JP2007322148A - Dispensing pipe and analyzer using it - Google Patents

Dispensing pipe and analyzer using it Download PDF

Info

Publication number
JP2007322148A
JP2007322148A JP2006149888A JP2006149888A JP2007322148A JP 2007322148 A JP2007322148 A JP 2007322148A JP 2006149888 A JP2006149888 A JP 2006149888A JP 2006149888 A JP2006149888 A JP 2006149888A JP 2007322148 A JP2007322148 A JP 2007322148A
Authority
JP
Japan
Prior art keywords
dispensing
sample
dispensing tube
liquid
straight pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006149888A
Other languages
Japanese (ja)
Inventor
Hideaki Oraku
英昭 大楽
Masashi Endo
正史 遠藤
Takanori Suzuki
孝徳 鈴木
Tomoyuki Onomura
知幸 小野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Systems Corp
Original Assignee
Hitachi High Tech Science Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Science Systems Corp filed Critical Hitachi High Tech Science Systems Corp
Priority to JP2006149888A priority Critical patent/JP2007322148A/en
Publication of JP2007322148A publication Critical patent/JP2007322148A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the point at issue that a dispensing pipe used in a dispenser for transferring a liquid to another container causes a liquid to remain and the contamination between a different kind of chemical reaction reagents to occur in the next suction process of a reaction container when a residual liquid is sucked in a suction/discharge container after the reagents are sucked in the reaction container and raises the fear of bringing about abnormality in a measuring result. <P>SOLUTION: The dispensing pipe, which performs at least either one of the suction and discharge of a liquid is equipped with a straight pipe part arranged so as to become narrow parallelly and stepwise in its inner diameter along the center axis line regulating the surface roughness ratio of its inner surface and the contracted diameter part for joining the straight pipe part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、液体を別の容器に移し替えるために、液体を吸引する分注管およびそれを用いた分析装置に係り、特に高い分注精度が求められる臨床用自動分析装置の分注機構に好適な分注管および分析装置に関する。   The present invention relates to a dispensing tube for sucking a liquid and an analyzer using the same in order to transfer the liquid to another container, and particularly to a dispensing mechanism of a clinical automatic analyzer requiring high dispensing accuracy. The present invention relates to a suitable dispensing tube and analyzer.

血液、尿等の生体サンプルを定性・定量分析する自動分析装置はスループット、測定再現性の高さなどから、大病院、検査センタを中心に近年普及が著しい。   In recent years, automatic analyzers that qualitatively and quantitatively analyze biological samples such as blood and urine have been widely used mainly in large hospitals and examination centers because of their high throughput and measurement reproducibility.

自動分析装置の原理は、サンプル中の特定成分と反応して色の変わる試薬を用いて、色の変化を光度計により吸光度として測定するものである。   The principle of the automatic analyzer is to measure a color change as absorbance with a photometer using a reagent that changes color by reacting with a specific component in a sample.

自動分析装置に関するニーズの1つとして、ランニングコスト低減のため、使用する試薬量の低減がある。試薬量の低減にあわせて吸引するサンプル量の低減も求められる。   One of the needs for automatic analyzers is to reduce the amount of reagents used in order to reduce running costs. A reduction in the amount of sample to be aspirated is also required in accordance with the reduction in the amount of reagent.

現状の自動分析装置ではサンプル量が1桁〜2桁マイクロリットルのオーダーであるが、これほど少ない量の液体を精度良く分注する分注機構を提供することは高度な技術が必要である。   In the current automatic analyzer, the amount of sample is on the order of 1 to 2 digits of microliter, but providing a dispensing mechanism for accurately dispensing such a small amount of liquid requires advanced technology.

また、分注機構は異なるサンプルを所定量分注することが求められるが、分注するサンプル量が少ない場合は、十分に洗浄した後に別の試料を分注しないと、試料同士が混ざり合って後の分析結果に悪影響を及ぼす可能性もある。   In addition, the dispensing mechanism is required to dispense a predetermined amount of different samples, but if the amount of sample to be dispensed is small, the sample will be mixed if another sample is not dispensed after sufficient washing. Later analysis results may be adversely affected.

このため、分注精度が高く、かつ洗浄性の良い分注プローブが求められている。   For this reason, a dispensing probe with high dispensing accuracy and good cleaning properties is desired.

特許文献1には、洗浄性が高くなるよう、段階的に内径が狭くなるような形状を備えた分注プローブが開示されている。   Patent Document 1 discloses a dispensing probe having a shape in which the inner diameter is gradually reduced so as to improve the cleaning performance.

特開2005−249535号公報JP 2005-249535 A

特許文献1記載の技術では、分注管ピペットの特異的な形状により乱流を発生させ洗浄性能を向上させている。   In the technique described in Patent Document 1, turbulent flow is generated by the specific shape of the pipette pipette to improve the cleaning performance.

