JPS58175293A - Electric field light emitting element - Google Patents

Electric field light emitting element

Info

Publication number
JPS58175293A
JPS58175293A JP57057503A JP5750382A JPS58175293A JP S58175293 A JPS58175293 A JP S58175293A JP 57057503 A JP57057503 A JP 57057503A JP 5750382 A JP5750382 A JP 5750382A JP S58175293 A JPS58175293 A JP S58175293A
Authority
JP
Japan
Prior art keywords
film
voltage
zns
brightness
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57057503A
Other languages
Japanese (ja)
Inventor
富造 松岡
洋介 藤田
任田 隆夫
新田 恒治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57057503A priority Critical patent/JPS58175293A/en
Publication of JPS58175293A publication Critical patent/JPS58175293A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は新規な構造を持つ電場発光素子に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electroluminescent device having a novel structure.

薄膜電場発光素子は、小型、軽量および高精細度なフラ
ットパネルディスプレイが実現できるため、1960年
代後半から開発が活発に行なわれてきた。特に薄膜螢光
体の両側を絶縁薄膜ではさんだ二重絶縁構造の交流電場
発光素子は、その高い輝度と長寿命特性によって実用的
価値が高い。
Thin-film electroluminescent devices have been actively developed since the late 1960s because they enable small, lightweight, and high-definition flat panel displays to be realized. In particular, AC electroluminescent elements with a double insulation structure in which a thin film phosphor is sandwiched between two insulating thin films have high practical value due to their high brightness and long life characteristics.

すなわち、約0.6μmの厚さのZnS :Mn発光層
を0.2μmの厚さのY2O3絶縁層でサンドイッチ状
に砿さみ込んだ二重絶縁構造の電場発光素子は、5kH
z  の高周波電圧で駆動して150oフツトランバ一
ト以上の輝度で発光さ1ζ、20000時間以上の連続
動作をさせても輝度が低下しないという高い安定性を示
す。
In other words, an electroluminescent device with a double insulation structure in which a ZnS:Mn luminescent layer with a thickness of about 0.6 μm is sandwiched between Y2O3 insulating layers with a thickness of 0.2 μm has a 5kHz
It emits light with a brightness of 150 degrees FFT or more when driven with a high frequency voltage of 1ζ, and exhibits high stability in that the brightness does not decrease even after continuous operation for more than 20,000 hours.

しかし、この二重絶縁構造の電場発光素子は、その励起
電圧が2. o o V以−トと高いため、駆動回路が
複雑になり、小型化が内錐でかつコスト高になるという
欠点を持っている。
However, the electroluminescent device with this double insulation structure has an excitation voltage of 2. Since the voltage is as high as 0 V or more, the drive circuit becomes complicated, and miniaturization requires an internal cone and the cost is high.

そのため、このような電場発光素子において、その駆動
電圧をできるだけ低くすることが望ま゛れている。
Therefore, in such an electroluminescent device, it is desirable to lower the driving voltage as much as possible.

本発明は、この要望を実現するためになされたもので、
低電圧1動が可能で、高輝度、安定な電場発光素子を提
供することを目的とするものである。
The present invention was made to realize this desire.
The object of the present invention is to provide a high-luminance, stable electroluminescent device that can be operated at a low voltage.

交流駆動の薄膜電場発光素子の励起電圧を低減する試み
として、これまで、(1)絶縁層に高誘電率の物質を用
いて、相対的に螢光膜層にかかる電圧割合を増加させる
方法と、(2)発光層材料および素子構成の改良による
方法の二つがなされてきた。
As an attempt to reduce the excitation voltage of AC-driven thin film electroluminescent devices, there have been two methods: (1) using a material with a high dielectric constant for the insulating layer and relatively increasing the voltage ratio applied to the fluorescent film layer; (2) Two methods have been developed: (2) improvements in the light-emitting layer material and device configuration.

(1)の方法については、従来の代表的絶縁材料Y2O
3に代るものとして、8m2 os、Ta2 os 。
For method (1), the conventional typical insulating material Y2O is used.
As an alternative to 3, 8 m2 os, Ta2 os.

BaTiO3およびPbTiO3が検討された。PbT
iO3絶縁薄膜を用いた素子は、Y2O3薄膜を用いた
ものに比較し、発光しきい電圧が猶〜具になり、70〜
8ovで300フツトランパートの輝度を得ている。
BaTiO3 and PbTiO3 were considered. PbT
The device using the iO3 insulating thin film has a light emission threshold voltage of 70 to 70% compared to the device using the Y2O3 thin film.
A brightness of 300 feet Trumpet is obtained at 8OV.

