chromatograph that analyzes biochemical samples. The nozzle 10 is used in this analyzer to collect and transport a sample to be analyzed (hereinafter, this sample to be analyzed will be referred to as an analysis sample). The nozzle 10 uses a biochemical sample such as blood containing protein as an analysis sample. Specifically, a part of the first end 1a side of the nozzle 10 is immersed in the analysis sample, so that the nozzle 10 sucks up the analysis sample into the first through hole 1A and draws the analysis sample inside the first through hole 1A. Hold. This suction of the analysis sample is due to capillary action. In addition to the capillary phenomenon, the analysis sample can also be sucked up by creating a negative pressure inside the first through hole 1A and utilizing the pressure difference.

本開示のノズル10は、第1端1aから第2端1bにわたる第1貫通孔1Aを備えるとともに、第1端1aに向かって外径が細くなる第1部材1を有し、第1部材1は、酸化ジルコニウムを主成分とするセラミックス(以降、酸化ジルコニムを主成分とするセラミックスを単にセラミックスという)からなる。 The nozzle 10 of the present disclosure includes a first through hole 1A extending from a first end 1a to a second end 1b, and has a first member 1 whose outer diameter becomes narrower toward the first end 1a. is made of ceramics whose main component is zirconium oxide (hereinafter, ceramics whose main component is zirconium oxide will be simply referred to as ceramics).

ここで、セラミックスの主成分とは、セラミックスを構成する成分の合計100質量%のうち、70質量%以上を占める成分のことを言う。セラミックスを構成する成分の合計100質量%のうち、酸化ジルコニウムの含有量は75質量%以上であってもよい。セラミックスを構成する各成分は、X線回折装置で同定することができ、その含有量については蛍光X線分析装置またはICP発光分光分析装置により求めることができる。 Here, the main component of ceramics refers to a component that accounts for 70% by mass or more out of a total of 100% by mass of the components constituting the ceramic. The content of zirconium oxide may be 75% by mass or more out of a total of 100% by mass of the components constituting the ceramic. Each component constituting the ceramic can be identified using an X-ray diffraction device, and its content can be determined using a fluorescent X-ray analyzer or an ICP emission spectrometer.

また、ノズル10は、第1貫通孔1Aの第2端1b側に、第1貫通孔1Aと連通する第2貫通孔2Aを備える第2部材2を有していてもよい。そして、第1貫通孔1Aの内径は第2貫通孔2Aの内径よりも小さくてもよい。このような第2部材2を有し、第1貫通孔1Aの内径が、第2貫通孔2Aの内径よりも小さいときには、第1部材1の第1貫通孔1Aの容積以上の量の分析試料をノズル10で保持することができる。 Moreover, the nozzle 10 may have the 2nd member 2 provided with 2 A of 2nd through-holes connected to 1 A of 1st through-holes on the 2nd end 1b side of 1 A of 1st through-holes. The inner diameter of the first through hole 1A may be smaller than the inner diameter of the second through hole 2A. When such a second member 2 is provided and the inner diameter of the first through hole 1A is smaller than the inner diameter of the second through hole 2A, an amount of analysis sample equal to or greater than the volume of the first through hole 1A of the first member 1 can be analyzed. can be held by the nozzle 10.

また、第1貫通孔1Aの第1端1a側は、採取する分析試料の導入口であるとともに、採取した分析試料の吐出口でもある。ノズル10から分析試料を吐出する際、分析試料は液滴となり、第1貫通孔1Aの内径が小さいと個々の液滴は小さくなる。ノズル10は、大きな内径を有する第2貫通孔2Aによって比較的大量の分析試料を保持しつつ、小さな内径を有する第1貫通孔1Aによって小さな液滴を精度よく吐出することができる。 Further, the first end 1a side of the first through hole 1A is an inlet for an analysis sample to be collected, and is also an outlet for the collected analysis sample. When the analysis sample is discharged from the nozzle 10, the analysis sample becomes droplets, and if the inner diameter of the first through hole 1A is small, each droplet becomes small. The nozzle 10 can hold a relatively large amount of analysis sample through the second through hole 2A having a large inner diameter, and can accurately discharge small droplets through the first through hole 1A having a small inner diameter.

また、第1部材1は、第2端1b側において、第2貫通孔2Aに挿入される挿入部11を有しており、第1貫通孔1Aは、第2端側1bに近づくに従って内径が大きくなる拡径部12を有していてもよい。挿入部11が第2貫通孔2Aに挿入される構成の場合、挿入部11の外周面と第2部材2の内周面の広い領域とを対向させることができるので、第2
部材2に接合層13を介して第1部材1を強固に結合することができる。
Further, the first member 1 has an insertion portion 11 inserted into the second through hole 2A on the second end 1b side, and the first through hole 1A has an inner diameter that decreases as it approaches the second end side 1b. It may have an enlarged diameter portion 12 that becomes larger. In the case of a configuration in which the insertion portion 11 is inserted into the second through hole 2A, the outer peripheral surface of the insertion portion 11 and the wide area of the inner peripheral surface of the second member 2 can be opposed, so that the second
The first member 1 can be firmly bonded to the member 2 via the bonding layer 13.

加えて、第2端側1bに近づくに従って内径が大きくなる拡径部12を有しているときには、第2貫通孔2Aから第1貫通孔1Aに向かって分析試料がスムーズに流れ込み易くなるため、第2貫通孔2Aと第1貫通孔1Aとの境界部分におけるマイクロバブルの発生等を抑制できる。なお、マイクロバブルの発生等の心配がない場合などは、図2に示すように、拡径部12のない構成であってもよい。拡径部12の形状は、例えば円錐台状であり、中心軸に沿った断面視におけるその頂角θは、例えば70°以上110°以下であってもよい。 In addition, when it has the enlarged diameter portion 12 whose inner diameter increases as it approaches the second end side 1b, it becomes easier for the analysis sample to smoothly flow from the second through hole 2A toward the first through hole 1A. Generation of microbubbles at the boundary between the second through hole 2A and the first through hole 1A can be suppressed. Note that if there is no concern about the generation of microbubbles, etc., a configuration without the enlarged diameter portion 12 may be used as shown in FIG. The shape of the enlarged diameter portion 12 is, for example, a truncated cone shape, and the apex angle θ in a cross-sectional view along the central axis may be, for example, 70° or more and 110° or less.