しかしながら、乱流と言っても分注ノズルの先端に向いた方向を持つ流れであり、特異な形状に応じて、付着したサンプルの落ちやすい箇所と、付着したサンプルの残り易い箇所とが形成されるため、結果的に大きな効果が得られない。   However, even if it is turbulent flow, it is a flow that has a direction toward the tip of the dispensing nozzle, and depending on the unique shape, a place where the attached sample tends to fall and a place where the attached sample tends to remain are formed. As a result, a great effect cannot be obtained.

一方、乱流の発生し易い形状では、吸引時の流れも不均一になるため、気泡が発生して内部に巻き込むなどして十分な分注精度を得ることが困難である。   On the other hand, in the shape in which turbulent flow is likely to occur, the flow at the time of suction is also non-uniform, and it is difficult to obtain sufficient dispensing accuracy by generating bubbles and entraining them inside.

本発明は上述した事情から、分注精度に影響することなく、洗浄性の良い分注管を提供することを目的とする。   In view of the circumstances described above, an object of the present invention is to provide a dispensing tube having good cleaning properties without affecting the dispensing accuracy.

上記目的を達成するため、本発明では、液体の吸引または吐出の少なくともいずれかを行う分注管において、中心軸線が平行、かつ、内径が狭くなるように配設された直管部と、該直管部間に設けられた縮径部を設け、該直管部内面と該縮径部内面の表面粗さ比を1:5〜1:7とした。   In order to achieve the above object, according to the present invention, in a pipe for performing at least one of liquid suction and discharge, a straight pipe portion disposed so that the central axis is parallel and the inner diameter is narrowed; The reduced diameter part provided between the straight pipe parts was provided, and the surface roughness ratio of the inner surface of the straight pipe part and the inner surface of the reduced diameter part was set to 1: 5 to 1: 7.

なお、表面粗さの評価方法はいくつかあるが、算術平均表面粗さRaを用いるものとする。   Although there are several methods for evaluating the surface roughness, the arithmetic average surface roughness Ra is used.

試薬・洗浄液のコンタミネーションが最小になるため、前記分析装置の測定精度が向上する。   Since the contamination of the reagent / cleaning liquid is minimized, the measurement accuracy of the analyzer is improved.

以下本発明の実施例を第1図から第3図を用いて詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to FIGS.

図1は本発明を示す概念図である。   FIG. 1 is a conceptual diagram showing the present invention.

分注管1の構成を図によって述べると概略は次のようになる。分注管1は直管部先端部2と直管部太部4により内径差を有し、その間は縮径部3により接続される。   An outline of the structure of the dispensing pipe 1 is as follows. The dispensing tube 1 has an inner diameter difference between the straight tube portion distal end portion 2 and the straight tube portion thick portion 4 and is connected by the reduced diameter portion 3 therebetween.

ここで縮径部3が分注管1の特異的な部位となっているため、所定量の液体の分注が行われる際、直管部2に比べ液体が付着しやすい部位となる。   Here, since the reduced diameter portion 3 is a specific portion of the dispensing tube 1, when a predetermined amount of liquid is dispensed, it becomes a portion where the liquid is more likely to adhere than the straight tube portion 2.

しかし、洗浄中には、縮径部において洗浄液の圧力が高まり、縮径部の終端側(分注管の先端側)では、内径が狭くなるため、流速が上昇する。これにより、試料5が吸引、吐出される際に縮径部に溜った試料6が掻き出される。   However, during cleaning, the pressure of the cleaning liquid increases in the reduced diameter portion, and the inner diameter becomes narrower on the terminal side of the reduced diameter portion (the distal end side of the dispensing tube), so the flow rate increases. Thereby, when the sample 5 is sucked and discharged, the sample 6 accumulated in the reduced diameter portion is scraped out.

したがって、縮径部及び直管部を備えることにより、洗浄性の高い分注管が得られることになる。   Therefore, by providing the reduced diameter portion and the straight tube portion, a dispensing tube with high cleaning properties can be obtained.

一方、乱流を発生させる為には形状と共に表面粗さについても流路内のすべてを鏡面上として均一な表面粗さにすることが効果的ではなく、乱流を起す為に異なった表面粗さで構成することも有用である。   On the other hand, in order to generate turbulence, it is not effective to make the entire surface of the flow path as a mirror surface with a uniform surface roughness as well as the shape. It is also useful to configure with this.

金属管、例えばステンレス管の内面平均表面粗さについては機械的、化学的な各種の加工法を用いれば、直線で構成される管内の平均粗さを0.01μm単位まで細かく加工する技術は確立されている。   Establishing technology to finely process the average roughness of pipes composed of straight lines down to 0.01μm by using various mechanical and chemical processing methods for the average inner surface roughness of metal pipes such as stainless steel pipes. Has been.