(2)の方法としては、発光層材料をZnSからZn5
aあるいはznSxS61−xに代えることが試みられ
た。
For method (2), the light emitting layer material is changed from ZnS to Zn5.
Attempts were made to replace it with a or znSxS61-x.

この方法は飽和輝度が減少するという欠点を持つ。This method has the disadvantage that the saturated brightness is reduced.

素子構成を改良する方法としては、発光層と金属電極と
の間にのみ絶縁層を設けた金属電極−絶縁層一発光層(
Zn8:Mn)−透明導電膜の構造とし、さらに発光層
と絶縁層の厚みを薄くすることが試られており、それに
よってsoV’iで励起電圧を下げることができる。輝
度については約3ooフツトランバートが得られる。し
かし、かかる構造の電場発光素子は、絶縁層および発光
層の厚みがそれぞれ0.25μmおよび0.1〜02μ
mと薄いため、絶縁破壊しやすく、不安シ1′なものと
なりやすいという傾向を持つ。螢光体k・)の膜厚が薄
い程、原理的に発光のしきい値電圧が低くなるが、0.
4μm以下になると螢光膜の結晶性が悪くなり、発光効
率が急激に低下する。
As a method to improve the device configuration, an insulating layer is provided only between the emissive layer and the metal electrode.
Attempts have been made to create a Zn8:Mn)-transparent conductive film structure and to further reduce the thickness of the light-emitting layer and the insulating layer, thereby making it possible to lower the excitation voltage at soV'i. As for the brightness, approximately 30 foot lamberts are obtained. However, in an electroluminescent device having such a structure, the thickness of the insulating layer and the luminescent layer is 0.25 μm and 0.1-02 μm, respectively.
Since it is as thin as 1.5 m, it tends to easily cause dielectric breakdown and become unstable. The thinner the film thickness of the phosphor (k) is, the lower the threshold voltage for light emission will be in principle.
When the thickness is less than 4 μm, the crystallinity of the fluorescent film deteriorates, and the luminous efficiency decreases rapidly.

上記のことを鑑み、発明者らは低電圧で発光し、かつ高
い輝度と安定性を持つ電場発光素子を実現すべく、素子
構造について検討した。その結果、゛ト導体弔結晶基板
−ZnS 螢光膜−絶縁膜−透明膜電極の構造を持つ交
流電場発光素子は、低電圧でかつ高輝前、安定な特性を
持つことが見い出された。半導体基板は電極の作用とと
もに、ZnS螢光膜などの支持基板となっている。そし
て、基板が単結晶であるので、従来の蒸着多結晶絶縁膜
1jcZns膜を重ねる場合と異なり、その上にZnS
を付着させた場合、はぼエピタキシャル的にZnS層が
作られる。その結果、ZnS膜Fi薄くてもその結晶性
がよいため、発光効率の良好な螢光膜となる。したがっ
て、螢光膜が薄い割に高輝度、安定な素子となる。さら
に前記従来例の低電圧発光素子、金属電極−絶縁層−Z
nS :Mn膜−透明導電膜構造においてはZnS螢光
膜膜と透明導電膜、一般にSnをドーピングしたIn2
O3膜は、それらの界面において相互に拡散しやすく、
そのため螢光膜り効率が下る。一方、本発明の単結晶半
導体はそのような現象が起らず、螢光膜の効率を下げる
ことはない。また、単結晶半導体は体色が黒いため、発
光領域間での光吸収作用を持ち。
In view of the above, the inventors studied the device structure in order to realize an electroluminescent device that emits light at low voltage and has high brightness and stability. As a result, it was found that an AC electroluminescent device having the structure of conductor crystal substrate-ZnS fluorescent film-insulating film-transparent film electrode has stable characteristics at low voltage and before high brightness. The semiconductor substrate functions as an electrode and also serves as a support substrate for a ZnS fluorescent film or the like. Since the substrate is a single crystal, unlike the case of stacking a conventional vapor-deposited polycrystalline insulating film 1jcZns film, ZnS is
When deposited, a ZnS layer is produced epitaxially. As a result, even if the ZnS film Fi is thin, its crystallinity is good, resulting in a fluorescent film with good luminous efficiency. Therefore, although the fluorescent film is thin, the device has high brightness and is stable. Furthermore, the conventional low voltage light emitting device, metal electrode-insulating layer-Z
nS: In the Mn film-transparent conductive film structure, ZnS fluorescent film and transparent conductive film, generally In2 doped with Sn.
O3 films easily diffuse into each other at their interfaces,
As a result, the efficiency of forming a fluorescent film decreases. On the other hand, such a phenomenon does not occur in the single crystal semiconductor of the present invention, and the efficiency of the fluorescent film does not decrease. In addition, since single crystal semiconductors have a black body color, they have a light absorption effect between light emitting regions.

