JP2791403B2 - High-speed plastic forming of ceramics - Google Patents

High-speed plastic forming of ceramics

Info

Publication number
JP2791403B2
JP2791403B2 JP1307290A JP30729089A JP2791403B2 JP 2791403 B2 JP2791403 B2 JP 2791403B2 JP 1307290 A JP1307290 A JP 1307290A JP 30729089 A JP30729089 A JP 30729089A JP 2791403 B2 JP2791403 B2 JP 2791403B2
Authority
JP
Japan
Prior art keywords
processing
ceramics
zirconia
speed
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1307290A
Other languages
Japanese (ja)
Other versions
JPH03170386A (en
Inventor
史博 若井
泰治 児玉
博道 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Kigenso Kagaku Kogyo Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Daiichi Kigenso Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Daiichi Kigenso Kagaku Kogyo Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP1307290A priority Critical patent/JP2791403B2/en
Publication of JPH03170386A publication Critical patent/JPH03170386A/en
Application granted granted Critical
Publication of JP2791403B2 publication Critical patent/JP2791403B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ジルコニアセラミックスの高速塑性成形方
法に関する。
Description: TECHNICAL FIELD The present invention relates to a high-speed plastic forming method of zirconia ceramics.

〔従来の技術及び発明が解決しようとする課題〕[Problems to be solved by conventional technology and invention]

高強度セラミックス、とくに部分安定化ジルコニアは
他のセラミックスにない高靱性を有するため、構造用セ
ラミックスとして機械部品等に使用され始めているが、
用途上金属性部材と同等以上の寸法精度を要求されてい
る。しかしながら、焼結過程での寸法変化が大きく、焼
結後の後加工を必要とする場合が多い。
High-strength ceramics, especially partially stabilized zirconia, have high toughness that no other ceramics have, so they have begun to be used as structural ceramics in mechanical parts, etc.
Dimensional accuracy equal to or higher than that of metallic members is required for applications. However, the dimensional change during the sintering process is large, and often requires post-processing after sintering.

従って、焼結後にダイヤモンド工具や砥粒を用いる後
加工が施されるのであるがセラミックスは通常難研削材
料であるため、この加工コストが製品全体のコストをさ
らに高くするという問題点を抱えている。
Therefore, post-processing using a diamond tool or abrasive grains is performed after sintering, but since ceramics are usually difficult to grind, there is a problem that this processing cost further increases the cost of the entire product. .

こうした問題点を解決する手段の一つとして、正方晶
系ジルコニアを含む特定のセラミックスを加熱下、応力
を加えて塑性変形させる成形方法が見いだされている。
この方法は、比較的簡便な操作で寸法精度の高い成形体
が得られるという利点を有しているが、高速度での加工
には高温加熱が必要であり、被加工物と加工材との反応
や、被加工セラミックスの粒成長がおこり易いという難
点が存在している。
As one of means for solving such problems, a molding method has been found in which a specific ceramic containing tetragonal zirconia is plastically deformed by applying a stress while heating.
This method has the advantage that a molded body with high dimensional accuracy can be obtained by relatively simple operation, but high-speed processing requires high-temperature heating, and the processing of the workpiece and the workpiece is difficult. There is a problem that the reaction and the grain growth of the ceramic to be processed easily occur.

〔課題を解決するための手段〕 本発明者らは、こうしたジルコニア系セラミックス材
料の塑性加工方法の長所を維持しつつ加工速度を高める
方法を検討した結果、遷移金属を添加して比較的低温で
焼結したジルコニアを用いることにより、従来より低温
で、しかも高速度で塑性加工が可能であることを見いだ
した。本発明は、このような知見に基づくものである。
[Means for Solving the Problems] The present inventors have studied a method of increasing the processing speed while maintaining the advantages of such a plastic working method for a zirconia-based ceramic material. By using sintered zirconia, it has been found that plastic working can be performed at a lower temperature and at a higher speed than before. The present invention is based on such findings.