しかし分析装置が必要とする使用量領域に関して分析装置で使用できる圧力範囲に於いて液体を吐出、吸引する精度が要求される場合、直線部だけで分注管を構成することは難しい。   However, in the case where the accuracy of discharging and sucking liquid is required in the pressure range that can be used in the analyzer with respect to the usage amount region required by the analyzer, it is difficult to form a dispensing tube with only a straight portion.

また単に分注管を細管とするだけでは流速は速まるが乱流が発生するとは限らない。   In addition, if the dispensing tube is simply a thin tube, the flow rate is increased, but turbulent flow is not always generated.

従って前述の洗浄効率を高めコスト効率の良い分注管を構成するには試料の内管流速を速めて且つ、同時に液体の乱流域をつくることが理想的な管内の状態となる。   Therefore, in order to construct a dispensing tube having a high cost efficiency and a high cleaning efficiency, it is ideal to increase the flow rate of the inner tube of the sample and at the same time create a turbulent flow region of the liquid.

この為に分析装置が必要とする使用量領域に関して分注管には、試料が吸引されたり、吐出する部位へ加える工夫として先端部の形状を直管部と傾斜部が更に細い直管部で構成される段階的な内径の差が必要になっていた。   For this purpose, the dispensing tube has a straight pipe part and a slanted pipe part with a narrower straight part and a slanted part that is added to the part where the sample is aspirated or discharged. A stepwise difference in inner diameter was required.

本発明は前記背景技術のもと内面の表面平均粗さを規定することに着目した。   The present invention has focused on defining the surface average roughness of the inner surface based on the background art.

従来の技術により直管部に限れば内面の加工と表面粗さの管理は問題なく実現する。   If it is limited to a straight pipe part by a conventional technique, the processing of the inner surface and the management of the surface roughness can be realized without any problems.

例えば、(1)マンドレルによる機械仕上げ(2)棒状、紐形状の外面へ研磨剤を塗布による摩擦加工仕上げが挙げられる。傾斜部については(1)(2)の手段が適用できないので機械的とは別な技術事項として(3)コーティング剤を塗布する、化学的手段をとる場合がある。   For example, (1) mechanical finishing with a mandrel (2) friction processing finishing by applying an abrasive to the outer surface of a rod shape or string shape can be mentioned. Since the methods (1) and (2) cannot be applied to the inclined portion, there are cases where chemical means (3) applying a coating agent is applied as a technical matter different from mechanical.

傾斜部を作りだす為にはコスト面から絞り加工と呼ばれる機械加工が施されることが一般的である。内面を鏡面状に仕上げた細管は、更に絞り加工を先端部へ施せば、理論的には傾斜部の表面粗さも直管部と同一となる。   In order to create an inclined portion, machining called drawing is generally performed in terms of cost. If the narrow tube whose inner surface is finished in a mirror surface is further subjected to a drawing process on the tip, the surface roughness of the inclined portion is theoretically the same as that of the straight tube.

しかし、絞り加工の際に発生する凹凸は外面を綺麗に仕上げれば歪は内面へ生じ、これを回避する事が原理上かなり困難であり品質を揃えることができない。   However, the unevenness generated during the drawing process causes distortion on the inner surface if the outer surface is finished cleanly, and it is quite difficult in principle to avoid this, and the quality cannot be aligned.

また、絞り加工条件を一定としても、材料の歪・加工時の加工歪によってμm単位で表面粗さとうねりの数的管理は極めて困難である。   Even if the drawing conditions are constant, it is extremely difficult to numerically manage the surface roughness and the waviness in units of μm due to the strain of the material and the processing strain at the time of processing.

従って従来は(1)(2)及び他の何れの場合にも傾斜部の内面について管内の平均粗さを管理できる手法がなかった。下記に内面の平均粗さ値を示す。この値は、前述のマイクロブラスト加工を施してはいない。   Therefore, conventionally, there has been no method capable of managing the average roughness in the pipe on the inner surface of the inclined portion in both cases (1), (2) and other cases. The average roughness value of the inner surface is shown below. This value is not subjected to the microblasting described above.

1−a:直管部先端部内面の平均粗さ値
1−b:縮径部内面の平均粗さ値
1−c:直管部太部内面の平均粗さ値
例えば素材表面粗さは平均表面粗さで0.5μm前後である。前述のマイクロブラストと総称される加工法は微粒子が細管の内部へ入り込み、直径部だけでなく傾斜部とも凹凸を平滑化することができ、従来技術の諸問題を解決できる。
1-a: Average roughness value of the inner surface of the front end portion of the straight pipe portion 1-b: Average roughness value of the inner surface of the reduced diameter portion 1-c: Average roughness value of the inner surface of the thick portion of the straight pipe portion For example, the material surface roughness is average The surface roughness is around 0.5 μm. The processing method collectively referred to as microblast described above allows fine particles to enter the inside of the narrow tube, and smoothes irregularities not only in the diameter portion but also in the inclined portion, thereby solving various problems of the prior art.