コントラストも従来品に比較して良好になる。Contrast is also better compared to conventional products.

以下実施例を挙げて具体的に説明する。The present invention will be specifically explained below with reference to Examples.

実施例1 ムS をドープした。、oO1〜o、oo3Ω−cmの
抵抗率を持つ単結晶Si基板上に、第1図に示す2種類
の電場発光素子を作製した。まず、第1図(ム)に示す
ように単結晶のシリコン基板1の表面をcH3coon
−IF−HNO3−系の溶液でエツチングし、その上に
マンガンを0.8原r%含むZnS  螢光膜2を0.
25 pm 、 Y203絶縁膜3を0.6pm、最後
に(In 、Sn )203 (以下ITOと記す)透
明導電膜4を0.2μmの厚さに順次積層した。なお、
ZnS膜2とY2O3膜3とはエレクトロンビーム蒸着
法で、またITO膜はスノリタリング法でそれぞれ作製
した。
Example 1 Mu S was doped. Two types of electroluminescent devices shown in FIG. 1 were fabricated on a single crystal Si substrate having a resistivity of . First, as shown in FIG.
-IF-HNO3- based solution is etched, and a ZnS phosphor film 2 containing 0.8% manganese is deposited on top of it.
25 pm, a Y203 insulating film 3 of 0.6 pm, and finally an (In , Sn ) 203 (hereinafter referred to as ITO) transparent conductive film 4 to a thickness of 0.2 μm. In addition,
The ZnS film 2 and the Y2O3 film 3 were produced by electron beam evaporation, and the ITO film was produced by snornitering.

一方、第1図(B)に示す構造の素子は、同図(ム)に
おけるY2O3膜の厚み0.6μmを2分割して0.2
6μmの厚みとし、これら二つのY2O3膜5,6をZ
nS膜2の上下に形成した。この構造は従来の2重絶縁
構造の電場発光素子と同じものである。
On the other hand, the element with the structure shown in FIG.
The thickness is 6 μm, and these two Y2O3 films 5 and 6 are
They were formed above and below the nS film 2. This structure is the same as a conventional electroluminescent device with double insulation structure.

第1図(ム)、(B)に示した構造の電場発光素子の発
光の観察はITO透明導電膜4側から行なった。
The light emission of the electroluminescent device having the structure shown in FIGS. 1(M) and 1(B) was observed from the ITO transparent conductive film 4 side.

ITO透明導電膜4と単結晶81基板1との間に5kH
zの周波数の交流電圧を印加して、それぞれ発光させた
5kHz between ITO transparent conductive film 4 and single crystal 81 substrate 1
An alternating current voltage with a frequency of z was applied to cause each to emit light.

その電圧輝度特性を第2図に示した。The voltage-luminance characteristics are shown in FIG.

図から明らかなように、第1図(ム)の構造の素子阜 は曲線ムの特性を示し、同図(B)構造の素子は曲線B
の特性を示していることから、前者は後者に比較し、飽
和輝度が高くなる。たとえば120Vで比較した場合、
第1図体)の素子は同図(B)素子の30%増の輝度゛
を示す。
As is clear from the figure, the device with the structure shown in FIG.
The former has higher saturation luminance than the latter. For example, when comparing at 120V,
The device shown in Figure 1 (Figure 1) exhibits 30% higher luminance than the element shown in Figure 1 (B).

これら二つの構造の素子において、ZnS膜の厚みと全
体・とじてのY2O3膜の厚みが等しいので。
In the elements of these two structures, the thickness of the ZnS film and the total thickness of the Y2O3 film are equal.

