JPH03165493A - Double insulation thin film electroluminescence device - Google Patents

Double insulation thin film electroluminescence device

Info

Publication number
JPH03165493A
JPH03165493A JP1303781A JP30378189A JPH03165493A JP H03165493 A JPH03165493 A JP H03165493A JP 1303781 A JP1303781 A JP 1303781A JP 30378189 A JP30378189 A JP 30378189A JP H03165493 A JPH03165493 A JP H03165493A
Authority
JP
Japan
Prior art keywords
dielectric
thin film
dielectric layer
voltage
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1303781A
Other languages
Japanese (ja)
Inventor
Tomoyuki Kawashima
河島 朋之
Kazuyoshi Shibata
一喜 柴田
Hisato Kato
久人 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1303781A priority Critical patent/JPH03165493A/en
Publication of JPH03165493A publication Critical patent/JPH03165493A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To attain a low voltage drive and a high dielectric strength by forming a front side dielectric layer with a dielectric of a dielectric constant higher than that of a back side dielectric layer. CONSTITUTION:A first dielectric area or a front side dielectric layer 36 is formed out of dielectric of a high dielectric constant such as Sm2O3 of a relative dielectric constant of 15 and the like. A second dielectric layer or a back side dielectric layer 40 is formed out of dielectric such as Y2O3 of a dielectric strength of 3MV/cm or greater and the like. Since the voltage drop in a dielectric layer 36 decreases with this constitution, the energy differential corresponding to the effective voltage applied to a light emitting area 38 increases. Therefore, the voltage to be applied may be relatively low. The dielectric strength is prevented from lowering as the insulation property is maintained by the dielectric layer 40.

Description

【発明の詳細な説明】 〔産業上の利用分野) 本発明は薄膜エレクトロルミネセンス装置に関し、特に
、発光領域を誘電体で挟んだ構造を有する2重絶縁薄膜
エレクトロルミネセンス装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film electroluminescent device, and more particularly to a double insulated thin film electroluminescent device having a structure in which a light emitting region is sandwiched between dielectric materials.

〔従来の技術] 交流電界の印加により電子を発光中心に衝突させること
により発光させるエレクトロルミネセンス装置は、高輝
度、高解像度で、発光層を薄く形成できることから、薄
型表示装置用のパネルとして注目されている。
[Prior Art] Electroluminescent devices that emit light by causing electrons to collide with a light-emitting center by applying an alternating current electric field are attracting attention as panels for thin display devices because they have high brightness, high resolution, and can form thin light-emitting layers. has been done.

従来の2重絶縁薄膜エレクトロルミネセンス装置を第5
図を参照して説明する。
The conventional double insulated thin film electroluminescent device
This will be explained with reference to the figures.

第5図は2重絶縁薄膜エレクトロルミ名センス装置の断
面を示したものであり、ガラス基板2の上にI T O
(Indium Tin 0xide)で形成された透
明電極4を形成し、この上に、Y2O,又はAA203
又は5izNn等からなる前面側誘電体層6をスパッタ
リング法又は真空蒸着法等により形成する。次に、Zn
S (硫化亜鉛)を母材としてこれに発光中心となるM
n等の遷移金属や希土類元素を添加した材料を以て、発
光層8を電子ビーム蒸着法により形成する。次に、この
発光層8の上に、前面側誘電体層6と同材質の背面側誘
電体層10を形成する。最後に、この背面側誘電体層1
0の上にAρからなる背面電極12を形成する。
FIG. 5 shows a cross section of a double insulating thin film electroluminescence device, in which an ITO is placed on a glass substrate 2.
A transparent electrode 4 made of (Indium Tin Oxide) is formed, and Y2O or AA203 is formed on this.
Alternatively, the front dielectric layer 6 made of 5izNn or the like is formed by sputtering, vacuum evaporation, or the like. Next, Zn
S (zinc sulfide) is used as a base material, and M becomes the luminescent center.
The light emitting layer 8 is formed by electron beam evaporation using a material to which transition metals such as n and rare earth elements are added. Next, on this light emitting layer 8, a back side dielectric layer 10 made of the same material as the front side dielectric layer 6 is formed. Finally, this back side dielectric layer 1
A back electrode 12 made of Aρ is formed on the Aρ.