この際、全面を理想的な鏡面へ仕上げることに対し、ある比率で粗さを規定すると利点が多い。   In this case, there are many advantages if the roughness is defined at a certain ratio in contrast to finishing the entire surface to an ideal mirror surface.

マイクロブラスト加工はmm単位の表面のうねりを平坦化することが得意な加工法でない。   Microblasting is not a processing method that is good at flattening surface waviness in mm units.

傾斜部は絞り加工時の凹凸とうねり発生が避けられず、大きなうねりは残る。しかし最適コストを満足し、且つもっと細かい表面のμm、nm単位を平滑化することが得意であって、流路途中の傾斜部で平均表面粗さを変化させることで乱流を生成し易い形態が実現できる。   The slanted portion cannot avoid the occurrence of unevenness and waviness during drawing, and large waviness remains. However, it satisfies the optimal cost and is good at smoothing finer units of μm and nm, and it is easy to generate turbulence by changing the average surface roughness at the inclined part in the middle of the flow path. Can be realized.

下記に本実施例における内面の平均粗さ値を示す。   The average roughness value of the inner surface in this example is shown below.

この値は、前述のマイクロブラスト加工を施した。加工後の表面粗さの一例を示せば1−aa、1−bb、1−ccの各々の値となる。   This value was subjected to the microblasting described above. If an example of the surface roughness after processing is shown, the values are 1-aa, 1-bb, and 1-cc.

1−aa:直管部先端部内面の平均粗さ値
1−bb:縮径部内面の平均粗さ値
1−cc:直管部太部内面の平均粗さ値
また、本発明の実施例の分注管は、該直管部内面と該縮径部内面の表面粗さ比が1:5〜1:7であることが好ましい。
1-aa: Average roughness value of the inner surface of the straight tube portion tip portion 1-bb: Average roughness value of the inner surface of the reduced diameter portion 1-cc: Average roughness value of the inner surface of the thick portion of the straight tube portion Further, examples of the present invention It is preferable that the surface roughness ratio of the inner surface of the straight tube portion and the inner surface of the reduced diameter portion is 1: 5 to 1: 7.

また、本発明の実施例の分注管は、前記縮径部の一端側の内径と他端側の内径との縮径率が、35%〜50%であることが好ましい。   In the dispensing tube of the embodiment of the present invention, it is preferable that the reduction ratio of the inner diameter on one end side and the inner diameter on the other end side of the reduced diameter portion is 35% to 50%.

この発明の実施例によれば、縮径部の傾斜角度や縮径部の内径寸法を適切に設定することにより、さらに洗浄性を向上させた分注管が得られることになる。   According to the embodiment of the present invention, by appropriately setting the inclination angle of the reduced diameter portion and the inner diameter dimension of the reduced diameter portion, it is possible to obtain a dispensing tube with further improved cleaning performance.

図2は本発明を示す概念図で、データの概念を示す概念図である。   FIG. 2 is a conceptual diagram showing the present invention, and is a conceptual diagram showing the concept of data.

前記(1)分注精度は一般には、吸引量が少ないときほど相対的に洗浄後に残存する液体量が大きくなる傾向にあるため、特に分注量が少ないときほど効果が得られる。   The (1) dispensing accuracy generally has a tendency that the smaller the suction amount, the larger the amount of liquid remaining after washing, and the more effective the smaller the dispensing amount.

例えば閾値7(例えば統計学的で表記するCV1%)を設定した場合、分注量1μlのときのCV値8、分注量2μlのときのCV値9、分注量5μlのときのCV値10、分注量10μlのときのCV値11に於いても、閾値7を満足する。   For example, when a threshold value 7 (for example, CV1% expressed statistically) is set, CV value 8 when dispensing volume is 1 μl, CV value 9 when dispensing volume is 2 μl, CV value when dispensing volume is 5 μl 10. The threshold value 7 is satisfied even at a CV value of 11 when the dispensing amount is 10 μl.

本発明の実施例の効果は顕著であり、適用すれば分注精度が数分の1へ減少し特に微量化の場合顕著に表れデータが閾値を満足する。閾値を満足せず交換に至る分注管は様々な原因があるが、ひとつには傾斜部の粗さが粗すぎる場合が多い。   The effect of the embodiment of the present invention is remarkable, and when applied, the dispensing accuracy is reduced to a fraction, and particularly when the amount is small, the data appears remarkably and the threshold value is satisfied. Dispensing pipes that do not satisfy the threshold and can be replaced have various causes, but one is that the slope of the inclined portion is often too rough.