この輝度向上はZnS膜の発光効率が第1図(ム)の素
子において優れていることに帰因するっすなわち、Sユ
単結晶上に積層したZnSの方が、エピタキシャル的に
成長するために結晶性がよくなったためと考えられ、こ
のこと//′i、X線反射tクエ観察によりi認された
。さらに、発光開始しきい電圧についてみると、第1図
(ム)の素子は同図(B)の素子に比べて約1oV低く
麿っており、このことは低電圧発光素子を形成するのに
向いている構造といえる。
This improvement in brightness is due to the fact that the luminous efficiency of the ZnS film is superior in the device shown in FIG. This is thought to be due to improved crystallinity, and this was confirmed by X-ray reflection t-que observation. Furthermore, when looking at the threshold voltage for starting light emission, the device shown in FIG. 1 (M) is about 1oV lower than the device shown in FIG. It can be said that this is a suitable structure.

実施例2 実施例1よりもさらに低電圧駆動の電場発光素子を作製
するために、絶縁層としてY2O3よりも誘電率の高い
チタン酸ストロンチr7’ 1. (5rTi03)膜
を用いた。Y2O3膜の誘電率は11,5rTi03膜
のそれは150であり、  S r T 103 (7
) ヨうfz Zn5(誘電率8)よりも1桁以上大き
な誘電率の絶縁物を積層した場合には、素子に印加した
電圧がほとんどZnS層に印加され、発光しきい電圧が
低下する。
Example 2 In order to produce an electroluminescent device driven at an even lower voltage than in Example 1, strontyl titanate r7', which has a higher dielectric constant than Y2O3, was used as an insulating layer.1. (5rTi03) film was used. The dielectric constant of the Y2O3 film is 11.5r, and that of the Ti03 film is 150, and S r T 103 (7
) If an insulator having a dielectric constant one or more orders of magnitude larger than that of Zn5 (dielectric constant 8) is laminated, most of the voltage applied to the device is applied to the ZnS layer, and the emission threshold voltage decreases.

第3図に8rTi03膜を用いた電場発光素子を示した
。第2図(ム) 、 (B)はそれぞれ第1図(ム) 
、 (B)に対応する構造であるが、絶縁物としてY2
03に代えテ5rTi03 (ST )を使用しテいル
。ST膜7,8゜9は8 r T i O3のセラミッ
クをターゲットにし、80%ムr−20%02ガス中に
おいて、高周波マグネトロンスパッター法で作製した。
FIG. 3 shows an electroluminescent device using an 8rTi03 film. Figure 2 (Mu) and (B) are respectively Figure 1 (Mu).
, the structure corresponds to (B), but Y2 is used as an insulator.
Use Te5rTi03 (ST) instead of 03. The ST films 7, 8 and 9 were fabricated by high frequency magnetron sputtering in 80% mr-20% 02 gas using a ceramic of 8rTiO3 as a target.

他のZnS膜2.ITO膜4は実施例1と・同じ手法で
作製した。膜厚については、第3図(ム)の素子ムにお
いてZn8膜2が0.25 μm 、 S r T 1
03膜7が0,60t1−”lり、同図(B)の素子B
においてZnSl1g2カ()26 μm  、 5r
T103膜8,9が二分割されて026μmづつであり
、これらはZnS膜2の両側に配置されている。画素子
ム、Bの電圧輝度特性はそれぞれ第4図の曲線ム、Bに
示すとおりである。素子ムの電圧−輝度特性から明らか
なように、実施例10Y203絶縁膜の場合と異なり、
電圧によって輝度が急激に立ち上る。発光開始電圧は2
0Vであり、Y2O3膜を使用したものと比較して非常
に低下している。一方、ZnS膜20両側に分割した5
rTi03膜8.9をつけた素子Bは、素子ムに比較し
、発光開始電圧は約7vと高く、かつ輝度も低い。40
Vの印加電圧で比較すると、素子ムの輝度は素子Bの約
40%増である。さらに、素子ムにおいては発光開始電
圧20Vの2倍の電圧を印加しても、素子自体がブレー
クダウンする現象は見られないが、素子Bにおいては発
光開始電圧の2倍の電圧を印加すると、はとんどブレー
クダウンし、その後、全熱発光しないか、またはきわめ
て輝度の低い素子となった。
Other ZnS films 2. The ITO film 4 was produced using the same method as in Example 1. Regarding the film thickness, the Zn8 film 2 is 0.25 μm in the device shown in FIG.
03 film 7 is 0.60t1-"l, element B in the same figure (B)
In ZnSl1g2ka()26 μm, 5r
The T103 films 8 and 9 are divided into two parts each having a length of 026 μm, and these are arranged on both sides of the ZnS film 2. The voltage-luminance characteristics of pixel elements M and B are as shown by curves M and B in FIG. 4, respectively. As is clear from the voltage-luminance characteristics of the device, unlike the case of the Y203 insulating film in Example 10,
The brightness rises rapidly depending on the voltage. The emission starting voltage is 2
0V, which is significantly lower than that using the Y2O3 film. On the other hand, the ZnS film 20 is divided into 5 parts on both sides.
The device B with the rTi03 film 8.9 has a higher emission starting voltage of about 7 V and lower luminance than the device M. 40
When compared with the applied voltage of V, the luminance of element B is about 40% higher than that of element B. Furthermore, in element B, even if a voltage twice the emission starting voltage of 20 V is applied, no breakdown of the element itself is observed, but in element B, when a voltage twice the emission starting voltage is applied, It almost broke down, and then the device either did not emit any heat or had extremely low brightness.