このようにして形成された2重絶縁薄膜エレクトロルミ
ネセンス装置は透明電極4と背面電極12との間に交流
電圧14を印加することにより発光するが、発光層8は
前面側及び背面側の誘電体層610によって絶縁されて
いるため、余分の電流が流れずジュール熱の発生を抑え
ることができるので、発光効率の低下を防止し、素子寿
命を延ばすことができる。
The double insulating thin film electroluminescent device thus formed emits light by applying an alternating current voltage 14 between the transparent electrode 4 and the back electrode 12, and the light emitting layer 8 is Since it is insulated by the body layer 610, no excess current flows and generation of Joule heat can be suppressed, thereby preventing a decrease in luminous efficiency and extending the life of the element.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記した従来の2重絶縁薄膜エレクトロルミネセンス装
置においては、次の問題点がある。
The conventional double-insulated thin film electroluminescent device described above has the following problems.

素子の信頬性、長寿命を確保するために、前面側及び背
面側の誘電体層6.10には絶緑耐圧の高いY2O3又
はAl2O,又はSi、N、等の誘電体材料が使用され
ているが、これらの誘電体を用いると、素子の駆動電圧
が高くなってしまうので、交流印加電圧を高くしなけれ
ばならず、高価な駆動用高耐圧IC等が必要となる。
In order to ensure the reliability and long life of the device, dielectric materials such as Y2O3 or Al2O, Si, N, etc., which have a high breakdown voltage, are used for the dielectric layers 6.10 on the front and back sides. However, when these dielectrics are used, the driving voltage of the element becomes high, so the AC applied voltage must be increased, and an expensive high-voltage driving IC or the like is required.

第6図に、従来の2重絶縁薄膜エレクトロルミネセンス
装置の発光強度と駆動電圧との関係を示す。A−Dの各
曲線は、Mnを添加したZnSを発光層8として用いた
同一構造の2重絶縁薄膜エレクトロルミネセンス装置の
特性を示したものである。ここで、前面側及び背面側の
誘電体層610の材料として、曲線AはY2O3を、曲
線BはAfzO3を用いた場合を示している。これらの
曲線A及びBの場合には、本装置の絶縁破壊電圧は、曲
線Aでは360■、曲線Bでは440■となり、双方と
も絶緑耐圧は高いが、第6図に見られるように充分な発
光強度を得るために必要な駆動電圧が150■以上にな
ってしまう。このような高い駆動電圧を低減するために
、前面側及び背面側の誘電体層6.10に大きな誘電率
を存する誘電体材料を用いることが知られている。第6
図の曲線CはSm20.(比誘電率=1.5)、曲線り
はTazOs(比誘電率=23)を前面側及び背面側の
誘電体層6,10に用いた場合の特性曲線である。
FIG. 6 shows the relationship between the emission intensity and driving voltage of a conventional double-insulated thin film electroluminescent device. Each curve A to D shows the characteristics of a double insulating thin film electroluminescent device having the same structure using Mn-doped ZnS as the light emitting layer 8. Here, the curve A shows the case where Y2O3 is used as the material of the dielectric layer 610 on the front side and the back side, and the curve B shows the case where AfzO3 is used. In the case of these curves A and B, the dielectric breakdown voltage of this device is 360■ for curve A and 440■ for curve B. Although both have high break-out voltages, as shown in Figure 6, they are not sufficient. The driving voltage required to obtain a certain luminous intensity is 150 .mu. or more. In order to reduce such a high driving voltage, it is known to use a dielectric material having a large dielectric constant for the dielectric layers 6.10 on the front side and the back side. 6th
Curve C in the figure is Sm20. (relative permittivity=1.5), and the curve is a characteristic curve when TazOs (relative permittivity=23) is used for the dielectric layers 6 and 10 on the front side and back side.

曲線C及びDの場合には素子の駆動電圧は100■以下
と低くなる。しかし、これらの誘電体層の絶縁破壊電圧
は、曲線Cでは90V、曲線りでは80■と非常に低下
してしまうので、素子の信耗性が悪く、素子寿命にも影
響を与える。
In the case of curves C and D, the driving voltage of the element is as low as 100 .ANG. or less. However, the dielectric breakdown voltage of these dielectric layers is extremely low, from 90 V in curve C to 80 V in curve C, resulting in poor reliability of the device and affecting the life of the device.