本実施例によれば、次のような別な効果がある。   According to the present embodiment, there are the following other effects.

分析装置は性能評価が出来るまでには、部品の製造、組立て、調整と工程が多い。その間、当該部品は洗浄(油分を除く)、保管(油分、粉塵付着の保護)、に格別な注意を要する。   There are many parts manufacturing, assembly, adjustment, and processes until the performance evaluation can be performed on the analyzer. In the meantime, the parts require special care for cleaning (excluding oil) and storage (protecting oil and dust).

そして、分注管は分注量が減少するに従い、前述の精度を満足する大事な要素部品であり部品へ付着する油分、粉塵など外的要因を全工程で排除することが重要になる。   And as the dispensing volume decreases, it is important to eliminate external factors such as oil and dust adhering to the parts in all steps as the amount of dispensing decreases.

分析装置の使用圧力範囲に限ればこれら外的要因を全て排除しなければ試料5の微量化の際には、精度確保ができない。   If it is limited to the operating pressure range of the analyzer, accuracy cannot be ensured when the amount of the sample 5 is reduced unless all these external factors are eliminated.

一方で技術課題として表面粗さと濡れ性が影響することは公知である。   On the other hand, it is known that surface roughness and wettability influence as technical problems.

本加工を施せば、分注管は当該加工の最終工程で油分、粉塵に対する効果的な脱脂作業を施すので、前記洗浄、保管の際に要する格段の注意が不要となる。   If this processing is performed, the dispensing tube performs an effective degreasing operation on oil and dust in the final step of the processing, so that special attention required for the cleaning and storage becomes unnecessary.

同時にこうした時間節約からトータルコスト削減ができることは本実施例が生む実質的な効果である。   At the same time, the total cost reduction from such time saving is a substantial effect produced by this embodiment.

また、顧客側サービス面からは当該部品内面の表面粗さが小さくなるので壁面への液体の付着が少なくなり、長期に渡りメンテナンス性が向上して日毎の立上げ駆動、終了操作を守れば持続して品質安定化が図れる効果がある。   In addition, from the customer's service aspect, the surface roughness of the inner surface of the part is reduced, so that the liquid adheres less to the wall surface, and maintenance is improved over a long period of time. As a result, the quality can be stabilized.

内部へ残留する試料5の残量は厳密には0ではない、但し、閾値を満足する範囲内であれば分析性能に対し実用上の影響がない。   Strictly speaking, the remaining amount of the sample 5 remaining inside is not zero, but there is no practical influence on the analysis performance as long as the threshold value is satisfied.

本実施例によれば、試料付着の防止効果も得られ、なおかつ、流路抵抗の減少・増加、減少により、洗浄液の流動性が向上し、乱流の発生により付着した試料の除去効果も高まる。   According to this embodiment, the effect of preventing the sample adhesion can be obtained, and the flow resistance of the cleaning liquid is improved due to the decrease / increase / decrease in the channel resistance, and the effect of removing the sample adhered due to the generation of the turbulent flow is also enhanced. .

これにより、洗浄後の試料の残量を数分の1以下に減少させることができる。   As a result, the remaining amount of the sample after cleaning can be reduced to a fraction or less.

以上、従来技術との違いを図とデータ概略よって説明した。   The difference from the prior art has been described with reference to the drawings and the data outline.

本発明の実施例では次に述べる効果がある。   The embodiment of the present invention has the following effects.

(1)分注精度が向上する(2)装置稼動までの時間短縮が図れる。   (1) Dispensing accuracy is improved. (2) Time until operation of the apparatus can be shortened.

また他の効果として、トータルコスト削減ができる、メンテナンス性が良くなる、品質安定化が図れる。   As other effects, the total cost can be reduced, the maintainability is improved, and the quality can be stabilized.

本実施例特有な格別顕著な効果として前述の理由より上記(1)が挙げられる。   The above-mentioned (1) is mentioned as a particularly remarkable effect peculiar to the present embodiment for the above-mentioned reason.

図3に本実施例を示す概略図を示す。   FIG. 3 is a schematic view showing the present embodiment.

本実施形態の分注機能概略図は、図3に示す。試料を吸引、吐出するための分注管1を備えている。   A schematic diagram of the dispensing function of this embodiment is shown in FIG. A dispensing tube 1 for aspirating and discharging a sample is provided.

