JPH02148598A - Electroluminescence device - Google Patents

Electroluminescence device

Info

Publication number
JPH02148598A
JPH02148598A JP63301968A JP30196888A JPH02148598A JP H02148598 A JPH02148598 A JP H02148598A JP 63301968 A JP63301968 A JP 63301968A JP 30196888 A JP30196888 A JP 30196888A JP H02148598 A JPH02148598 A JP H02148598A
Authority
JP
Japan
Prior art keywords
layer
thin film
niobium oxide
dielectric layer
insulating thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63301968A
Other languages
Japanese (ja)
Inventor
Ryuzo Fukao
隆三 深尾
Tsunemi Oiwa
大岩 恒美
Yoshihiro Hamakawa
圭弘 浜川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP63301968A priority Critical patent/JPH02148598A/en
Publication of JPH02148598A publication Critical patent/JPH02148598A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To perform stable luminous display of high luminance by providing a niobium oxide layer between an electrode and a dielectric layer, and by constructing specified two-layered structure composed of a semi-insulating thin film layer and an insulating thin film, for the dielectric layer adjoining the niobium oxide layer. CONSTITUTION:On a substrate 1, an electrode 2 on the side of display, a first dielectric layer 3, a luminous layer 4, a second dielectric layer 5 that is composed of an insulating thin film layer 5a and a semi-insulating thin film layer 5b, a niobium oxide layer 6, and a back plate 7 are formed. Since the niobium oxide layer 6 works as a low resistance layer and virtually reduces the potential barrier between the electrode 7 and the dielectric layer 5 through itself, the injection of electric charge from the electrode 7 to the dielectric layer 5 is increased. Also, since the dielectric layer 5 adjoining the layer 6 is of two- layered structure, electric charge is injected in the layer 5b, and most of moves in the layer 5b and is accumulated in the interface with the layer 5a, however, the amount of electric charge injection being large, a part of high energy electric charge, which accordingly exists in a large number, is injected in the layer 5a so as to become an effective carrier that contributes to luminescence.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、デイスプレィ装置などに利用されるニレク
ートロルミネッセンス素子(以下、E L 、!:いう
)素子、とくに発光層の両側に誘電層を有する二重絶縁
形のEL素子に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a Nilecoluminescence device (hereinafter referred to as E L ) used in display devices, etc., in particular, a dielectric layer on both sides of a light emitting layer. The present invention relates to a double insulation type EL element having the following characteristics.

〔従来の技術〕[Conventional technology]

この種の二重絶縁形EL素子は、少なくとも表示側が透
明でかつ通常はどちらか一方がパターン化された一対の
電極間に発光層とこれを両側から挟む誘電層とが配設さ
れた構造を有している。この素子の駆動は、交流駆動方
式では、両電極間に交流電圧を印加することにより、発
光層にその発光開始しきい値電界以」二の電界をかけて
発光させ、この発光色を表示側の表面に表出させて所定
パターンの表示を行わせるものである。
This type of double-insulated EL device has a structure in which a light-emitting layer and a dielectric layer sandwiching the light-emitting layer from both sides are arranged between a pair of electrodes that are transparent at least on the display side and usually one of which is patterned. have. In the AC driving method, this element is driven by applying an AC voltage between both electrodes to apply an electric field to the light-emitting layer that is equal to or greater than the threshold electric field for starting light emission, causing the light-emitting layer to emit light. A predetermined pattern is displayed on the surface of the screen.

ところで、このようなEL素子の表示性能を向上させる
には発光の輝度を高める必要があり、その手段として従
来では発光層に対する電荷注入量を増大させて高輝度化
を図る試み(たとえば、「Appl・phys−Let
t、J7,1979、「電子jm信学会誌J1.984
年4月号など)がなされている。一方、この発明者らは
、先に電極と誘電層との間に酸化ニオブ(NbzOs)
層を介在させることによって高輝度化と駆動電圧の低減
を図ることをIgしている(特願昭61−243881
号)。
By the way, in order to improve the display performance of such EL elements, it is necessary to increase the luminance of the emitted light, and as a means of achieving this, conventional attempts have been made to increase the luminance by increasing the amount of charge injected into the luminescent layer (for example, "Appl.・phys-Let
T, J7, 1979, “Electronic JM IEICE Journal J1.984
April issue, etc.) have been published. On the other hand, the inventors previously discovered that niobium oxide (NbzOs) was used between the electrode and the dielectric layer.
It is proposed to increase the brightness and reduce the driving voltage by interposing a layer (Japanese Patent Application No. 61-243881).
issue).