以上のように、発光層8を挟む前面側及び背面側の誘電
体層6.10に高耐圧の材料を用いると、駆動電圧が高
くなってしまい、高誘電率の材料を用いると、絶緑耐圧
が低下してしまうことから、従来の2重絶縁薄膜エレク
トロルミネセンス装置では低駆動電圧と高絶緑耐圧との
両立が不可能であった。
As described above, if a material with high withstand voltage is used for the dielectric layers 6.10 on the front side and back side that sandwich the light emitting layer 8, the driving voltage will become high, and if a material with a high dielectric constant is used, Since the withstand voltage is lowered, it has been impossible for conventional double-insulated thin film electroluminescent devices to achieve both low driving voltage and high green withstand voltage.

そこで、本発明は上記問題点を解決するものであり、そ
の課題は、前面側誘電体層と背面側誘電体層の材質9吻
性を異なったものとすることにより、駆動電圧は低く、
しかも絶緑耐圧は高い2重絶縁薄膜エレクトロルミネセ
ンス装置を実現することにある。
SUMMARY OF THE INVENTION The present invention is intended to solve the above-mentioned problems.The purpose of the present invention is to make the front dielectric layer and the back dielectric layer different from each other in terms of materials and properties, thereby achieving a low driving voltage.
Moreover, the objective is to realize a double-insulated thin film electroluminescent device with a high breakdown voltage.

〔課題を解決するだめの手段] 上記の課題を解決するために、少な(とも、透明電極、
第1の誘電体領域、発光領域、第2の誘電体領域及び背
面電極が順次積層され、発光領域を2層の誘電体で挟む
構造を有する2重絶縁薄膜エレクトロルミネセンス装置
において、本発明が講じた手段は、該第1の誘電体領域
を該第2の誘電体領域に比して高い誘電率を有する誘電
体物質で形成するものである。
[Means to solve the problem] In order to solve the above problem, a small (also known as transparent electrode,
The present invention provides a double insulated thin film electroluminescent device having a structure in which a first dielectric region, a light emitting region, a second dielectric region and a back electrode are sequentially laminated, and the light emitting region is sandwiched between two dielectric layers. The measure taken is to form the first dielectric region with a dielectric material having a higher dielectric constant than the second dielectric region.

また、この場合に、該第1の誘電体領域を比誘電率が1
5以上の誘電体物質で形成すると共に、該第2の誘電体
領域を絶緑耐圧が3MV/cm以上の誘電体物質で形成
することが望ましい。
Further, in this case, the first dielectric region has a relative permittivity of 1.
It is desirable that the second dielectric region is formed of a dielectric material having a breakdown voltage of 3 MV/cm or more.

〔作用〕[Effect]

このような手段によれば、以下の作用が得られる。 According to such means, the following effects can be obtained.

第4図(a)には従来の2重絶縁薄膜エレクトロルミネ
センス装置のエネルギーバンド図を、第4図(b)には
第1の誘電体領域36のみを誘電率の高い誘電体に替え
て形成した本発明に係る2重絶縁薄膜エレクトロルミネ
センス装置のエネルギーバンド図を示す。
FIG. 4(a) shows an energy band diagram of a conventional double-insulated thin film electroluminescent device, and FIG. 4(b) shows an energy band diagram of a conventional double-insulated thin film electroluminescent device, and FIG. FIG. 3 shows an energy band diagram of a double insulated thin film electroluminescent device according to the present invention formed.

透明電極34と背面電極42との間に高電圧を印加する
と、発光領域38と第1及び第2の誘電体領域36、4
0との境界に捕まっていた電子20や熱励起によって生
じた電子22が発光領域内の高電界により加速され、発
光領域内の発光中心と衝突して発光すると考えられる。
When a high voltage is applied between the transparent electrode 34 and the back electrode 42, the light emitting region 38 and the first and second dielectric regions 36, 4
It is thought that the electrons 20 trapped at the boundary with 0 and the electrons 22 generated by thermal excitation are accelerated by the high electric field in the light emitting region, collide with the light emitting center in the light emitting region, and emit light.