この分注管1は、Z−θ駆動部に同軸に配設された構造体に対し、アームを介して支持されている。そして、分注管1は、Z−θ駆動部の駆動により、高さ方向(Z軸方向)、回動方向(θ方向)に移動させることができるようになっている。   The dispensing tube 1 is supported via an arm with respect to a structure disposed coaxially with the Z-θ drive unit. The dispensing tube 1 can be moved in the height direction (Z-axis direction) and the rotation direction (θ direction) by driving the Z-θ drive unit.

本実施形態に係る自動の分析装置は、説明番号を省いて簡略に説明すると例えば装置本体上に、反応ディスク、検体用ターンテーブル、試薬用ターンテーブル、検体用分注ユニット(分注装置)、試薬用分注ユニット(分注装置)等が配設された構成となっている。   The automatic analyzer according to the present embodiment will be described in a simplified manner by omitting an explanation number. For example, a reaction disk, a sample turntable, a reagent turntable, a sample dispensing unit (dispensing device), A reagent dispensing unit (dispensing device) and the like are arranged.

反応ディスクには、複数本の反応容器が同心円周上に沿って環状配置される。   A plurality of reaction vessels are annularly arranged on the reaction disk along a concentric circumference.

検体用ターンテーブルには、複数本の検体容器が同心円周上に沿って環状配設されている。   On the sample turntable, a plurality of sample containers are annularly arranged along a concentric circle.

試薬用ターンテーブルには、複数本の試薬ボトルが、同心円周上に沿って環状配設されている。   On the reagent turntable, a plurality of reagent bottles are annularly arranged along a concentric circumference.

各検体容器には、分析対象となる検体、すなわち、血液、尿、糞便溶解液、培養細胞液等が収められている。   Each sample container contains a sample to be analyzed, that is, blood, urine, fecal lysate, cultured cell solution, and the like.

各試薬ボトルには、分析項目に必要な複数種類の試薬が個別に収められている。   Each reagent bottle individually stores a plurality of types of reagents necessary for analysis items.

反応ディスク、検体用ターンテーブル、試薬用ターンテーブルは、それぞれ、回転機構により間欠的に回転動作し、所定の位置に位置決めすることが可能となっている。   Each of the reaction disk, the sample turntable, and the reagent turntable is rotated intermittently by a rotation mechanism and can be positioned at a predetermined position.

反応ディスクには、検体分注ポジション、試薬分注ポジション、攪拌ポジション、測定ポジション、反応容器洗浄ポジションが設定されており、装置コントローラによりその位置が記憶され、位置制御されている。   In the reaction disk, a sample dispensing position, a reagent dispensing position, a stirring position, a measurement position, and a reaction container washing position are set, and the positions are stored and controlled by the apparatus controller.

検体用ターンテーブル、試薬用ターンテーブルも同様である。分注機構は分注管1を構成する管12、管保持剤16によって構成される。   The same applies to the sample turntable and the reagent turntable. The dispensing mechanism is constituted by a tube 12 and a tube holding agent 16 constituting the dispensing tube 1.

これは静電センサなどの機能と同時に分注管を保持する機能を有する。これらは管モータ回転上下軸13により構成され、制御モータ15によって駆動される。これらは配管配線14によって接続されている。   This has the function of holding the dispensing tube simultaneously with the function of an electrostatic sensor or the like. These are constituted by a pipe motor rotating vertical shaft 13 and driven by a control motor 15. These are connected by piping wiring 14.

検体用分注機構の前記分注管1が、検体吸引ポジションに移動され、さらにこの分注管を降下させることで、この位置にある検体容器内に挿入される。   The dispensing tube 1 of the sample dispensing mechanism is moved to the sample aspirating position, and is further inserted into the sample container at this position by lowering the dispensing tube.

検体容器内の検体の液面下数mmの位置まで先端が降下したところで分注管の動作が止められ、次いでシリンジポンプ(図示略)が動作して検体が吸引される。   When the tip is lowered to a position several mm below the liquid level of the sample in the sample container, the operation of the dispensing tube is stopped, and then the syringe pump (not shown) is operated to suck the sample.

所定量の吸引が完了すると、前記分注管は、検体容器と機械的に干渉しない高さまで引き上げられ、次に、検体分注ポジションに移動される。   When a predetermined amount of suction is completed, the dispensing tube is pulled up to a height that does not mechanically interfere with the sample container, and then moved to the sample dispensing position.

移動完了後、前記分注管は、検体分注ポジションに設置されている反応容器内に降下され、前記シリンジポンプの動作により所定量の検体の分注が行われる。   After the movement is completed, the dispensing tube is lowered into the reaction container installed at the sample dispensing position, and a predetermined amount of sample is dispensed by the operation of the syringe pump.