(発明が解決しようとする課題) しかしながら、前記のように単に電荷注入量を増大させ
る手段では、輝度が高くなる反面、発光効率が低下する
とともに、素子の安定性も悪化して局部破壊による表示
品質の劣化や短寿命化を生じやすくなるという問題があ
った。
(Problems to be Solved by the Invention) However, although the above-mentioned means of simply increasing the amount of charge injection increases the brightness, it also lowers the luminous efficiency and deteriorates the stability of the device, resulting in display problems due to local breakdown. There was a problem that quality deterioration and life shortening were likely to occur.

これに対し、前記の酸化ニオブ層を介在させる手段では
、酸化ニオブ層が低抵抗層として作用して電極からの電
荷注入率を高め、かつ局部破壊の要因となるリーク電流
の発生を阻止する機能を示し、これによって輝度が高く
なるとともに駆動電圧が低下し、また素子の安定性が向
上して長寿命化がもたらされることが確認されている。
On the other hand, in the method of interposing the niobium oxide layer, the niobium oxide layer acts as a low-resistance layer, increases the charge injection rate from the electrode, and has the function of preventing the generation of leakage current that causes local breakdown. It has been confirmed that this increases the brightness, lowers the driving voltage, and improves the stability of the device, resulting in a longer life.

しかるに、上記の酸化ニオブ層を介在させたEL素子に
おいても、とくに発光効率の面ではまだ充分とは言えず
改良の余地を残しており、発光効率をさらに高めて素子
の消費電力をより少なくすることが望まれている。
However, even with the above-mentioned EL device with a niobium oxide layer interposed, it is still not sufficient, especially in terms of luminous efficiency, and there is still room for improvement. It is hoped that

この発明は、上記要望に対処すべくなされたもので、高
輝度でかつ高い発光効率を発揮しうる高性能なEL素子
を提供することを目的としている。
The present invention was made in order to meet the above-mentioned needs, and an object of the present invention is to provide a high-performance EL element that can exhibit high luminance and high luminous efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

この発明者らは、上記の目的を達成するために鋭意検討
を重ねた結果、前記提案のように電極と誘電層との間に
酸化ニオブ層を介在させる構成において、この酸化ニオ
ブ層に隣接する誘電層を特定の二層構造とした場合、電
圧印加時に発光に寄与する高エネルギーの電荷密度が増
加し、これによって高い発光効率で高輝度の発光が得ら
れるEL素子を実現できることを見い出し、この発明を
なすに至った。
As a result of intensive studies to achieve the above object, the inventors discovered that in a structure in which a niobium oxide layer is interposed between an electrode and a dielectric layer as proposed above, the niobium oxide layer is We discovered that when the dielectric layer has a specific two-layer structure, the high-energy charge density that contributes to light emission increases when a voltage is applied, and that this makes it possible to realize an EL device that can obtain high-luminance light with high luminous efficiency. He came up with an invention.

すなわち、この発明は、少なくとも一方が透明である対
向する電極間に発光層とこれを両側から挟む誘電層とが
配設されてなる二重絶縁形のEL素子において、少なく
とも一方の電極と誘電層との間に酸化ニオブ層が形成さ
れ、かつこの酸化ニオブ層と発光層との間に位置する誘
電層が酸化ニオブ層に接する半絶縁性薄(1!層と発光
層に接する絶縁性薄膜層との二層構造であることを特徴
とするE L素子に係るものである。
That is, the present invention provides a double insulation type EL element in which a light emitting layer and a dielectric layer sandwiching the light emitting layer from both sides are arranged between opposing electrodes, at least one of which is transparent. A niobium oxide layer is formed between the niobium oxide layer and the light emitting layer, and a dielectric layer located between the niobium oxide layer and the light emitting layer is a semi-insulating thin film layer in contact with the niobium oxide layer (1! layer and an insulating thin film layer in contact with the light emitting layer). This relates to an EL element characterized by having a two-layer structure.

また、この発明では、上記EL素子において、半絶縁性
薄膜層が電子ビーム蒸着法またはスパッタリング法で形
成されるYz Os 、Tax o3、Sm、O+ 、
BaTi0. 、BaTa、Oaより選ばれる一種の薄
膜からなる構成、ならびに絶縁性薄膜層が電子ビーム蒸
着法、スパッタリング法およびCV D (Che+w
ical Vapor Deposition;化学的
気相成長)法のいずれかで形成されるSin、、S I
 2 N4 、A I! z Oz 、A I NSS
 I A I ONより選ばれる一種の薄膜からなる構
成を、それぞれ好適B様としている。
Further, in the present invention, in the above EL element, the semi-insulating thin film layer is made of YzOs, Taxo3, Sm, O+,
BaTi0. , BaTa, and Oa, and the insulating thin film layer is formed by electron beam evaporation, sputtering, and CVD (Che+w
Sin formed by any of the chemical vapor deposition (chemical vapor deposition) methods.
2 N4, AI! z Oz , A I NSS
A configuration consisting of a type of thin film selected from IA I ON is designated as preferred type B.