ここで、本発明の手段においては、第1の誘電体領域3
6を第2の誘電体領域40に比べて高い誘電率を有する
誘電体物質で形成するから、第4図(b)に示すように
、第1の誘電体領域36内の電圧降下が小さくなるので
、印加電圧に対応するエネルギー差24が等しくても発
光領域38に加わる実効電圧に対応するエネルギー差2
8は第4図(a)の場合のエネルギー差26よりも大き
くなる。したがって、相対的に印加電圧が低くて足り、
装置の駆動電圧を低くすることができる。
Here, in the means of the present invention, the first dielectric region 3
6 is formed of a dielectric material having a higher dielectric constant than the second dielectric region 40, the voltage drop within the first dielectric region 36 is reduced as shown in FIG. 4(b). Therefore, even if the energy difference 24 corresponding to the applied voltage is equal, the energy difference 2 corresponding to the effective voltage applied to the light emitting region 38 is
8 is larger than the energy difference 26 in the case of FIG. 4(a). Therefore, a relatively low applied voltage is sufficient;
The driving voltage of the device can be lowered.

一方、第2の誘電体領域40は従来と同様の高絶緑耐圧
の誘電体物質で形成されているので、この第2の誘電体
領域40により絶縁性が維持され、絶緑耐圧の低下を防
止することができる。
On the other hand, since the second dielectric region 40 is formed of a dielectric material with a high breakdown voltage similar to the conventional one, the second dielectric region 40 maintains insulation properties and prevents a drop in breakdown voltage. It can be prevented.

したがって、素子の駆動電圧と絶緑耐圧に対する要請を
同時に満たし、低い駆動電圧で動作すると共に高い絶緑
耐圧を有するので、信頼性、耐久性が向上する。
Therefore, the device simultaneously satisfies the requirements for driving voltage and breakdown voltage of the element, operates at a low drive voltage, and has a high breakdown voltage, improving reliability and durability.

〔実施例〕〔Example〕

次に、第1119から第3図までを参照して本発明の詳
細な説明する。
Next, the present invention will be described in detail with reference to FIGS. 1119 to 3.

まず、本発明の第1の実施例を説明する。第1図に示す
ように、ガラス基板32にIT○をスパッタリング法に
より被着して、膜厚2000人の透明電極34を形成す
る。次に、第1の誘電体として、膜厚4000人のSm
、O,からなる前面側誘電体層36を電子ビーム蒸着法
により形成し、この上にMnを0.5重量%含むZnS
を材料として電子ビーム蒸着法により膜厚5000人の
発光層38を形成する。
First, a first embodiment of the present invention will be described. As shown in FIG. 1, IT◯ is deposited on a glass substrate 32 by sputtering to form a transparent electrode 34 having a film thickness of 2,000. Next, as the first dielectric material, Sm with a film thickness of 4000
, O, is formed by electron beam evaporation, and on top of this is a ZnS layer containing 0.5% by weight of Mn.
A light-emitting layer 38 having a thickness of 5,000 wafers is formed using the material by electron beam evaporation.

更にこの発光層38の上に、第2の誘電体層として、膜
厚4000人のY2O3からなる背面側誘電体層40を
電子ビーム蒸着法により形成し、この上にAfをスパッ
タして膜厚5ooo人の背面電極42を被着する。
Further, on this light-emitting layer 38, a back side dielectric layer 40 made of Y2O3 with a thickness of 4000 nm is formed as a second dielectric layer by electron beam evaporation method, and Af is sputtered on this to make the film thickness. 5ooo back electrodes 42 are deposited.

この第1の実施例による2重絶縁薄膜エレクトロルミネ
センス装置の発光輝度−駆動電圧特性を第2図の曲線X
に示す。ここで、曲線A及びCは第5図に示すA及びC
と同じもので参考のために付したものである。このよう
に、前面側誘電体層36に高誘電率のSm、03 (比
誘電率=15)を用いると、駆動電圧は曲線Aよりも約
100vも低下して、曲線Cで表す前面側誘電体層36
及び背面側誘電体層40に両方ともSmz O,を用い
た場合とほぼ同様の駆動電圧で発光させることができる
The emission brightness-driving voltage characteristic of the double insulated thin film electroluminescent device according to the first embodiment is expressed by the curve X in FIG.
Shown below. Here, curves A and C are shown in FIG.
It is the same as , and is included for reference. In this way, when Sm,03 (relative permittivity=15) with a high dielectric constant is used for the front side dielectric layer 36, the drive voltage is lowered by about 100V than curve A, and the front side dielectric layer 36 is lower than curve A. body layer 36
It is possible to emit light at substantially the same driving voltage as when SmzO is used for both the back side dielectric layer 40 and the rear side dielectric layer 40.