即ち本発明は、正方晶系ジルコニアを主成分とし、遷
移金属(Mn,Cu,Fe,Co,Ni又はZn)の酸化物を微量(0.1
〜5.0モル%)含有する多結晶セラミックスを1000〜145
0℃の加熱下で応力を加えて高速度(歪速度1×10゜/se
c〜5×10-4/sec)で塑性変形させることを特徴とする
セラミックスの塑性成形法に係わる。
That is, the present invention comprises tetragonal zirconia as a main component and a transition metal (Mn, Cu, Fe, Co, Ni or Zn) in a trace amount (0.1%).
~ 5.0 mol%) containing polycrystalline ceramics
High speed (strain rate 1 × 10 ゜ / se) by applying stress while heating at 0 ° C
The present invention relates to a plastic forming method for ceramics, which is characterized by plastically deforming at a rate of c.about.5 × 10 −4 / sec).

本成形法が適用出来るセラミックスは、室温において
正方晶ジルコニアを含有し、かつ遷移金属(Mn,Cu,Fe,C
o,Ni又はZn)の酸化物を微量粒界に含有する多結晶体か
らなるジルコニアセラミックスである。
Ceramics to which this molding method can be applied contain tetragonal zirconia at room temperature and have transition metals (Mn, Cu, Fe, C
It is a zirconia ceramic composed of a polycrystal containing an oxide of o, Ni or Zn) in a minute grain boundary.

このようなジルコニアセラミックスは通常応力誘起強
化型セラミックスとして知られているY2O3等を添加した
ジルコニア固溶体に、遷移金属酸化物を微量添加し低温
焼結することにより得られる。本正方晶系ジルコニア成
分は、充分高速な成形速度を得るためにはセラミックス
中に60体積%以上あることが望ましい。従って、遷移金
属を含むジルコニア成分が60%以上の複合セラミックス
材料でも高速加工が可能である。
Such zirconia ceramics can be obtained by adding a small amount of a transition metal oxide to a zirconia solid solution to which Y 2 O 3 or the like, which is generally known as a stress-induced strengthening type ceramic, is added, followed by sintering at a low temperature. In order to obtain a sufficiently high molding speed, the tetragonal zirconia component is desirably 60% by volume or more in the ceramics. Therefore, high-speed processing is possible even with a composite ceramic material containing 60% or more of a zirconia component containing a transition metal.

本発明方法では、まず、前記した遷移金属酸化物を含
む正方晶ジルコニア多結晶セラミックスを1000〜1450
℃、好ましくは1100〜1400℃の温度で塑性加工する。加
工温度が1000℃を下回ると高速で充分に塑性変形させる
ことができず、一方1450℃を上回るとジルコニアの粒成
長が顕著となり、塑性加工による成形体の特性が大幅に
低下するので好ましくない。
In the method of the present invention, first, a tetragonal zirconia polycrystalline ceramic containing the transition metal oxide described above is 1000 to 1450.
C., preferably at a temperature of 1100 to 1400.degree. If the working temperature is lower than 1000 ° C., the plastic deformation cannot be sufficiently performed at a high speed. On the other hand, if the working temperature is higher than 1450 ° C., the grain growth of zirconia becomes remarkable, and the properties of the formed body by the plastic working are unpreferably reduced.

尚、本発明では、塑性変形とは、加工部分が均一に変
形する超塑性変形、及び加工部分が不均一に変形する塑
性変形の両者を含むものとする。
In the present invention, the term “plastic deformation” includes both superplastic deformation in which a processed portion is uniformly deformed and plastic deformation in which a processed portion is non-uniformly deformed.

塑性加工における加工速度は、通常のジルコニアセラ
ミックスに比較して速くすることが可能であり、加工温
度、セラミックスの結晶粒径、ジルコニア含量遷移金属
酸化物の添加量、加工方法等によって一様ではないが、
通常のジルコニアセラミックスの加工速度の5〜30倍の
速さでの加工が可能である。その場合加える応力は結晶
粒界で粒界すべりを起こすことが出来、かつ破壊をおこ
さない100MPa以上の応力が必要である。例を挙げると、
結晶の平均粒径が0.2μmのMnO2添加(0.3モル%)正方
晶ジルコニアを1300℃で引っ張り加工する場合、5×10
-4〜5×10-3/sec程度の歪速度での塑性加工が可能であ
る。遷移金属の添加量を増やしたり、加工温度を上げる
とさらに加工速度を速くすることが出来る。上記した加
工方法により与えられる塑性変形量は、セラミックスの
種類や加工条件、形状等により異なるが、引っ張り加工
では変形前の試料の2倍以上に伸ばすことも可能であ
る。
The processing speed in plastic working can be faster than that of ordinary zirconia ceramics, and is not uniform depending on the processing temperature, the crystal grain size of the ceramic, the amount of zirconia-containing transition metal oxide added, the processing method, etc. But,
Processing at a speed 5 to 30 times the processing speed of ordinary zirconia ceramics is possible. In this case, the applied stress needs to have a stress of 100 MPa or more which can cause grain boundary slip at a crystal grain boundary and does not cause fracture. For example,
When MnO2 added (0.3 mol%) tetragonal zirconia with an average grain size of 0.2 μm is stretched at 1300 ° C., 5 × 10
Plastic working at a strain rate of about −4 to 5 × 10 −3 / sec is possible. The processing speed can be further increased by increasing the amount of transition metal added or raising the processing temperature. The amount of plastic deformation given by the above-described processing method varies depending on the type, processing conditions, shape, and the like of the ceramics, but it is possible to stretch twice or more of the sample before deformation in the tensile processing.