ノズル10の第1部材1は、第2端1b側において、第2貫通孔2Aに挿入される挿入部11を有しているとき、挿入部11の外周面と第2貫通孔2Aの内周面との間に接合層13が位置していてもよい。このような構成を満たすときには、第1部材1と第2部材2とが強固に接合されるため、第2部材2から第1部材1が外れるおそれが少なくなる。 When the first member 1 of the nozzle 10 has an insertion portion 11 inserted into the second through hole 2A on the second end 1b side, the outer circumferential surface of the insertion portion 11 and the inner circumference of the second through hole 2A A bonding layer 13 may be located between the surfaces. When such a configuration is satisfied, the first member 1 and the second member 2 are firmly joined, so that there is less possibility that the first member 1 will come off from the second member 2.

また、挿入部11は、第1端1a側に段差面14を有しているとき、段差面14と第2
部材2との間にも接合層13が位置していてもよい。挿入部11の外周面と第2部材2の内周面との間に加えて、段差面14と第2部材2の第1部材1側端面との間にも接合層13が位置しているときには、第1部材1と第2部材2とがより強固に接合されるため、第2部材2から第1部材1が外れるおそれがより少なくなる。
Further, when the insertion portion 11 has the stepped surface 14 on the first end 1a side, the stepped surface 14 and the second
A bonding layer 13 may also be located between the member 2 and the member 2 . The bonding layer 13 is located not only between the outer circumferential surface of the insertion portion 11 and the inner circumferential surface of the second member 2 but also between the step surface 14 and the end surface of the second member 2 on the first member 1 side. In some cases, the first member 1 and the second member 2 are more firmly joined, so that there is less possibility that the first member 1 will come off from the second member 2.

接合層13は、酸化珪素を主成分とし、酸化バリウム、酸化カルシウムおよび酸化アルミニウムを含むものであってもよい。酸化珪素を主成分とする接合層13は、いわゆるガラス接合層である。酸化バリウムを含む接合層13は、耐水性が比較的高く、また、酸化カルシウムを含むので化学的耐久性を比較的高い。また酸化アルミニウムを含む接合層13は、ガラスの軟化温度も比較的高く、耐熱性が比較的高い。 Bonding layer 13 may have silicon oxide as a main component and may also contain barium oxide, calcium oxide, and aluminum oxide. The bonding layer 13 containing silicon oxide as a main component is a so-called glass bonding layer. The bonding layer 13 containing barium oxide has relatively high water resistance, and also contains calcium oxide, so it has relatively high chemical durability. Furthermore, the bonding layer 13 containing aluminum oxide has a relatively high glass softening temperature and has relatively high heat resistance.

なお、接合層13における主成分とは、接合層13を構成する成分の合計100質量%のうち、最も多い成分のことを言う。接合層13を構成する成分の合計100質量%のうち、酸化珪素は、50質量%以上であってもよい。接合層13は、例えば、酸化バリウムの含有量が15質量%以上30質量%以下、酸化カルシウムの含有量が5質量%以上20質量%以下、酸化アルミニウムの含有量が1質量%以上10質量%以下であり、残部が酸化珪素である。接合層13を構成する各成分の含有量については、ICP発光分光分析装置により求めることができる。 Note that the main component in the bonding layer 13 refers to the component that is present in the largest amount out of the total 100% by mass of the components constituting the bonding layer 13. Of the total 100% by mass of the components constituting the bonding layer 13, silicon oxide may account for 50% by mass or more. For example, the bonding layer 13 has a barium oxide content of 15% by mass or more and 30% by mass or less, a calcium oxide content of 5% by mass or more and 20% by mass or less, and an aluminum oxide content of 1% by mass or more and 10% by mass. The remainder is silicon oxide. The content of each component constituting the bonding layer 13 can be determined using an ICP emission spectrometer.

第1貫通孔1Aは、第1端1aから第2端1bに向かって内径(D1)が一定の領域を有し、内径(D1)に対する第1貫通孔1Aの長さ(L1)の比(L1/D1)が、50以上であってもよい。ノズル10では、第1貫通孔1Aの内径(D1)は例えば0.25mm以上0.3mm以下である、第1貫通孔1Aの長さ(L1)は例えば12mm以上16mm以下であり、比(L1/D1)は40以上64以下となっている。 The first through hole 1A has a region in which the inner diameter (D1) is constant from the first end 1a to the second end 1b, and the ratio of the length (L1) of the first through hole 1A to the inner diameter (D1) is ( L1/D1) may be 50 or more. In the nozzle 10, the inner diameter (D1) of the first through hole 1A is, for example, 0.25 mm or more and 0.3 mm or less, the length (L1) of the first through hole 1A is, for example, 12 mm or more and 16 mm or less, and the ratio (L1 /D1) is 40 or more and 64 or less.

この比(L1/D1)が50以上の場合、第1貫通孔1Aの内径(D1)が十分に小さいため、毛細管現象によって分析試料を安定して吸い上げることができる。また、第1貫通孔1Aが充分に長いため、比較的多くの量の分析試料を保持して搬送させることができる。また、長さL1に対して内径D1が充分に小さい第1貫通孔1A内では、吸い上げられた分析試料に乱流が生じにくい。このため、乱流に起因するマイクロバブルの発生が抑制される。また、液滴を吐出する際、乱流に起因する液滴の大きさのばらつきも小さくすることができる。 When this ratio (L1/D1) is 50 or more, the inner diameter (D1) of the first through hole 1A is sufficiently small, so that the analysis sample can be stably sucked up by capillary action. Furthermore, since the first through hole 1A is sufficiently long, a relatively large amount of analysis sample can be held and transported. In addition, in the first through hole 1A where the inner diameter D1 is sufficiently small relative to the length L1, turbulence is unlikely to occur in the sucked up analysis sample. Therefore, the generation of microbubbles due to turbulent flow is suppressed. Furthermore, when discharging droplets, it is possible to reduce variations in droplet size caused by turbulence.