一方、この実施例の絶縁破壊電圧は310Vであり、曲
線Cの場合よりも220 V以上高(、前面側誘電体層
36及び背面側誘電体層40に両方ともY2O3を用い
た場合(曲線A)とほぼ同様である。
On the other hand, the dielectric breakdown voltage of this example is 310 V, which is more than 220 V higher than that of curve C (when Y2O3 is used for both the front dielectric layer 36 and the back dielectric layer 40 (curve A). ) is almost the same as

したがって、この実施例の2重絶縁薄膜エレクトロルミ
ネセンス装置は、駆動電圧が低いにもかかわらず高い絶
緑耐圧を有するので、信頼性、耐久性が高く、高圧電源
も不要である。
Therefore, the double-insulated thin film electroluminescent device of this embodiment has a high breakdown voltage even though the driving voltage is low, so it is highly reliable and durable, and does not require a high-voltage power source.

次に、本発明に係る第2の実施例を説明する。Next, a second embodiment of the present invention will be described.

この実施例は第1の実施例と同一構造であるが、前面側
誘電体層36には膜厚4000人のTaz O,を、背
面側誘電体層40には膜厚4000人のA2□03をそ
れぞれ電子ビーム蒸着法により蒸着する点が異なる。
This embodiment has the same structure as the first embodiment, but the front dielectric layer 36 is made of Taz O, with a thickness of 4000 mm, and the back dielectric layer 40 is made of A2□03 with a thickness of 4000 mm. The difference is that each is deposited by electron beam evaporation.

この実施例による2重絶縁薄膜エレクトロルミネセンス
装置の発光輝度−駆動電圧特性を第3図の曲線Yに示す
。ここで、曲線B及びDは第5図に示すB及びDと同じ
もので参考のために付したものである。このように、前
面側誘電体層36に高誘電率のTazQ、(比誘電率=
23)を用いた曲線Yの場合には、駆動電圧は曲線Bよ
りも約100■も低下して、曲線りで表す前面側誘電体
層36及び背面側誘電体層40に両方ともTazQ、を
用いた場合とほぼ同様の駆動電圧で発光させることがで
きる。
The emission brightness-driving voltage characteristic of the double insulating thin film electroluminescent device according to this example is shown by curve Y in FIG. Here, curves B and D are the same as B and D shown in FIG. 5, and are added for reference. In this way, the front side dielectric layer 36 has a high dielectric constant TazQ, (relative permittivity=
In the case of curve Y using 23), the driving voltage is about 100 cm lower than that of curve B, and TazQ is applied to both the front dielectric layer 36 and the back dielectric layer 40, which are represented by curved lines. It is possible to emit light at almost the same driving voltage as when using the device.

一方、この実施例の絶縁破壊電圧は330Vであり、曲
線りの場合よりも250■も高く、前面側誘電体層36
及び背面側誘電体層40に両方ともAI20、を用いた
場合(曲線B)よりは低いものの、実用上全く問題がな
い。
On the other hand, the dielectric breakdown voltage of this embodiment is 330V, which is 250cm higher than that of the curved case.
Although it is lower than the case where AI20 is used for both the curve B and the back side dielectric layer 40 (curve B), there is no problem in practical use.

本発明の実施例としては、上記の他にも種々の材料を用
いることができる。
Various materials other than those described above can be used in embodiments of the present invention.

前面側誘電体としては、比誘電率が15以上のものが望
ましく、S mt 03. T a z Osの他に、
HfO,、PbTi0.、BaTiOs  BaTaZ
 Oh 、SrTiO3,PbNbz 06等が使用で
きる。
The front dielectric material preferably has a dielectric constant of 15 or more, and has a S mt 03. In addition to T az Os,
HfO,, PbTi0. , BaTiOs BaTaZ
Oh, SrTiO3, PbNbz06, etc. can be used.

背面側誘電体としては、絶緑耐圧が3 M V / c
m以上のものが望ましく、YZ O:l 、Alz O
zの他に、SiO□、313 N4 、S +A10N
等が使用できる。
The dielectric on the back side has a breakdown voltage of 3 MV/c.
m or more is desirable, YZ O:l, Alz O
In addition to z, SiO□, 313 N4, S +A10N
etc. can be used.

透明電極としては、ITOの他に、5nOzや有機導電
材料も使用できる。
As the transparent electrode, in addition to ITO, 5nOz or an organic conductive material can also be used.