上記した遷移金属酸化物を含む正方晶系ジルコニアセ
ラミックスが塑性成形できるのは、その結晶粒径が微細
であり、かつ対称性が良いこと、並びに遷移金属原子が
粒界に偏折し、その粒界構造が粒界すべりによる塑性流
動に敵しているため、上記した加工温度で粒界すべりに
よる塑性流動に適しているため、上記した加工温度で結
晶粒界に塑性流動が生じ易く、また加工により生じた残
留応力を正方晶ジルコニアの応力誘起変態強化機構によ
って保持できるために成形体が破壊しにくいためと考え
られる。
The above-mentioned tetragonal zirconia ceramics containing a transition metal oxide can be plastically formed because the crystal grain size is fine and the symmetry is good, and the transition metal atoms are deflected to the grain boundary, and the Since the boundary structure is compatible with plastic flow due to grain boundary sliding, it is suitable for plastic flow due to grain boundary sliding at the above-mentioned processing temperature. It can be considered that the residual stress caused by the above can be held by the stress-induced transformation strengthening mechanism of tetragonal zirconia, so that the molded body is hardly broken.

〔発明の効果〕〔The invention's effect〕

本発明方法により、ジルコニア系セラミックスを高速
で塑性成形することができ、プレス、鍛造、押しだし、
引き抜き等の各種方法の加工効率が大幅に改善でき、経
済性の良好な加工が可能となる。また、低温での加工が
主体であるので加熱コスト(加熱炉、電力等のエネルギ
ー)が低くできるだけでなく、加工に必要な成形用材料
も安価な材料が使用できるので、ジルコニア系セラミッ
クスの塑性加工が格段に容易となる。
By the method of the present invention, zirconia-based ceramics can be plastically molded at high speed, and are pressed, forged, extruded,
The processing efficiency of various methods such as drawing can be greatly improved, and processing with good economy can be performed. In addition, plastic processing of zirconia ceramics is not only possible because heating is mainly performed at low temperatures, so that heating costs (energy such as heating furnace and electric power) can be low, and inexpensive molding materials can be used for processing. Is much easier.

上記したごとく、本発明方法は極めて有用なセラミッ
クスの加工方法であり、各種機械部品等へのセラミック
スの利用範囲を大幅に拡大することが出来る。
As described above, the method of the present invention is a very useful method for processing ceramics, and can greatly expand the range of use of ceramics for various mechanical parts and the like.

〔実施例〕〔Example〕

以下、実施例、比較例を示して本発明を詳細に説明す
る。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples.

実施例−1. 共沈法で合成したY2O3含有ジルコニア粉末(比表面
積:15m2/g)に酢酸マンガンを0.3モル%添加して1200℃
で焼結した焼結体を試験材料に用いた。焼結体のY2O3
量は2.6モル%、グレインサイズは0.2μm、焼結密度は
6.05g/cm3であった。
Example-1. 0.3 mol% of manganese acetate was added to Y 2 O 3 -containing zirconia powder (specific surface area: 15 m 2 / g) synthesized by a coprecipitation method, and 1200 ° C.
Was used as a test material. The sintered body has a Y 2 O 3 content of 2.6 mol%, a grain size of 0.2 μm, and a sintered density of
6.05 g / cm 3 .