上述したノズル10等の生化学試料採取用部材に用いられる本開示のセラミックスは、複数の開気孔を有してなり、開気孔の重心間距離の平均値から開気孔の直径の平均値を差し引いた値L(以下、このLを間隔Lという。)が70μm以上である。 The ceramic of the present disclosure used for biochemical sample collection members such as the nozzle 10 described above has a plurality of open pores, and the average value of the diameter of the open pores is subtracted from the average value of the distance between the centers of gravity of the open pores. The value L ( hereinafter, this L is referred to as the interval L ) is 70 μm or more.

間隔Lがこの範囲であると、分析試料がセラミックスの表面に繰り返し触れて、開気孔が広げられるように浸食を受けても、間隔Lが比較的大きいため、隣り合う開気孔同士に挟まれた部分が脱落するおそれが低減し、耐食性が向上する。 If the spacing L is within this range, even if the analysis sample repeatedly touches the surface of the ceramic and undergoes erosion that enlarges the open pores, the spacing L is relatively large, so that the sample will not be sandwiched between adjacent open pores. The risk of parts falling off is reduced and corrosion resistance is improved.

なお、第2部材2の材質は限定されないが、酸化ジルコニウムを主成分とするセラミックスからなり、間隔Lは70μm以上であるとよい。第2部材2がセラミックスからなり、間隔Lがこの範囲であると、分析試料が第2部材2のセラミックスの表面に繰り返し触れて、開気孔が広げられるように浸食を受けても、間隔Lが比較的大きいため、隣り合う開気孔同士に挟まれた部分が脱落するおそれが低減し、耐食性が向上する。 Although the material of the second member 2 is not limited, it is preferable that it is made of ceramics whose main component is zirconium oxide, and that the distance L is 70 μm or more. If the second member 2 is made of ceramics and the interval L is within this range, even if the analysis sample repeatedly touches the ceramic surface of the second member 2 and is eroded to enlarge the open pores, the interval L will remain within this range. Since it is relatively large, the possibility that the portion sandwiched between adjacent open pores will fall off is reduced, and corrosion resistance is improved.

このように第1部材および第2部材2がセラミックスからなり、間隔Lが70μm以上であると、不純物の混入を抑制することができるので、高精度で分析試料を定量することができる。


In this way, when the first member and the second member 2 are made of ceramics and the interval L is 70 μm or more, it is possible to suppress the incorporation of impurities, and therefore it is possible to quantify the analytical sample with high precision.


開気孔の重心間距離を求める場合、光学顕微鏡を用いて倍率を200倍として1箇所の計測範囲を7.1066×10μmとして測定する。そして、この測定を4箇所で行うことによって、開気孔の重心間距離を求めることができる。 When determining the distance between the centers of gravity of open pores, the measurement range at one location is 7.1066×10 5 μm 2 using an optical microscope at a magnification of 200 times. By performing this measurement at four locations, the distance between the centers of gravity of the open pores can be determined.

この観察範囲を計測の対象として、画像解析ソフト「A像くん(Ver2.52)」(登録商標、旭化成エンジニアリング(株)製)の重心間距離法という手法を適用して、隣り合う開気孔の重心間距離を求めることができる。なお、本開示における開気孔の重心間距離とは、開気孔の重心同士を結ぶ直線距離である。 Using this observation range as the measurement target, we applied a method called the center-of-gravity distance method of the image analysis software "A-zo-kun (Ver. 2.52)" (registered trademark, manufactured by Asahi Kasei Engineering Co., Ltd.) to measure the distance between adjacent open pores. The distance between the centers of gravity can be calculated. Note that the distance between the centers of gravity of open pores in the present disclosure is a straight line distance connecting the centers of gravity of open pores.

計測条件は、重心間距離法の設定条件である粒子の明度を暗、2値化の方法を手動、しきい値を190~220、小図形除去面積を1μmおよび雑音除去フィルタを有とする。 The measurement conditions were as follows: the brightness of the particles was dark, which is the setting condition for the center-of-center distance method, the binarization method was manual, the threshold was 190 to 220, the small figure removal area was 1 μm 2 , and a noise removal filter was used. .

なお、上述の計測に際し、しきい値は190~220としたが、範囲である画像の明るさに応じて、しきい値を調整すればよく、粒子の明度を暗、2値化の方法を手動とし、小図形除去面積を1μmおよび雑音除去フィルタを有とした上で、画像に現れるマーカーが開気孔の形状と一致するように、しきい値を調整すればよい。 In addition, in the above measurement, the threshold value was set to 190 to 220, but the threshold value may be adjusted depending on the brightness of the image, which is the range. The threshold value may be adjusted manually, with a small figure removal area of 1 μm 2 and a noise removal filter, so that the marker appearing in the image matches the shape of the open pore.

また、上記各計測範囲で観察される開気孔が1個以下の場合、少なくとも開気孔が2個
以上になるように計測範囲を広げればよい。
Furthermore, if the number of open pores observed in each measurement range is one or less, the measurement range may be expanded so that there are at least two or more open pores.

セラミックスにおける開気孔の重心間距離の尖度は0以上であってもよい。 The kurtosis of the distance between the centers of gravity of open pores in the ceramic may be 0 or more.