〔発明の構成・作用〕[Structure and operation of the invention]

この発明のEL素子にあっては、電極と誘電層との間に
介在する酸化ニオブ層が通常1×10sΩ・am程度の
比抵抗を示す低抵抗層として作用し、これを介した電極
と誘電層間のポテンシャルバリヤーを実質的に低下させ
ることから、対向する電極間に電圧を印加した際に電極
から誘電層への電荷注入量が増大することになる。
In the EL element of the present invention, the niobium oxide layer interposed between the electrode and the dielectric layer acts as a low resistance layer that normally has a specific resistance of about 1×10 sΩ・am, and the electrode and dielectric layer are interposed between the electrode and the dielectric layer. Substantially lowering the potential barrier between the layers results in an increased amount of charge injection from the electrodes into the dielectric layer when a voltage is applied between opposing electrodes.

また、この酸化ニオブ層に隣接した誘電層が前記のよう
な二層構造であることから、上記の電荷は誘電層の半絶
縁性薄膜層中に注入され、この注入電荷は電界に誘導さ
れて半絶縁性薄膜層内を移動して大部分が絶縁性薄膜層
との界面に蓄積するが、上述のように電荷注入量が多い
ためにそれだけ多(存在する高エネルギー状態の一部の
電荷は絶縁性薄膜層中に注入されて発光に寄与する有効
なキャリヤーとなる。
Furthermore, since the dielectric layer adjacent to this niobium oxide layer has a two-layer structure as described above, the above charge is injected into the semi-insulating thin film layer of the dielectric layer, and this injected charge is induced by the electric field. Most of the charge moves within the semi-insulating thin film layer and accumulates at the interface with the insulating thin film layer, but as mentioned above, the large amount of charge injection causes a large amount of charge (some of the existing high-energy state charges It becomes an effective carrier that is injected into the insulating thin film layer and contributes to light emission.

したがって、この発明のEL素子は、従来のEL素子に
比較して駆動時に高エネルギーの有効なキャリヤーの密
度が非常に高くなり、高い発光効率で高輝度の発光が達
成されるのである。
Therefore, the EL element of the present invention has a much higher density of high-energy effective carriers during driving than conventional EL elements, and achieves high luminance light emission with high luminous efficiency.

上記の酸化ニオブ層の厚みは、500〜5,000人程
度とするのがよく、薄ずぎると上記の機能が充分に発揮
されず、逆にあまりに厚すぎると膜表面の凹凸の増大を
招く恐れがある。また、その形成手段としては、電子ビ
ーム蒸着法を始めとする各種真空蒸着法、スパッタリン
グ法、イオンブレーティング法などの既存の種々の薄膜
形成方法を採用できる。
The thickness of the above-mentioned niobium oxide layer is preferably about 500 to 5,000. If it is too thin, the above function will not be fully exhibited, and if it is too thick, the unevenness of the film surface may increase. There is. Further, as the forming means, various existing thin film forming methods such as various vacuum evaporation methods including electron beam evaporation, sputtering method, and ion blating method can be employed.

この酸化ニオブ層に隣接する二層構造の誘電層としては
、酸化ニオブ層側の半絶縁性薄膜層の比抵抗が108〜
1010Ω・ω程度で、発光層側の絶縁性薄膜層の比抵
抗が1012Ω・印程度以上であるものが好ましい。ま
た、両薄膜層を構成する誘電体材料はとくに限定されな
いが、半絶縁性薄膜層では電子ビーム蒸着法またはスパ
ッタリング法にて形成されるYz Oz 、Ta2os
 、Sm。
As for the dielectric layer of the two-layer structure adjacent to this niobium oxide layer, the resistivity of the semi-insulating thin film layer on the niobium oxide layer side is 108~
It is preferable that the specific resistance of the insulating thin film layer on the light emitting layer side is about 1012 Ω·ω or more. Further, the dielectric material constituting both thin film layers is not particularly limited, but for the semi-insulating thin film layer, YzOz, Ta2os, etc. formed by electron beam evaporation method or sputtering method are used.
, Sm.