以上のように低発光電圧化を目ざした電場発光素子にお
いては、第3図(ム)に示した構造の、単結晶シリコン
基板1上にZnS膜2を形成した素子は、従来の2重絶
縁構造よりも、輝度、安定性において優れていることが
わかる。
As described above, in an electroluminescent device aiming at low emission voltage, the device with the structure shown in FIG. It can be seen that the brightness and stability are superior to the structure.

ツキ[、第2 図((j)に示すような基板にガラス基
板1oを用いた素子について調べた。この構造は従来の
2重絶縁薄膜電場発光素子の基本的構造である。この構
造では発光は、素子ム、Bの場合の上方と異なり下方の
ガラス基板10側から観測する。最上層にム1電極11
を、捷たガラス基板10FにITO透明導電膜4を設け
ているので、これによる光反射効果により、原理的に素
子ム、Bの約2倍の輝度を、持っqずである。しかし、
第4図の電圧−輝度特性曲線Cに示されるように、素子
Bの輝度の約2倍の輝度であるが、素子ムの輝度の2倍
とはならず、それよりも低い。その上、この素子Cも素
子Bと同じように、発光開始電圧の2ff’tの電圧と
印加すると容易にブレークダウンしてしまう。したがっ
て、低電圧発光素子としてはあまり好ましくない。
We investigated a device using a glass substrate 1o as the substrate as shown in Figure 2 ((j). This structure is the basic structure of a conventional double-insulated thin film electroluminescent device. is observed from the lower glass substrate 10 side, unlike the upper side in the case of element B.
Since the ITO transparent conductive film 4 is provided on the glass substrate 10F, which is made by cutting the glass substrate 10F, the light reflection effect caused by this means that in principle, the brightness of the device B can be approximately twice as high. but,
As shown in the voltage-brightness characteristic curve C in FIG. 4, the brightness is about twice that of element B, but not twice that of element B, and is lower than that. Moreover, like element B, this element C easily breaks down when a voltage of 2ff't, which is the emission starting voltage, is applied. Therefore, it is not very preferable as a low voltage light emitting device.

第3図(B) 、 ((j)に示した構造においては1
発光開始電圧を素子ムと同等にするためにZn8層2の
厚みをさらに薄くすることも考えられるが、そのように
すると輝度と低下とブレークダウンの傾向が一層強くな
り、低電圧化は実用的に意味を外さなくなる。ところが
第3図(I))に示すように、同図(ム)の本発明の(
D)素子と同じ構造でZn8層2のみを0.15μmの
厚さにした素子は、第4図の電圧−輝度特性曲線りに示
すように、輝度は低くなるが、発光開始電圧は16vと
なわ、その上発光開始電圧の2倍の電圧を印加してもブ
レーフグクンが起らず、安定である。
Figure 3 (B), (1 in the structure shown in (j)
It may be possible to further reduce the thickness of the Zn8 layer 2 in order to make the luminescence starting voltage equal to that of the device, but this would further increase the tendency for the brightness to decrease and break down, making it impractical to lower the voltage. It no longer makes sense. However, as shown in FIG. 3(I)), the present invention shown in FIG.
D) An element with the same structure as the element but with only the Zn8 layer 2 having a thickness of 0.15 μm has lower luminance as shown in the voltage-luminance characteristic curve in Figure 4, but the emission starting voltage is 16 V. Furthermore, even if a voltage twice the emission starting voltage is applied, no blemish occurs and the device is stable.