この焼結体から5mmの立方体(表面粗さ2μm)を切
り出し、表面を研磨したSiCの押し型を用いて1400℃
(空気中)で、成形速度0.5mm/min(歪速度2.7×10-3/s
ec)でプレス加工(加工圧:5MPa)を行い、8分後に暑
さ1mmの薄板を得た。成形後の表面粗さは0.1μmであっ
た。
A 5 mm cube (surface roughness 2 μm) was cut out from this sintered body and the surface was polished at 1400 ° C using a SiC stamping die.
(In air), molding speed 0.5mm / min (strain speed 2.7 × 10 -3 / s
ec) to perform press working (working pressure: 5 MPa), and 8 minutes later, a thin plate having a heat of 1 mm was obtained. The surface roughness after molding was 0.1 μm.

比較例−1. 共沈法で合成した通常のジルコニア粉末(比表面積:1
5m2/g)を1400℃で焼結した。Y2O3含量は2.6モル%、グ
レインサイズは0.3μm、焼結密度は6.03g/cm3であっ
た。
Comparative Example-1. Ordinary zirconia powder synthesized by a coprecipitation method (specific surface area: 1
5m 2 / g) was sintered at 1400 ° C. The Y 2 O 3 content was 2.6 mol%, the grain size was 0.3 μm, and the sintered density was 6.03 g / cm 3 .

この焼結体から実施例−1と同じ試験片を切り出し、
同一温度、同一圧で同一サイズまで加工したところ、成
形速度は0.05mm/min(歪速度2.7×10-4/sec)で、成形
加工に40分かかった。
The same test piece as in Example 1 was cut out from this sintered body,
When processing was performed to the same size at the same temperature and pressure, the forming speed was 0.05 mm / min (strain rate 2.7 × 10 −4 / sec) and the forming process took 40 minutes.

実施例−2. 実施例1と同じ材料を用いて直径3mm、長さ30mmの丸
棒を作成してテストピースとした。この試験片を、1400
℃で加工速度3mm/min(2.7×10-3/sec)で引っ張り加工
を行った結果、直径1.2mm、長さ66mmの丸棒が11分で得
られた。
Example-2 A round piece having a diameter of 3 mm and a length of 30 mm was prepared using the same material as in Example 1 to obtain a test piece. This test specimen was
As a result of drawing at a working rate of 3 mm / min (2.7 × 10 −3 / sec) at a temperature of ° C., a round bar having a diameter of 1.2 mm and a length of 66 mm was obtained in 11 minutes.

比較例−2. 比較例1の材料を用いて実施例2と同じテストピース
を作成し、同じ加工を試みたが、同一条件では成形が困
難であったので、以下の条件に変更して加工を行った。
加工温度1450℃、加工速度0.2mm/min(2.7×10-4/sec)
で、加工時間は165分であった。
Comparative Example-2. The same test piece as in Example 2 was prepared using the material of Comparative Example 1, and the same processing was attempted. However, molding was difficult under the same conditions. Was done.
Processing temperature 1450 ° C, processing speed 0.2mm / min (2.7 × 10 -4 / sec)
The processing time was 165 minutes.

実施例−3. 実施例1の材料を用いてサイズ15×15×10mmの板を作
った。これを表面を研磨処理したSiC型で、1400℃、加
工速度1mm/min(歪速度1.6×10-3/sec)でプレス加工を
施し、加工時間1分で厚さを9mmに加工した。この時の
加工前の表面粗さは0.8μm、加工後の表面粗さは0.01
μmであった。
Example 3 A plate having a size of 15 × 15 × 10 mm was made using the material of Example 1. This was subjected to press working at 1400 ° C. at a working speed of 1 mm / min (strain speed 1.6 × 10 −3 / sec) with a SiC mold whose surface was polished, and worked to a thickness of 9 mm in a working time of 1 minute. At this time, the surface roughness before processing was 0.8 μm, and the surface roughness after processing was 0.01 μm.
μm.

比較例−3. 比較例1と同じ材料を用いて実施例3と同じ試験板を
作成し、実施例3と同じ加工をおこなった。加工には以
下の条件変更が必要であった。加工温度1450℃、加工速
度0.05mm/min(歪速度8.3×10-5/sec)、加工時間20
分。
Comparative Example-3 The same test plate as in Example 3 was prepared using the same material as in Comparative Example 1, and the same processing as in Example 3 was performed. The following condition changes were required for processing. Processing temperature 1450 ° C, processing speed 0.05mm / min (strain speed 8.3 × 10 -5 / sec), processing time 20
Minutes.