Oz 、BaTi0t 、BaTi0t、など、絶縁性
薄膜層では電子ビーム蒸着法、スパッタリング法および
CVD法のいずれかで形成される5iOz−、Slz 
N4 、All Owl 、AIN、5iA6ONなど
の薄膜が好適なものとして挙げられる。
Oz, BaTi0t, BaTi0t, etc., 5iOz-, Slz formed by any of the electron beam evaporation method, sputtering method, and CVD method in the insulating thin film layer.
Suitable thin films include N4, All Owl, AIN, 5iA6ON, and the like.

なお、上記両薄膜層の厚みは、半絶縁性薄膜層では2,
000〜6.000人程度、絶縁性薄膜層では500〜
2.000人程度で、かつ誘電層全体の厚みが3,00
0〜s、ooo人程度となる範囲が推奨される。
Note that the thickness of both the above thin film layers is 2,
000~6,000 people, 500~ for insulating thin film layer
Approximately 2,000 people and the total thickness of the dielectric layer is 3,000
A range of approximately 0 to s, ooo people is recommended.

第1図はこの発明を適用した二重絶縁形のE L素子の
構造例を示すものである。
FIG. 1 shows an example of the structure of a double insulation type EL element to which the present invention is applied.

図において、■はガラス板などの透光性材料からなる基
板、2はインジウム−スズ複合酸化物膜(以下、ITO
膜という)などの透明導電膜からなる厚さ1.000〜
3,000人程度の表示側の電極、3は表示側の第1の
誘電層、4は発光層、5は前記した絶縁性薄膜層5aと
半絶縁性薄膜層5bとからなる二層構造の第2の誘電層
、6は前記の酸化ニオブ層、7はITO膜や/l膜など
からなる厚さ1,000〜3,000人程度の背面側の
電極である。なお、このEL素子では、第2の誘電N5
の半絶縁性薄膜層5bを、それよりも下位の各層が周側
面を覆う形として保護層を兼用させである。
In the figure, ■ is a substrate made of a transparent material such as a glass plate, and 2 is an indium-tin composite oxide film (hereinafter referred to as ITO).
The thickness is 1.000~
3,000 electrodes on the display side, 3 a first dielectric layer on the display side, 4 a light emitting layer, and 5 a two-layer structure consisting of the above-mentioned insulating thin film layer 5a and semi-insulating thin film layer 5b. The second dielectric layer 6 is the aforementioned niobium oxide layer, and 7 is an electrode on the back side having a thickness of approximately 1,000 to 3,000 layers and made of an ITO film, a /l film, or the like. Note that in this EL element, the second dielectric N5
The semi-insulating thin film layer 5b is formed so that each layer below it covers the peripheral side surface and also serves as a protective layer.

第1の誘電層3の構成材料としては、Y2O2、Alz
 03 、SiO2、Siz N4 、Ta2 osな
ど従来よりこの種EL素子の誘電層に使用される半絶縁
性および絶縁性の種々の誘電体材料がいずれも使用可能
である。また、この誘電層3は、電子ビーム蒸着法の如
き各種蒸着法、スパッタリング法、イオンブレーティン
グ法、CVD法などの種々の薄膜形成方法により3,0
00〜6.000人程度の厚みに形成されるが、単層構
造とする以外に誘電体材料の異なる2層以上の積層構造
としても差し支えない。
The constituent materials of the first dielectric layer 3 include Y2O2, Alz
Various semi-insulating and insulating dielectric materials conventionally used for the dielectric layer of this type of EL element, such as 03, SiO2, SizN4, and Ta2os, can be used. The dielectric layer 3 can be formed by various thin film forming methods such as electron beam evaporation, sputtering, ion blasting, and CVD.
Although the thickness is about 0.00 to 6.000 mm, it is possible to have a laminated structure of two or more layers made of different dielectric materials instead of a single layer structure.

発光層4の構成材料としては、EL素子用として知られ
る各種発光体材料がいずれも使用可能であり、通常では
ZnS、SrS、CaSなどの蛍光体からなる母材に少
量の発光付活剤を配合したもの、たとえばZnS:Tb
、F (緑色発光)、Z n S : S m )  
F (赤色発光)、ZnS:Mn(黄橙色発光) 、Z
nS ;Tm、F (青色発光)、Z n S : P
 r +  F (白色発光) 、ZnS : Dy。
As the constituent material of the light-emitting layer 4, any of the various light-emitting materials known for use in EL devices can be used. Usually, a small amount of light-emitting activator is added to a base material made of a phosphor such as ZnS, SrS, or CaS. Blends, such as ZnS:Tb
, F (green emission), Z n S : S m )
F (red emission), ZnS:Mn (yellow-orange emission), Z
nS; Tm, F (blue emission), ZnS: P
r + F (white light emission), ZnS: Dy.