分注完了後、前記分注管は反応容器と干渉しない位置まで引き上げられ、検体用洗浄槽上に移動される。洗浄槽上の位置に達すると、前記シリンジポンプが動作して洗浄液が分注管に送られる。これにより、分注管内の余った検体を外部に流し出すとともに、分注管先端の洗浄が行われる。   After the completion of the dispensing, the dispensing tube is pulled up to a position where it does not interfere with the reaction vessel and moved onto the specimen cleaning tank. When the position on the washing tank is reached, the syringe pump operates to send the washing liquid to the dispensing tube. As a result, the remaining specimen in the dispensing tube is poured out and the tip of the dispensing tube is washed.

以上により、1つの反応容器への検体の分注が完了する。   Thus, the dispensing of the sample into one reaction container is completed.

本実施例の効果は前述と同様である。   The effect of the present embodiment is the same as described above.

また、本発明の技術範囲は上記各実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

本発明の第一の実施例を示す構造概念図及び平均粗さ計測値の概念図。The structure conceptual diagram which shows the 1st Example of this invention, and the conceptual diagram of an average roughness measured value. 本発明の第一の実施例を示す分注量再現性データ概念図。The dispensed quantity reproducibility data conceptual diagram which shows the 1st Example of this invention. 本発明の第一の実施例を示すの自動の分析装置分注管概念図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram of an automatic analyzer dispensing pipe according to a first embodiment of the present invention.

符号の説明Explanation of symbols

1…分注管、2…直管部先端部、3…縮径部、4…直管部太部、5…試料、6…壁面へ残留する試料、7…閾値、8…分注量1μlのときのCV値、9…分注量2μlのときのCV値、10…分注量5μlのときのCV値、11…分注量10μlのときのCV値、12…管、13…管モータ回転上下軸、14…配線・配管、15…制御モータ、16…管保持材35、1−a…直管部先端部内面の平均粗さ値、1−b…縮径部内面の平均粗さ値、1−c…直管部太部内面の平均粗さ値、1−aa…直管部先端部内面の平均粗さ値、1−bb…縮径部内面の平均粗さ値、1−cc…直管部太部内面の平均粗さ値。   DESCRIPTION OF SYMBOLS 1 ... Dispensing tube, 2 ... Straight pipe part front-end | tip part, 3 ... Reduced diameter part, 4 ... Straight pipe part thick part, 5 ... Sample, 6 ... Sample remaining on a wall surface, 7 ... Threshold value, 8 ... Dispensing amount 1 microliter CV value when the dispensing volume is 2 μl, 10 CV value when the dispensing volume is 5 μl, 11 CV value when the dispensing volume is 10 μl, 12... Pipe, 13. Rotating vertical axis, 14 ... wiring / piping, 15 ... control motor, 16 ... tube holding material 35, 1-a ... average roughness value of the inner surface of the straight pipe end, 1-b ... average roughness of the inner surface of the reduced diameter portion 1-c: average roughness value of the straight pipe portion thick portion inner surface, 1-aa: average roughness value of the straight tube portion tip inner surface, 1-bb: average roughness value of the inner surface of the reduced diameter portion, 1- cc: Average roughness value of the inner surface of the thick section of the straight pipe section

Claims (4)

液体の吸引または吐出の少なくともいずれかを行う分注管において、
異なる内径を持つ複数の直管部と、それら異なる内径を持つ複数の直管部をつなぐ縮径部とを備え、かつ該直管部内面と該縮径部内面の表面粗さ比が1:5〜1:7の範囲であることを特徴とする分注管。
In a dispensing tube that performs at least one of liquid suction and discharge,
A plurality of straight pipe portions having different inner diameters and a reduced diameter portion connecting the plurality of straight pipe portions having different inner diameters, and the surface roughness ratio of the inner surface of the straight pipe portion and the inner surface of the reduced diameter portion is 1: A dispensing tube characterized by being in the range of 5 to 1: 7.
請求項1記載の分注管において、
前記縮径部の内周面の平均表面粗さが、0.01μm〜0.02μmであり、かつ前記直管部の内径の平均表面粗さが0.05μm〜0.1μmであることを特徴とする分注管。
The dispensing tube according to claim 1,
The average surface roughness of the inner peripheral surface of the reduced diameter portion is 0.01 μm to 0.02 μm, and the average surface roughness of the inner diameter of the straight pipe portion is 0.05 μm to 0.1 μm. Dispensing tube.
請求項1または2記載の分注管において、
前記縮径部の一端側の内径と他端側の内径との収縮比率が、35%〜50%であることを特徴とする分注管。
The dispensing tube according to claim 1 or 2,
A dispensing tube, wherein a shrinkage ratio between an inner diameter at one end and an inner diameter at the other end of the reduced diameter portion is 35% to 50%.
検体及び試薬が分注される反応容器と、該反応容器内で混合された前記検体及び前記試薬の混合液から前記検体の検査を行う分析手段とを備えた分析装置において、
前記検体及び前記試薬を前記反応容器に分注する分注手段として、請求項1〜3のいずれかに記載の分注管を備えることを特徴とする分析装置。
In an analyzer comprising a reaction container into which a specimen and a reagent are dispensed, and an analysis means for examining the specimen from a mixed solution of the specimen and the reagent mixed in the reaction container,
An analyzer comprising the dispensing tube according to claim 1 as dispensing means for dispensing the sample and the reagent into the reaction container.
JP2006149888A 2006-05-30 2006-05-30 Dispensing pipe and analyzer using it Pending JP2007322148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006149888A JP2007322148A (en) 2006-05-30 2006-05-30 Dispensing pipe and analyzer using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006149888A JP2007322148A (en) 2006-05-30 2006-05-30 Dispensing pipe and analyzer using it