開気孔の重心間距離の尖度がこの範囲であると、開気孔の重心間距離のばらつきが小さく、しかも、開気孔の重心間距離は平均値に近い値を示すものが多くなるので、隣り合う開気孔におけるマイクロクラックの伸展を抑制する確率が高くなり、信頼性が向上する。 If the kurtosis of the distance between the centroids of open pores is within this range, the variation in the distance between the centroids of open pores will be small, and the distance between the centroids of open pores will often show a value close to the average value, so The probability of suppressing the extension of microcracks in matching open pores increases, improving reliability.

特に、開気孔の重心間距離の尖度は0.05以上であるとよい。 In particular, the kurtosis of the distance between the centers of gravity of the open pores is preferably 0.05 or more.

ここで、尖度Kuとは、分布のピークと裾が正規分布からどれだけ異なっているかを示す指標(統計量)であり、尖度Ku>0である場合、鋭いピークを有する分布となり、尖度Ku=0である場合、正規分布となり、尖度Ku<0である場合、分布は丸みがかったピークを有する分布となる。 Here, the kurtosis Ku is an index (statistic) that indicates how much the peak and tail of the distribution differ from the normal distribution.If the kurtosis Ku>0, the distribution has a sharp peak, and When the kurtosis Ku=0, the distribution becomes a normal distribution, and when the kurtosis Ku<0, the distribution becomes a distribution with a rounded peak.

セラミックスにおける開気孔の直径の平均値は2.5μm以下であってもよい。 The average value of the diameter of open pores in the ceramic may be 2.5 μm or less.

開気孔の直径の平均値が2.5μm以下であると、開気孔の内部に分析試料が入り込むことが少なくなる。開気孔の内部に入り込む分析試料が少なくなると、開気孔の壁面を傷つけるおそれが減少し、新たな浸食が抑制される。 When the average value of the diameter of the open pores is 2.5 μm or less, the analysis sample is less likely to enter the inside of the open pores. When the amount of the analysis sample that enters the inside of the open pore decreases, the risk of damaging the wall of the open pore decreases, and new erosion is suppressed.

特に、セラミックスにおける開気孔の直径の平均値は0.2μm以下であるとよい。 In particular, the average value of the diameter of open pores in ceramics is preferably 0.2 μm or less.

セラミックスにおける開気孔の直径の尖度は0以上であってよい。 The kurtosis of the diameter of open pores in ceramics may be 0 or more.

開気孔の直径の尖度がこの範囲であると、開気孔の直径のばらつきが小さく、しかも、開気孔の直径は平均値に近い値を示すものが多くなり、異常に大きい直径の開気孔が少なくなるので、この開気孔の内部から生じる不純物を減少させることができる。 When the kurtosis of the open pore diameter is within this range, the variation in the open pore diameter is small, and moreover, the open pore diameter often shows a value close to the average value, and there are open pores with an abnormally large diameter. Therefore, impurities generated from inside the open pores can be reduced.

特に、開気孔の重心間距離の尖度は0.5以上であるとよい。 In particular, the kurtosis of the distance between the centers of gravity of the open pores is preferably 0.5 or more.

セラミックスにおける開気孔の直径の変動係数は0.7以下であってもよい。 The coefficient of variation of the diameter of open pores in the ceramic may be 0.7 or less.

開気孔の直径の変動係数が0.7以下であると、異常に大きい直径の開気孔が少なくなるので、この開気孔の内部から生じる不純物をさらに減少させることができる。 When the coefficient of variation of the diameter of the open pores is 0.7 or less, the number of open pores with an abnormally large diameter is reduced, so that impurities generated from inside the open pores can be further reduced.

セラミックスにおける開気孔の面積率は0.1%以下であってもよい。開気孔は、少ないほど耐食性が高くなる。 The area ratio of open pores in the ceramic may be 0.1% or less. The fewer open pores, the higher the corrosion resistance.

特に、開気孔の面積率が0.05%以下であるとよい。 In particular, it is preferable that the area ratio of open pores is 0.05% or less.

重心間距離以外の開気孔の直径の平均値、開気孔の直径の変動係数および開気孔の面積率については、画像解析ソフト「Win ROOF(Ver.6.1.3)」((株)三谷商事製)を用いて、倍率を200倍として1箇所の計測範囲を7.1066×10μm、直径に相当する円相当径のしきい値を0.21μmとして測定する。そして、この測定を4箇所で行うことによって、開気孔の直径の平均値、変動係数および面積率を求めることができる。 The average value of the diameter of open pores other than the distance between centers of gravity, the coefficient of variation of the diameter of open pores, and the area ratio of open pores are obtained using the image analysis software "Win ROOF (Ver. 6.1.3)" (Mitani Co., Ltd.). (manufactured by Shoji), the measurement range at one location is 7.1066×10 5 μm 2 at a magnification of 200 times, and the threshold value of the circle equivalent diameter corresponding to the diameter is 0.21 μm. By performing this measurement at four locations, the average value, coefficient of variation, and area ratio of the open pore diameters can be determined.

なお、開気孔の重心間距離および直径の各尖度Kuは、Excel(登録商標、Microsoft Corporation)に備えられている関数Kurtを用いて求めればよい。 Note that the distance between the centers of gravity of the open pores and the kurtosis Ku of the diameter may be determined using the function Kurt provided in Excel (registered trademark, Microsoft Corporation).

セラミックスにおける結晶粒子の平均粒径は、0.2μm以上0.4μm以下であってもよい。平均粒径が、0.2μm以上であると、セラミックスの熱伝導率が高くなり、セラミックスの均熱性が高くなる。一方、平均粒径が0.4μm以下であると、セラミックスの機械的強度を低下させる異常成長した結晶粒子の生成を抑制することができるため、機械的強度を高くすることができる。 The average grain size of crystal grains in the ceramic may be 0.2 μm or more and 0.4 μm or less. When the average particle size is 0.2 μm or more, the thermal conductivity of the ceramic becomes high and the thermal uniformity of the ceramic becomes high. On the other hand, when the average grain size is 0.4 μm or less, it is possible to suppress the generation of abnormally grown crystal grains that reduce the mechanical strength of the ceramic, so that the mechanical strength can be increased.