発光層としては、ZnSの他にCaS、SrS等にMn
、Tb、Sm、Eu、Tm、Ce等を添加したものが使
用できる。
In addition to ZnS, the light-emitting layer may include CaS, SrS, etc., and Mn.
, Tb, Sm, Eu, Tm, Ce, etc. can be used.

背面電極としては、種々の金属を材料にして電子ビーム
蒸着法、スパッタリング法、CVD法等によって形成し
た膜が使用できる。
As the back electrode, films made of various metals and formed by electron beam evaporation, sputtering, CVD, or the like can be used.

なお、前面側誘電体層に高耐圧の誘電体を用いて、背面
側誘電体層に高誘電率の誘電体を用いた場合には、駆動
電圧の低下はあまり見られなかった。
Note that when a dielectric with a high breakdown voltage was used for the front dielectric layer and a dielectric with a high dielectric constant was used for the back dielectric layer, the drive voltage did not decrease much.

(発明の効果) 本発明に係る2重絶縁薄膜エレクトロルミネセンス装置
は、発光領域を挟む第1の誘電体領域と第2の誘電体領
域とを異なる材質とし、第1の誘電体領域には高誘電率
の誘電体材料を、第2の誘電体領域には低誘電率の高耐
圧材料を用いたことに特徴を有するから、次の効果を奏
する。
(Effects of the Invention) In the double insulating thin film electroluminescent device according to the present invention, the first dielectric region and the second dielectric region sandwiching the light emitting region are made of different materials, and the first dielectric region is made of different materials. Since a dielectric material with a high dielectric constant is used and a high breakdown voltage material with a low dielectric constant is used in the second dielectric region, the following effects are achieved.

■ 従来両立不可能であった低い駆動電圧と高い絶緑耐
圧とを同時に達成できたので、高圧の交流電源が不要と
なり、安価な発光装置を製造できる。
■ Since we were able to simultaneously achieve a low drive voltage and a high breakdown voltage, which were previously impossible, there is no need for a high-voltage AC power supply, and we can manufacture inexpensive light-emitting devices.

■ 高い絶緑耐圧を有しながら、低い電圧で発光させる
ことができるので、発光装置としてのは頬性、耐久性が
向上する。
(2) It has a high breakdown voltage and can emit light at a low voltage, so it has improved durability and durability as a light emitting device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1及び第2の実施例による2重絶縁
薄膜エレクトロルミネセンス装置の構造断面図である。 第2図は本発明の第1の実施例による2重絶縁薄膜エレ
クトロルミネセンス装置の発光輝度と駆動電圧との関係
を示す特性図である。 第3図は本発明の第2の実施例による2重絶縁薄膜エレ
クトロルミネセンス装置の発光輝度と駆動電圧との関係
を示す特性図である。 第4図(a)は従来の2重絶縁薄膜エレクトロルミネセ
ンス装置の発光機構を示すエネルギーバンド図で、第4
図(b)は本発明に係る2重絶縁薄膜エレクトロルミネ
センス装置の発光機構を示すエネルギーバンド図である
。 第5図は従来の2重絶縁薄膜エレクトロルミネセンス装
置の構造断面図である。 第6図は従来の2重絶縁薄膜エレクトロルミネセンス装
置の発光輝度と駆動電圧との関係を示す特性図である。 〔符号の説明〕 32・・・ガラス基板 34・・・透明電極 36=・・前面側誘電体層(Smz 03 、Ta2o
s )38・・・発光層 40・・・前面側誘電体層(Yz Oz 、Afz 0
3 )42・・・背面電極 X・・・前面側誘電体層はSmz owl 、、背面側
誘電体層はY2O3で形成した場合の発光輝度−駆動電
圧特性曲線 Y・・・前面側誘電体層はT a z Os 、背面側
誘電体層はA/l!、O,で形成した場合の発光輝度−
駆動電圧特性曲線。
FIG. 1 is a structural cross-sectional view of a double insulation thin film electroluminescent device according to a first and second embodiment of the present invention. FIG. 2 is a characteristic diagram showing the relationship between luminance and driving voltage of the double-insulated thin film electroluminescent device according to the first embodiment of the present invention. FIG. 3 is a characteristic diagram showing the relationship between luminance and driving voltage of a double-insulated thin film electroluminescent device according to a second embodiment of the present invention. Figure 4(a) is an energy band diagram showing the light emitting mechanism of a conventional double-insulated thin film electroluminescent device.
Figure (b) is an energy band diagram showing the light emitting mechanism of the double insulating thin film electroluminescent device according to the present invention. FIG. 5 is a cross-sectional view of the structure of a conventional double-insulated thin film electroluminescent device. FIG. 6 is a characteristic diagram showing the relationship between emission brightness and driving voltage of a conventional double-insulated thin film electroluminescent device. [Explanation of symbols] 32...Glass substrate 34...Transparent electrode 36=...Front side dielectric layer (Smz 03, Ta2o
s) 38...Light emitting layer 40...Front side dielectric layer (Yz Oz, Afz 0
3) 42...Back electrode is T az Os and the back side dielectric layer is A/l! Emission brightness when formed with , O, -
Drive voltage characteristic curve.