Publications (1)

Publication Number Publication Date
JP2007322148A true JP2007322148A (en) 2007-12-13

Family

ID=38855116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006149888A Pending JP2007322148A (en) 2006-05-30 2006-05-30 Dispensing pipe and analyzer using it

Country Status (1)

Country Link
JP (1) JP2007322148A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012073227A (en) * 2010-07-12 2012-04-12 Hamilton Bonaduz Ag Pipette tip having hydrophobic surface texture
CN106370564A (en) * 2016-10-08 2017-02-01 苏州曼德克光电有限公司 Jet flow protection device for dust test light path element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304754A (en) * 1999-02-12 2000-11-02 Ortho Clinical Diagnostics Inc Method and device for mixing liquid
JP2003523276A (en) * 1999-11-05 2003-08-05 クレアヴィス ゲゼルシャフト フュア テヒノロギー ウント イノヴェイション ミット ベシュレンクテル ハフツング Microstructured pipettes as dosing systems
WO2005079424A2 (en) * 2004-02-17 2005-09-01 Nascent Biosciences, Inc. Metering doses of sample liquids
JP2005249535A (en) * 2004-03-03 2005-09-15 Olympus Corp Dispensation probe and autoanalyzer equipped therewith
JP2005283453A (en) * 2004-03-30 2005-10-13 Shimadzu Corp Automatic sampler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304754A (en) * 1999-02-12 2000-11-02 Ortho Clinical Diagnostics Inc Method and device for mixing liquid
JP2003523276A (en) * 1999-11-05 2003-08-05 クレアヴィス ゲゼルシャフト フュア テヒノロギー ウント イノヴェイション ミット ベシュレンクテル ハフツング Microstructured pipettes as dosing systems
WO2005079424A2 (en) * 2004-02-17 2005-09-01 Nascent Biosciences, Inc. Metering doses of sample liquids
JP2005249535A (en) * 2004-03-03 2005-09-15 Olympus Corp Dispensation probe and autoanalyzer equipped therewith
JP2005283453A (en) * 2004-03-30 2005-10-13 Shimadzu Corp Automatic sampler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012073227A (en) * 2010-07-12 2012-04-12 Hamilton Bonaduz Ag Pipette tip having hydrophobic surface texture
CN106370564A (en) * 2016-10-08 2017-02-01 苏州曼德克光电有限公司 Jet flow protection device for dust test light path element

Similar Documents

Publication Publication Date Title
JP5097737B2 (en) Automatic analyzer and sample dispensing nozzle
WO2016009764A1 (en) Liquid stirring method
EP2322941A1 (en) Automatic analyzing device
WO2017145672A1 (en) Automated analysis device and cleaning method
WO2012105398A1 (en) Automatic analyzing device
JP2009075082A (en) Dispensing device and method, and automatic analysis apparatus
JP2010019746A (en) Automatic analyzer
EP2019321A1 (en) Cleaning equipment and automatic analyzer
JP2019074311A (en) Automatic analyzer and cleaning method for dispensation probe
JP2007322148A (en) Dispensing pipe and analyzer using it
JP5231186B2 (en) Sample dispensing method and analyzer
JP2005249535A (en) Dispensation probe and autoanalyzer equipped therewith
JP2007085930A (en) Usage method of metal probe, and analyzer
JP2007047038A (en) Liquid dispensing apparatus
JP2009031174A (en) Autoanalyzer
JP2008241508A (en) Liquid stirring method
JP2010096640A (en) Dispenser
JP2010271203A (en) Sampling method of liquid, and automatic analyzer
JP2004251797A (en) Automatic analyzer
WO2018055928A1 (en) Automated analysis device
JP2008134154A (en) Dispensing tube of automatic analysis apparatus
JP2010286420A (en) Cleaning method of dispensing nozzle, automatic analyzer, and container
JP2015132521A (en) solution preparation system
JPH06289032A (en) Dispensing method for automatic analyzer and dispensing system
CN102301240B (en) Autoanalyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004