結晶粒子の平均粒径は、セラミックスの表面を計測の対象として、走査型電子顕微鏡を用いて、倍率を1000倍として、横方向の長さを112μm、縦方向の長さを80μmの範囲で、同じ長さの直線を4本引き、この4本の直線上に存在する結晶の個数をこれら直線の合計長さで除すことで求められる。なお、直線1本当たりの長さは、20μmとすればよい。焼き肌面で粒界が識別しにくく、粒径の測定が困難な場合には、セラミックスの表面を算術平均粗さRaが0.4μm以下になるまで研磨して研磨面とした後、焼成温度から100℃低い温度、例えば、1200℃以上1600℃でサーマルエッチングした
研磨面を測定面とすればよい。
The average grain size of the crystal grains was measured using a scanning electron microscope with the surface of the ceramic as the object of measurement, at a magnification of 1000 times, in a range of 112 μm in horizontal length and 80 μm in vertical length. It is determined by drawing four straight lines of the same length and dividing the number of crystals existing on these four straight lines by the total length of these straight lines. Note that the length of one straight line may be 20 μm. If the grain boundaries are difficult to identify on the baked surface and it is difficult to measure the grain size, the surface of the ceramic is polished until the arithmetic mean roughness Ra is 0.4 μm or less, and then the firing temperature is The measurement surface may be a polished surface that has been thermally etched at a temperature 100° C. lower than, for example, 1200° C. or higher and 1600° C.

また、第1部材1および第2部材2を構成するセラミックスは、イットリウムを酸化物に換算して2mol%以上4mol%以下含むものであってもよい。セラミックスがイットリウムを酸化物に換算して上記範囲で含んでいる場合、このセラミックスからなる第1部材1および第2部材2は、機械的強度がより高くなる。 Further, the ceramics constituting the first member 1 and the second member 2 may contain 2 mol% or more and 4 mol% or less of yttrium in terms of oxide. When the ceramic contains yttrium in the above range in terms of oxide, the first member 1 and the second member 2 made of this ceramic have higher mechanical strength.

また、第1部材1および第2部材2を構成するセラミックスは、マグネシウムおよびカルシウムの少なくともいずれかを酸化物に換算して8mol%以上12mol%以下含むものであってもよい。セラミックスがマグネシウムおよびカルシウムの少なくともいずれかムを酸化物に換算して上記範囲で含んでいる場合、このセラミックスからなる第1部材1および第2部材2は、耐熱衝撃性がより高くなる。 Further, the ceramics constituting the first member 1 and the second member 2 may contain at least one of magnesium and calcium in an amount of 8 mol % or more and 12 mol % or less in terms of oxide. When the ceramic contains at least one of magnesium and calcium in the above range in terms of oxide, the first member 1 and the second member 2 made of this ceramic have higher thermal shock resistance.

次に、本開示のセラミックスの製造方法の一例を説明する。 Next, an example of the method for manufacturing the ceramics of the present disclosure will be described.

まず、酸化ジルコニウムを主成分とする粉末、ワックス、分散剤および可塑剤を準備する。 First, a powder containing zirconium oxide as a main component, a wax, a dispersant, and a plasticizer are prepared.

純度99%以上の酸化ジルコニウムを主成分とする粉末(以下、酸化ジルコニウム粉末と記載する。)100質量部に対して、ワックスを10質量部以上16質量部以下、分散剤を0.1質量部以上0.6質量部以下、可塑剤を1.0質量部以上1.8質量部以下とする。 For 100 parts by mass of powder whose main component is zirconium oxide with a purity of 99% or more (hereinafter referred to as zirconium oxide powder), 10 parts by mass or more and 16 parts by mass or less of wax, and 0.1 parts by mass of a dispersant. The content of the plasticizer is 1.0 parts by mass or more and 1.8 parts by mass or less.

ここで、イットリウムを酸化物に換算して2mol%以上4mol%以下含むセラミックスを得るには、酸化ジルコニウム粉末および酸化イットリウム粉末の合計100mol%中、酸化イットリウム粉末が2mol%以上4mol%以下となるように調合して、第1調合粉末とすればよい。 Here, in order to obtain ceramics containing 2 mol% or more and 4 mol% or less of yttrium in terms of oxide, the yttrium oxide powder should be 2 mol% or more and 4 mol% or less out of the total 100 mol% of the zirconium oxide powder and the yttrium oxide powder. The first blended powder may be obtained by blending the two powders.

また、第2族元素を酸化物に換算して8mol%以上12mol%以下含むセラミックスを得るには、酸化ジルコニウム粉末および第2族元素の酸化物の粉末の合計100mol%中、第2族元素の酸化物の粉末が8mol%以上12mol%以下となるように調合して、第2調合粉末とすればよい。 In addition, in order to obtain ceramics containing 8 mol% or more and 12 mol% or less of Group 2 elements in terms of oxides, the Group 2 elements must be The second blended powder may be prepared by blending the oxide powder so that it is 8 mol% or more and 12 mol% or less.

そして、いずれも90℃以上に加熱された酸化ジルコニウム粉末、第1調合粉末または第2調合粉末(以下、これらの粉末から選択された粉末をセラミック粉末という。)と、ワックス、分散剤および可塑剤とを樹脂製の容器内に収容する。このとき、ワックス、分散剤および可塑剤は、液体となっている。 Then, zirconium oxide powder, first blended powder, or second blended powder (hereinafter, a powder selected from these powders is referred to as ceramic powder), which are all heated to 90°C or higher, wax, a dispersant, and a plasticizer. and stored in a resin container. At this time, the wax, dispersant, and plasticizer are in liquid form.