以上実施例1,2で説明したように、電場発光素子の低
電圧化において、本発明の半導体単結晶基板−Zn8螢
光膜−絶縁薄膜の順に積層した交流電場発光素子は、従
来の2重絶縁構造よりも輝度向上、安定性向上および低
電圧化の容易さから考えて、優れている。このことは、
半導体単結晶基板の上にエピタキシャル的に形成された
ZnS膜の結晶性のよさに帰因するものでないかと考え
られる。この考えにもとづいて、Zn8を同じくエピタ
キシャル的に形成できるGo、GaAaおよびG&P々
どからなる半導体単結晶基板においてもSiと同様に効
果のあることを確めた。たとえば、GaAs5において
は、Siよりも形成されたZnS膜の結晶性がよく、同
じ膜厚で比較した場合、Si基板と発光開始電圧につい
ては同等であるが、輝度は約16%増であった。このよ
うな単結晶基板は、その体色が黒いため、素子を形成し
た場合、それが光吸収作用をもっているので、コントラ
ストを向、Lさせることができるのも本発明の特徴の一
つである。
As explained above in Examples 1 and 2, in order to reduce the voltage of the electroluminescent device, the AC electroluminescent device in which the semiconductor single crystal substrate of the present invention, the Zn8 fluorescent film, and the insulating thin film are laminated in this order, It is superior to an insulating structure in terms of improved brightness, improved stability, and ease of lowering the voltage. This means that
This is thought to be due to the good crystallinity of the ZnS film epitaxially formed on the semiconductor single crystal substrate. Based on this idea, it was confirmed that semiconductor single crystal substrates made of Go, GaAa, G&P, etc., which can also be epitaxially formed with Zn8, are as effective as Si. For example, in GaAs5, the crystallinity of the ZnS film formed is better than that of Si, and when comparing the same film thickness, the emission starting voltage was the same as that of the Si substrate, but the brightness was approximately 16% higher. . Since such a single crystal substrate has a black body color, when an element is formed, it has a light absorption function, so one of the features of the present invention is that the contrast can be improved and L can be increased. .

絶縁膜の材料に関しては、本発明では本質的なものでな
く、その種類に制約されない。低電圧化のためには、誘
電率の高い絶縁体である方が望ましいが、誘電率がZn
Sのそれの1桁以、Fになると、あとはZnSの膜厚を
薄くすることによって、さらに低電圧化が図れるように
なる。その場合、結晶性のよい安定なZnSを形成する
必要が生じてくる。
The material of the insulating film is not essential to the present invention and is not limited to its type. In order to lower the voltage, it is preferable to use an insulator with a high dielectric constant, but Zn has a high dielectric constant.
When the F value is one order of magnitude higher than that of S, it becomes possible to further reduce the voltage by reducing the thickness of the ZnS film. In that case, it becomes necessary to form stable ZnS with good crystallinity.

この点本発明の素子は薄くても結晶性のよい安定なZn
S膜が形成される。
In this respect, the element of the present invention is made of stable Zn with good crystallinity even if it is thin.
An S film is formed.

1 また、ZnS 螢光膜はマンガンドープについてのみ説
明′したが、他の発光センター、TbF3゜S■F  
、PrF3などを導入したものにおいても、母体である
ZnS の結晶性がよければよいのであるから、原理的
にZnS 螢光膜として他になんら制限を受けるもので
はない。
1 In addition, although the ZnS phosphor film has been explained only with manganese doping, other luminescent centers, TbF3゜S■F
, PrF3, etc., as long as the crystallinity of the matrix ZnS is good, is not subject to any other restrictions in principle as a ZnS fluorescent film.