Claims (2)

【特許請求の範囲】[Claims] (1) 少なくとも、透明電極、第1の誘電体領域、発
光領域、第2の誘電体領域及び背面電極が順次積層され
た構造を有する2重絶緑薄膜エレクトロルミネセンス装
置において、 該第1の誘電体領域は該第2の誘電体領域に比して高誘
電率の誘電体物質で形成されていることを特徴とする2
重絶緑薄膜エレクトロルミネセンス装置。
(1) In a double constant green thin film electroluminescent device having a structure in which at least a transparent electrode, a first dielectric region, a light emitting region, a second dielectric region and a back electrode are sequentially laminated, the first 2, wherein the dielectric region is formed of a dielectric material having a higher dielectric constant than the second dielectric region.
Heavy green thin film electroluminescence device.
(2) 請求項第1項において、該第1の誘電体領域は
比誘電率が15以上の誘電体物質で形成されており、該
第2の誘電体領域は絶緑耐圧が3MV/cm以上の誘電
体物質で形成されていることを特徴とする2重絶縁薄膜
エレクトロルミネセンス装置。
(2) In claim 1, the first dielectric region is formed of a dielectric material having a dielectric constant of 15 or more, and the second dielectric region has a break-through voltage of 3 MV/cm or more. A double insulating thin film electroluminescent device characterized in that it is formed of a dielectric material.
JP1303781A 1989-11-22 1989-11-22 Double insulation thin film electroluminescence device Pending JPH03165493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1303781A JPH03165493A (en) 1989-11-22 1989-11-22 Double insulation thin film electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1303781A JPH03165493A (en) 1989-11-22 1989-11-22 Double insulation thin film electroluminescence device

Publications (1)

Publication Number Publication Date
JPH03165493A true JPH03165493A (en) 1991-07-17

Family

ID=17925210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1303781A Pending JPH03165493A (en) 1989-11-22 1989-11-22 Double insulation thin film electroluminescence device

Country Status (1)

Country Link
JP (1) JPH03165493A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391996A (en) * 1986-10-03 1988-04-22 日立マクセル株式会社 Display with electroluminescence device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391996A (en) * 1986-10-03 1988-04-22 日立マクセル株式会社 Display with electroluminescence device

Similar Documents

Publication Publication Date Title
US4751427A (en) Thin-film electroluminescent device
US6403204B1 (en) Oxide phosphor electroluminescent laminate
JP4528923B2 (en) EL element
JPS5823191A (en) Thin film el element
US20020125821A1 (en) Electroluminescent display formed on glass with a thick film dielectric layer
JPS61230296A (en) El element and manufacture thereof
JPH03165493A (en) Double insulation thin film electroluminescence device
KR100317989B1 (en) High luminance blue dc-electroluminescent display
CA1256972A (en) Thin film electroluminescent device
KR100283283B1 (en) Electroluminescent device having flat surface and its fabricating method
JPH0516158B2 (en)
JPS5829880A (en) Electric field luminescent element
JP2000113983A (en) Display device
JP2985096B2 (en) Zn lower 2 SiO lower 4: Method of manufacturing AC driven thin film electroluminescent device using Mn thin film as light emitting layer
JPS6124192A (en) Thin film electroluminescent element
JPS58175293A (en) Electric field light emitting element
JPH04363895A (en) Electroluminescence element
JPS6314833B2 (en)
JPS5991697A (en) Thin film el element
JPH02148598A (en) Electroluminescence device
JPH0740515B2 (en) Thin film light emitting device
JPS5855636B2 (en) Thin film EL element
JPS6050577A (en) Thin film electroluminescence panel
JPH0227691A (en) Electroluminescence display element
JP2002280185A (en) Thin film el element