開気孔の重心間距離の尖度が0以上であるセラミックスを得るには、セラミック粉末
、ワックス、分散剤および可塑剤を70℃以上130℃以下に加熱して樹脂製の容器内に収容すればよい。
To obtain ceramics in which the kurtosis of the distance between the centers of gravity of open pores is 0 or more, ceramic powder, wax, dispersant, and plasticizer are heated to 70°C or more and 130°C or less and placed in a resin container. good.

次に、この容器を攪拌機にセットし、容器を1分以上自公転させること(自公転混練処理)によりセラミック粉末、ワックス、分散剤および可塑剤が撹拌されて、スラリーを得ることができる。 Next, this container is set in a stirrer, and the container is rotated around its axis for at least 1 minute (rotation-revolution kneading process), thereby stirring the ceramic powder, wax, dispersant, and plasticizer to obtain a slurry.

ここで、結晶粒子の平均粒径が0.2μm以上0.5μm以下であるセラミックスを得るには、自公転混練処理後のセラミック粉末の平均粒径(D50)が、例えば、0.1μm以上0.3μm以下になるようにする。 Here, in order to obtain ceramics in which the average particle size of crystal grains is 0.2 μm or more and 0.5 μm or less, the average particle size (D 50 ) of the ceramic powder after rotational kneading treatment is, for example, 0.1 μm or more. The thickness should be 0.3 μm or less.

そして、得られたスラリーをシリンジに充填し、脱泡治具を用いて、シリンジを1分以上自公転させながらスラリーの脱泡処理を行う。 Then, the obtained slurry is filled into a syringe, and the slurry is defoamed using a defoaming jig while rotating and revolving the syringe for 1 minute or more.

ここで、開気孔の直径の尖度が0以上であるセラミックスを得るには、脱泡処理をする前にスラリーを100℃以上190℃以下で予備加熱すればよい。 Here, in order to obtain a ceramic in which the kurtosis of the open pore diameter is 0 or more, the slurry may be preheated at a temperature of 100° C. or more and 190° C. or less before the defoaming treatment.

次に、脱泡したスラリーが充填されたシリンジを射出成形機に取り付け、スラリーの温度を90℃以上に維持した状態で成形して、第1貫通孔を有する円筒状の第1成形体を得る。上述した方法と同様の方法を用いて、第2貫通孔を有する円筒状の第2成形体を得る。 Next, the syringe filled with the defoamed slurry is attached to an injection molding machine and molded while maintaining the temperature of the slurry at 90°C or higher to obtain a cylindrical first molded body having a first through hole. . A cylindrical second molded body having a second through hole is obtained using a method similar to the method described above.

ここで、射出成形機におけるスラリーが通過する流路も90℃以上に維持するとよい。 Here, the channel through which the slurry passes in the injection molding machine is also preferably maintained at 90° C. or higher.

得られた第1成形体および第2成形体を順次、脱脂、焼成することで、それぞれ第1焼結体、第2焼結体が得られ、これらが本開示のセラミックスに相当する。ここで、焼成雰囲気は大気雰囲気、焼成温度は1300℃以上1700℃以下とし、保持時間は1.5時間以上5時間以下とすればよい。 By sequentially degreasing and firing the obtained first molded body and second molded body, a first sintered body and a second sintered body are obtained, respectively, and these correspond to the ceramics of the present disclosure. Here, the firing atmosphere may be an air atmosphere, the firing temperature may be 1300° C. or more and 1700° C. or less, and the holding time may be 1.5 hours or more and 5 hours or less.

また、開気孔の直径の平均値が2.5μm以下であるセラミックスを得るには、焼成雰囲気は大気雰囲気、焼成温度は1400℃以上1700℃以下とし、保持時間は1.5時間以上5時間以下とすればよい。 In addition, in order to obtain ceramics with an average open pore diameter of 2.5 μm or less, the firing atmosphere should be air atmosphere, the firing temperature should be 1400°C or more and 1700°C or less, and the holding time should be 1.5 hours or more and 5 hours or less. And it is sufficient.

また、開気孔の直径の変動係数が0.7以下であるセラミックスを得るには、焼成雰囲気は大気雰囲気、焼成温度は1400℃以上1700℃以下とし、保持時間は2時間以上5時間以下とすればよい。 In addition, in order to obtain ceramics with a coefficient of variation of open pore diameter of 0.7 or less, the firing atmosphere should be air atmosphere, the firing temperature should be 1400°C or more and 1700°C or less, and the holding time should be 2 hours or more and 5 hours or less. Bye.

また、開気孔の面積率が0.1%以下であるセラミックスを得るには、焼成雰囲気は大気雰囲気、焼成温度は1450℃以上1700℃以下とし、保持時間は1.5時間以上5時間以下とすればよい。 In addition, in order to obtain ceramics with an open pore area ratio of 0.1% or less, the firing atmosphere should be air atmosphere, the firing temperature should be 1450°C or more and 1700°C or less, and the holding time should be 1.5 hours or more and 5 hours or less. do it.

次に、第1焼結体の表面を機械的に加工することによって、第1部材を得る。ここで、第1焼結体の第1端1a側の外周面を先端に向かって狭くなるように研磨を施し、第2端1bの側を研削して挿入部11を形成すればよい。また、第1貫通孔1Aの第2端1b側の開口端の一部を加工して、拡径部12を形成すればよい。 Next, a first member is obtained by mechanically processing the surface of the first sintered body. Here, the insertion portion 11 may be formed by polishing the outer circumferential surface of the first end 1a side of the first sintered body so that it becomes narrower toward the tip, and grinding the second end 1b side. Further, the enlarged diameter portion 12 may be formed by processing a part of the opening end on the second end 1b side of the first through hole 1A.

また、第2焼結体の両端面を機械的に加工することによって、第2部材を得る。 Further, a second member is obtained by mechanically processing both end surfaces of the second sintered body.

次に、本開示の生化学試料採取用部材の製造方法の一例を説明する。 Next, an example of a method for manufacturing the biochemical sample collection member of the present disclosure will be described.