以上説明したように、本発明の交流電場発光素子は、特
に低電圧駆動の発光素子を作成するのに効果的な構Me
有し、螢光膜の薄厚を薄くしたとしても、それによる輝
度低下が少なく、75=つ安定性とコントラストの高い
発光素子である。
As explained above, the AC electroluminescent device of the present invention has a structure particularly effective for producing a low voltage driven light emitting device.
Even if the thickness of the phosphor film is reduced, there is little reduction in brightness due to this, and the light emitting element has high stability and contrast.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(ム)は本発明にかかる電場発光素子の一実施例
の断面図、同図(IIはその比較例の断面図、第2図は
これら二種の電場発光素子の電圧−輝度特性を示す曲線
図であるつ 第会図(ム)は同じく池の実施例の断面図、同図(B)
。 (C)はその比較例の断面図、同図(D>は同じくさら
に池の実施例の断面図、第4図はこれら四種の電場発光
素子の電圧−輝度特性を示す曲線図である。 1・・・・・・半導体単結晶Si基板、2・・・・・・
ZnS螢光膜、3・・・・・・Y2O3絶縁膜、へ4・
・・・・・170透明導電膜、了・・・・・・SiT 
i03膜◎鶴 1 図 IAI                  jB)@
tri 枕L(Vr、m幻
FIG. 1 (M) is a cross-sectional view of one embodiment of the electroluminescent device according to the present invention, FIG. 1 (II) is a cross-sectional view of a comparative example thereof, and FIG. Figure (B) is a cross-sectional view of the pond example.
. (C) is a cross-sectional view of the comparative example; FIG. 1... Semiconductor single crystal Si substrate, 2...
ZnS fluorescent film, 3... Y2O3 insulating film, to 4.
...170 transparent conductive film, completed...SiT
i03 membrane ◎Tsuru 1 Figure IAI jB) @
tri pillow L (Vr, m illusion

Claims (2)

【特許請求の範囲】[Claims] (1)半導体単結晶基板上に電場発光螢光膜、絶縁薄膜
、および透明電極を有し、前記半導体単結晶基板と前記
透明電極との間に交流電界を印加して前記電場発光螢光
膜を発光させることを特徴とする電場発光素子。
(1) An electroluminescent fluorescent film, an insulating thin film, and a transparent electrode are provided on a semiconductor single crystal substrate, and an alternating current electric field is applied between the semiconductor single crystal substrate and the transparent electrode to form the electroluminescent fluorescent film. An electroluminescent device characterized by emitting light.
(2)半導体単結晶基板がシリコン、ゲルマニウム。 ガリウムヒ素またはガリウムリンで構成されていること
を特徴とする特許請求の範囲第1項記載の電場発光素子
(2) The semiconductor single crystal substrate is silicon or germanium. The electroluminescent device according to claim 1, characterized in that it is made of gallium arsenide or gallium phosphide.
JP57057503A 1982-04-06 1982-04-06 Electric field light emitting element Pending JPS58175293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57057503A JPS58175293A (en) 1982-04-06 1982-04-06 Electric field light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57057503A JPS58175293A (en) 1982-04-06 1982-04-06 Electric field light emitting element

Publications (1)

Publication Number Publication Date
JPS58175293A true JPS58175293A (en) 1983-10-14

Family

ID=13057523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57057503A Pending JPS58175293A (en) 1982-04-06 1982-04-06 Electric field light emitting element

Country Status (1)

Country Link
JP (1) JPS58175293A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293897A (en) * 1985-10-19 1987-04-30 日本精機株式会社 Thin film electroluminescence device
JPS62113386A (en) * 1985-11-11 1987-05-25 新技術事業団 Thin film el device and manufacture of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293897A (en) * 1985-10-19 1987-04-30 日本精機株式会社 Thin film electroluminescence device
JPS62113386A (en) * 1985-11-11 1987-05-25 新技術事業団 Thin film el device and manufacture of the same

Similar Documents

Publication Publication Date Title
JPS59146192A (en) El element
JP2833282B2 (en) Electroluminescent display device and method of manufacturing the same
JPS5823191A (en) Thin film el element
JPS58175293A (en) Electric field light emitting element
JPS59101794A (en) Thin film electroluminescent element
Kretzer Electroluminescent Displays flat panel displays that emit light in response to an electric current
WO1991003918A1 (en) Thin-film el element
JPS5829880A (en) Electric field luminescent element
JPH06119973A (en) Electroluminescence element
JPH027072B2 (en)
JPH0298092A (en) White light-emitting thin film electroluminescent device
JPS6124192A (en) Thin film electroluminescent element
JPS6323640B2 (en)
JPH0516158B2 (en)
JPH07263147A (en) Thin film light emitting element
JPS63158792A (en) Electroluminescence device
JPS62225583A (en) Thin-film light emitting element
JPS6089098A (en) Electrode structure of thin film el element
JPS5991697A (en) Thin film el element
JPS62218474A (en) Thin-film electroluminescence element
JPS63232296A (en) Thin film electroluminescence device
JPH10255977A (en) Thin film electroluminescent element
JPS61158691A (en) Thin film el element
JPS5855636B2 (en) Thin film EL element
JP2002280185A (en) Thin film el element