実施例−4. 実施例1と同じ原料ジルコニア粉末(Y2O3のみ含有)
にAl2O3粉末を20wt%と炭酸マンガン0.3モル%添加して
1400℃で焼結した材料を用いて5mmの立方体を作った。
この試験片を圧力5MPa、加工温度1400℃でプレス成形し
た結果、変形速度0.5mm/min(歪速度1.7×10-3/sec)で
60%変形した。
Example -4. Example 1 and the same raw material zirconia powder (Y only 2 O 3 content)
20 wt% of Al 2 O 3 powder and 0.3 mol% of manganese carbonate
A 5mm cube was made from the material sintered at 1400 ° C.
As a result of press-molding this test piece at a pressure of 5 MPa and a processing temperature of 1400 ° C., the deformation rate was 0.5 mm / min (strain rate 1.7 × 10 −3 / sec).
Deformed by 60%.

比較例−4. 比較例1と同じジルコニア粉末にAl2O320wt%混合
し、HIP処理して得た焼結体を用いて実施例4と同じサ
イズの試験片を作成し、同一の加工を試みた結果、以下
の条件変更が必要であった。
Comparative Example-4 20% by weight of Al 2 O 3 was mixed with the same zirconia powder as in Comparative Example 1, and a test piece having the same size as in Example 4 was prepared using a sintered body obtained by HIP treatment, and the same processing was performed. As a result, the following conditions had to be changed.

加工温度1550℃、加工速度0.05mm/min(歪速度1.7×1
0-4/sec)。
Processing temperature 1550 ° C, processing speed 0.05mm / min (strain speed 1.7 × 1
0 -4 / sec).

実施例1〜4と比較例1〜4の加工条件の対比結果を
表1に示す。
Table 1 shows comparison results of the processing conditions of Examples 1 to 4 and Comparative Examples 1 to 4.

実施例−5. 実施例1と同じジルコニア原料粉末(Y2O3のみ含有)
に酢酸銅0.3モル%添加して1200℃で焼結した材料を用
いて実施例1と同じ試験片を作成した。
Example -5. Example 1 and the same zirconia raw material powder (Y only 2 O 3 content)
The same test piece as in Example 1 was prepared using a material obtained by adding 0.3 mol% of copper acetate to the mixture and sintering at 1200 ° C.

この試験片を実施例1と同じプレス圧で加工したとこ
ろ、加工速度0.6mm/minで実施例1と同様の加工が可能
であった。
When this test piece was processed under the same press pressure as in Example 1, the same processing as in Example 1 was possible at a processing speed of 0.6 mm / min.

実施例−6. 実施例1と同じジルコニア原料粉末に酢酸マンガンを
1モル−添加して1200℃で焼結した材料を用いて実施例
1と同じ加工を行った結果、加工速度0.8mm/min加工速
度が得られた。
Example-6. As a result of performing the same processing as in Example 1 using a material obtained by adding manganese acetate to the same zirconia raw material powder as in Example 1 by 1 mol and sintering at 1200 ° C., the processing speed was 0.8 mm / min. The processing speed was obtained.

実施例−7. 実施例1と同じジルコニア原料粉末に酢酸亜鉛を0.3
モル%添加して焼結した材料を用いて実施例1の加工を
行った結果、実施例1の結果と同様な成形結果が得られ
た。
Example-7. Zinc acetate was added to the same zirconia raw material powder as in Example 1 at 0.3.
As a result of processing of Example 1 using the material sintered by adding mol%, a molding result similar to the result of Example 1 was obtained.