まず、第1部材の貫通孔の中心軸と、第2部材の貫通孔の中心軸とを合わせ、第1部材1の挿入部を、第2部材の第2貫通孔に挿入し、第1部材と第2部材とを接合層となるペーストを介して接合する。接合に先立ち、第1部材の挿入部11の外周面および貫通孔2Aの内周面の少なくともいずれかに、酸化珪素、酸化バリウム、酸化カルシウムおよび酸化アルミニウムの各粉末と、セルロース系樹脂ならびにターピネオール等の有機溶剤とを含むペーストを塗布する。なお、ペースト100質量%における酸化物の各粉末の含有量の合計は72質量%以上78質量%以下とする。また、酸化物の各粉末の含有量の合計100質量%における、酸化バリウムの粉末の含有量は15質量%以上30質量%以下、酸化カルシウムの粉末の含有量は5質量%以上20質量%以下、酸化アルミニウムの粉末の含有量は1質量%以上10質量%以下とし、残部を酸化珪素とすればよい。 First, align the central axis of the through hole of the first member with the central axis of the through hole of the second member, insert the insertion part of the first member 1 into the second through hole of the second member, and then and the second member are bonded to each other via a paste serving as a bonding layer. Prior to joining, powders of silicon oxide, barium oxide, calcium oxide, and aluminum oxide, cellulose resin, terpineol, etc. are applied to at least one of the outer peripheral surface of the insertion portion 11 of the first member and the inner peripheral surface of the through hole 2A. Apply a paste containing an organic solvent. Note that the total content of each oxide powder in 100% by mass of the paste is 72% by mass or more and 78% by mass or less. In addition, the content of barium oxide powder is 15% by mass or more and 30% by mass or less, and the content of calcium oxide powder is 5% by mass or more and 20% by mass or less in the total 100% by mass of the content of each powder of oxides. The content of the aluminum oxide powder may be 1% by mass or more and 10% by mass or less, with the remainder being silicon oxide.

この状態で、第1部材の挿入部を、第2貫通孔に挿入すると、挿入部の外周面と第2部材の内周面との間と、段差面と第2部材の第1部材側端面との間にペーストが広がる。この状態で、例えば、850℃以上950℃以下まで昇温させて熱処理し、その後に常温まで降温させることによって、接合層を介して第1部材と第2部材とが接合された、ノズル10が得られる。 In this state, when the insertion portion of the first member is inserted into the second through hole, there will be a gap between the outer peripheral surface of the insertion portion and the inner peripheral surface of the second member, and between the step surface and the end surface of the second member on the first member side. The paste spreads between. In this state, for example, the nozzle 10 in which the first member and the second member are bonded via the bonding layer is formed by heat treatment by raising the temperature to 850° C. or higher and 950° C. or lower, and then lowering the temperature to room temperature. can get.

本開示では上述したように、射出成形機を用いた成形によって第1部材と第2部材とを制作している。このため、乾式加圧成形後にドリル等の工具で貫通孔を機械的に形成する加工方法あるいは押出成形法を用いた場合と異なり、開気孔同士の間隔が広くなるので、耐食性に優れた生化学試料採取用部材とすることができる。 In the present disclosure, as described above, the first member and the second member are manufactured by molding using an injection molding machine. For this reason, unlike the processing method in which through-holes are mechanically formed with a tool such as a drill after dry pressure forming, or the extrusion method is used, the spacing between the open pores becomes wider, resulting in biochemistry with excellent corrosion resistance. It can be used as a sample collection member.

なお、本開示は、前述した実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更、改良、組合せ等が可能である。 Note that the present disclosure is not limited to the embodiments described above, and various changes, improvements, combinations, etc. can be made without departing from the gist of the present disclosure.

1 :第1部材
1a:第1端
1b:第2端
1A:第1貫通孔
2 :第2部材
2A:第2貫通孔
10:ノズル
11:挿入部
13:接合層
14:段差面
1: First member 1a: First end 1b: Second end 1A: First through hole 2: Second member 2A: Second through hole 10: Nozzle 11: Insertion part 13: Bonding layer 14: Step surface

Claims (6)