実施例−8. 実施例1と同じジルコニア原料粉末に酢酸コバルトを
0.3モル%添加して焼結した材料を用いて実施例1の加
工を行った結果実施例1の結果と同様な成形結果が得ら
れた。
Example-8 Cobalt acetate was added to the same zirconia raw material powder as in Example 1.
The processing of Example 1 was performed using the material sintered by adding 0.3 mol%, and the same molding result as the result of Example 1 was obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡村 博道 神奈川県小田原市高田字柳町345 日本 曹達株式会社小田原研究所内 審査官 雨宮 弘治 (56)参考文献 特開 昭62−17087(JP,A) 特開 昭63−182279(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 41/80 C04B 35/48──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Hiromichi Okamura 345 Yanagimachi, Takada, Odawara-shi, Kanagawa Japan Examiner, Odawara Research Laboratory, Soda Co., Ltd. Koji Amemiya (56) References JP-A-62-17087 (JP, A) 63-182279 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) C04B 41/80 C04B 35/48

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Mn,Fe,Co,Ni,Cu又はZnの酸化物を0.1〜5.0
モル%含有する正方晶ジルコニアを主成分とするセラミ
ックスを1000〜1450℃の温度下で、歪速度1×10゜/sec
〜5×10-4/secの範囲で塑性変形させることを特徴とす
るジルコニアセラミックスの高速塑性成形法。
An oxide of Mn, Fe, Co, Ni, Cu or Zn is 0.1 to 5.0
At a temperature of 1000-1450 ° C, a strain rate of 1 × 10 ゜ / sec is applied to a ceramic mainly composed of tetragonal zirconia containing mol%.
A high-speed plastic forming method for zirconia ceramics, which is plastically deformed in a range of 5 × 10 −4 / sec.
JP1307290A 1989-11-27 1989-11-27 High-speed plastic forming of ceramics Expired - Lifetime JP2791403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1307290A JP2791403B2 (en) 1989-11-27 1989-11-27 High-speed plastic forming of ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1307290A JP2791403B2 (en) 1989-11-27 1989-11-27 High-speed plastic forming of ceramics

Publications (2)

Publication Number Publication Date
JPH03170386A JPH03170386A (en) 1991-07-23
JP2791403B2 true JP2791403B2 (en) 1998-08-27

Family

ID=17967354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1307290A Expired - Lifetime JP2791403B2 (en) 1989-11-27 1989-11-27 High-speed plastic forming of ceramics

Country Status (1)

Country Link
JP (1) JP2791403B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3973857B2 (en) 2001-04-16 2007-09-12 日鉱金属株式会社 Manufacturing method of manganese alloy sputtering target

Also Published As

Publication number Publication date
JPH03170386A (en) 1991-07-23

Similar Documents

Publication Publication Date Title
Lee et al. Texture and anisotropy in silicon nitride
US5122317A (en) Method of superplastically deforming zirconia materials
EP0013599A1 (en) Partially stabilized zirconia ceramics; method of making said ceramics, dies constructed of said ceramics, cutting tools with a cutting surface and tappet facings formed of said ceramics
EP0212659B1 (en) Plastic processing method of pressure or pressureless sintered ceramic body and ceramics-made molded material formed by the method
WO1996010546A1 (en) Silicon nitride ceramic and method of shaping the same
Wakai Superplasticity of ceramics
JPS6291480A (en) Ceramic formation
JP2791403B2 (en) High-speed plastic forming of ceramics
JP2523452B2 (en) High strength cubic boron nitride sintered body
JP2810922B2 (en) Alumina-zirconia composite sintered body and method for producing the same
JP3134092B2 (en) Zirconium oxide-based sintered body and method for producing the same
US5352533A (en) Ceramic composite body, process for producing a ceramic composite
JP2805969B2 (en) Aluminum oxide based ceramics with high toughness and high strength
JPS5895662A (en) Silicon nitride-titanium nitride composite sintered body
JPH025714B2 (en)
JPS63100055A (en) Alumina base ceramic for cutting tool and manufacture
EP0435064B1 (en) Process for shaping ceramic composites
JPH06306508A (en) Production of low anisotropy and high fatigue strength titanium base composite material
JP2972836B2 (en) Forming method of composite ceramics
JP3350710B2 (en) Alumina-based superplastic ceramics
CN112195367B (en) High-thermal-stability equiaxed nanocrystalline Ti6Al4V-Co alloy and preparation method thereof
CN111590071B (en) Molybdenum-niobium alloy target material and preparation method thereof
JP2922713B2 (en) Zirconia sintered body for tools
JPS61174169A (en) Manufacture of high strength partially stabilized zirconia sintered body
JP2980301B2 (en) Manufacturing method of ferrite alloy sintered body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090619

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090619

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100619

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100619

Year of fee payment: 12