化学的な浸食性を有する液体を保持する貫通孔を有するとともに前記液体と接する表面を有し、
該表面は複数の開気孔を有してなり、
該開気孔の重心間距離の平均値から前記開気孔の直径の平均値を差し引いた値が70μm以上であり、
前記開気孔の直径の平均値は、2.5μm以下であり、
前記開気孔の重心間距離の尖度が0以上である、酸化ジルコニウム質セラミックス。
having a through hole for retaining a chemically erosive liquid and a surface in contact with the liquid ;
the surface has a plurality of open pores;
The value obtained by subtracting the average value of the diameter of the open pores from the average value of the distance between the centers of gravity of the open pores is 70 μm or more,
The average value of the diameter of the open pores is 2.5 μm or less,
Zirconium oxide ceramics, wherein the kurtosis of the distance between the centers of gravity of the open pores is 0 or more.
化学的な浸食性を有する液体を保持する貫通孔を有するとともに前記液体と接する表面を有し、
該表面は複数の開気孔を有してなり、
該開気孔の重心間距離の平均値から前記開気孔の直径の平均値を差し引いた値が70μm以上であり、
前記開気孔の直径の平均値は、2.5μm以下であり、
前記開気孔の直径の尖度は、0以上である、酸化ジルコニウム質セラミックス。
having a through hole for retaining a chemically erosive liquid and a surface in contact with the liquid ;
the surface has a plurality of open pores;
The value obtained by subtracting the average value of the diameter of the open pores from the average value of the distance between the centers of gravity of the open pores is 70 μm or more,
The average value of the diameter of the open pores is 2.5 μm or less,
The zirconium oxide ceramic has a kurtosis of a diameter of the open pores of 0 or more.
化学的な浸食性を有する液体を保持する貫通孔を有するとともに前記液体と接する表面を有し、
該表面は複数の開気孔を有してなり、
該開気孔の重心間距離の平均値から前記開気孔の直径の平均値を差し引いた値が70μm以上であり、
前記開気孔の直径の平均値は、2.5μm以下であり、
前記開気孔の直径の変動係数は、0.7以下である、酸化ジルコニウム質セラミックス。
having a through hole for retaining a chemically erosive liquid and a surface in contact with the liquid ;
the surface has a plurality of open pores;
The value obtained by subtracting the average value of the diameter of the open pores from the average value of the distance between the centers of gravity of the open pores is 70 μm or more,
The average value of the diameter of the open pores is 2.5 μm or less,
The zirconium oxide ceramic has a coefficient of variation in diameter of the open pores of 0.7 or less.
化学的な浸食性を有する液体を保持する貫通孔を有するとともに前記液体と接する表面を有し、
該表面は複数の開気孔を有してなり、
該開気孔の重心間距離の平均値から前記開気孔の直径の平均値を差し引いた値が70μm以上であり、
前記開気孔の直径の平均値は、2.5μm以下であり、
結晶粒子の平均粒径は、0.2μm以上0.5μm以下である、酸化ジルコニウム質セラミックス。
having a through hole for retaining a chemically erosive liquid and a surface in contact with the liquid ;
the surface has a plurality of open pores;
The value obtained by subtracting the average value of the diameter of the open pores from the average value of the distance between the centers of gravity of the open pores is 70 μm or more,
The average value of the diameter of the open pores is 2.5 μm or less,
A zirconium oxide ceramic whose crystal grains have an average grain size of 0.2 μm or more and 0.5 μm or less.
前記開気孔の面積率は、0.1%以下である、請求項1乃至請求項のいずれかに記載の酸化ジルコニウム質セラミックス。 The zirconium oxide ceramic according to any one of claims 1 to 4 , wherein the area ratio of the open pores is 0.1% or less. 請求項1乃至請求項のいずれかに記載の酸化ジルコニウム質セラミックスを用いてなる、生化学試料採取用部材。 A member for collecting a biochemical sample, comprising the zirconium oxide ceramic according to any one of claims 1 to 5 .
JP2019070640A 2019-04-02 2019-04-02 Zirconium oxide ceramics and biochemical sample collection parts Active JP7343996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019070640A JP7343996B2 (en) 2019-04-02 2019-04-02 Zirconium oxide ceramics and biochemical sample collection parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019070640A JP7343996B2 (en) 2019-04-02 2019-04-02 Zirconium oxide ceramics and biochemical sample collection parts

Publications (2)

Publication Number Publication Date
JP2020169105A JP2020169105A (en) 2020-10-15
JP7343996B2 true JP7343996B2 (en) 2023-09-13

Family

ID=72745327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019070640A Active JP7343996B2 (en) 2019-04-02 2019-04-02 Zirconium oxide ceramics and biochemical sample collection parts

Country Status (1)

Country Link
JP (1) JP7343996B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006181255A (en) 2004-12-28 2006-07-13 Ngk Spark Plug Co Ltd Bone head for prosthetic hip joint and prosthetic hip joint
JP2013067526A (en) 2011-09-21 2013-04-18 Tosoh Corp Plasma resistant member, and method for manufacturing the same
JP2018087747A (en) 2016-11-29 2018-06-07 京セラ株式会社 Biochemical sample collection nozzle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006181255A (en) 2004-12-28 2006-07-13 Ngk Spark Plug Co Ltd Bone head for prosthetic hip joint and prosthetic hip joint
JP2013067526A (en) 2011-09-21 2013-04-18 Tosoh Corp Plasma resistant member, and method for manufacturing the same
JP2018087747A (en) 2016-11-29 2018-06-07 京セラ株式会社 Biochemical sample collection nozzle

Also Published As

Publication number Publication date
JP2020169105A (en) 2020-10-15

Similar Documents

Publication Publication Date Title
JP2002062304A (en) Pipette device
JP5842014B2 (en) Object sorting apparatus and object sorting method
JP7343996B2 (en) Zirconium oxide ceramics and biochemical sample collection parts
JP4902782B2 (en) Vacuum suction nozzle
JP6337147B2 (en) Sampling nozzle, automatic analyzer using the same, and method of manufacturing sampling nozzle
US8293192B2 (en) Dispensing nozzle tip
JP6825889B2 (en) Nozzle for biochemical sampling
KR102387056B1 (en) Ceramic assembly and manufacturing method thereof
CN1044297C (en) Cathode and production of same
CN107206595B (en) Suction nozzle
JP7182017B2 (en) Wetted member, manufacturing method thereof, member for analytical device, analytical device, sliding member, and sliding device
JP2011071370A (en) Vacuum suction nozzle
JPWO2020111206A1 (en) Stirrer and stirrer
JP7279079B2 (en) Stirring Bars and Stirring Devices
CN210030647U (en) Consumable and device for nucleic acid extraction
US10890595B2 (en) Method and apparatus for pre-positioning a radially symmetric, coaxial sample within a sheath fluid to provide uniform sample delivery rate during flow
JP2020020648A (en) Nozzle unit
JP6889268B2 (en) Plasma processing equipment members and plasma processing equipment
JP3570422B2 (en) Syringe for dispenser and paste adhesive
JP7279077B2 (en) Stirring Bars and Stirring Devices
JP2022151316A (en) Chromatographic tube, manufacturing method therefor, and fast liquid chromatograph
JP7468242B2 (en) Method for impregnating a sample with resin, method for preparing a sample, and method for analyzing a sample
CN215286236U (en) Kit for separating stem cells
JP2007322148A (en) Dispensing pipe and analyzer using it
JPH08112537A (en) Pipet tip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211110

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230901

R150 Certificate of patent or registration of utility model

Ref document number: 7343996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150