F(黄色発光)、CaS:Eu(赤色発光)、Srs:
ce(青緑色発光)、SrS:Pr (白色発光)など
が挙げられる。このような発光層4は、上記の第1の誘
電層3と同様の各種薄膜形成方法によって3,000〜
8.000人程度の厚みに形成される。
F (yellow emission), CaS:Eu (red emission), Srs:
ce (blue-green light emission), SrS:Pr (white light emission), and the like. Such a light-emitting layer 4 can be formed using various thin film forming methods similar to those for the first dielectric layer 3 described above.
It is formed to a thickness of about 8,000 people.

上記構成のEL素子では、発光層4にその発光開始しき
い値電界を越える電界がかかりうる電圧を画電極2.7
間に印加することにより、発光層4が発光し、この発光
が基板1を通して所定の表示パターンで視認される。こ
のとき、酸化ニオブ層6と二層構造の第2の絶縁層5の
既述作用により、非常に高い発光効率でかつ高輝度の発
光による安定した表示を行える。また、このEL素子は
、長期間の連続駆動を行っても絶縁破壊を生じにくく、
長寿命である。
In the EL element having the above configuration, a voltage that can apply an electric field exceeding the luminescence initiation threshold electric field to the luminescent layer 4 is applied to the picture electrode 2.7.
By applying a voltage between the two, the light emitting layer 4 emits light, and this light emission is visually recognized through the substrate 1 in a predetermined display pattern. At this time, due to the above-mentioned effects of the niobium oxide layer 6 and the second insulating layer 5 having a two-layer structure, stable display can be achieved by emitting light with extremely high luminous efficiency and high brightness. In addition, this EL element is resistant to dielectric breakdown even after long-term continuous operation.
It has a long lifespan.

なお、図示構造例では酸化ニオブ層6を背面側の電極7
に接して設けて第2の誘電層5を絶縁性と半絶縁性の薄
膜層5a、5bからなる二層構造としているが、この発
明では、上記とは逆に酸化ニオブ層を表示側の電極に接
して設けて第1の誘電層を上記同様の二層構造としても
よいし、また酸化ニオブ層を両側の電極にそれぞれ接し
て設けて第1および第2の誘電層をともに上記同様の二
層構造としても差し支えない。
In the illustrated structure example, the niobium oxide layer 6 is connected to the electrode 7 on the back side.
The second dielectric layer 5 has a two-layer structure consisting of insulating and semi-insulating thin film layers 5a and 5b, but in this invention, contrary to the above, the niobium oxide layer is provided in contact with the display side electrode. The first dielectric layer may have a two-layer structure similar to the above, or the first and second dielectric layers may have a two-layer structure similar to the above by providing a niobium oxide layer in contact with the electrodes on both sides. A layered structure may also be used.

なおまた、この発明においては、発光層を二層以上の多
層構造としたり、片側の電極が相互間に絶縁層を介して
積層した複数の電極膜からなるものとした二重絶縁形の
EL素子も包含される。
Furthermore, the present invention provides a double insulation type EL element in which the light emitting layer has a multilayer structure of two or more layers, or in which the electrode on one side is composed of a plurality of electrode films laminated with an insulating layer interposed between them. is also included.

〔発明の効果〕〔Effect of the invention〕

この発明に係る二重絶縁形のEL素子は、対向する電極
の少なくとも一方の電極と誘電層との間に酸化ニオブ層
が介在され、かつこの酸化ニオブ層に隣接する上記誘電
層が半絶縁性薄膜層と絶縁性薄膜層とからなる特定の二
層構造であることから、非常に高い発光効率のもとに高
輝度で安定した発光表示を行え、かつ長寿命である。特
に、この素子における上記半絶縁性薄膜層および絶縁性
薄膜層を既述した特定の材料)W膜にて構成させること
により上記効果をより顕著に発現させることができる。
In the double insulation type EL element according to the present invention, a niobium oxide layer is interposed between at least one of the opposing electrodes and a dielectric layer, and the dielectric layer adjacent to the niobium oxide layer is semi-insulating. Since it has a specific two-layer structure consisting of a thin film layer and an insulating thin film layer, it can perform stable luminescent display with high brightness with extremely high luminous efficiency and has a long life. In particular, by forming the semi-insulating thin film layer and the insulating thin film layer in this element from the above-mentioned specific material (W film), the above-mentioned effects can be more prominently exhibited.

〔実施例〕〔Example〕

以下、この発明を実施例に基づいて具体的に説明する。 Hereinafter, this invention will be specifically explained based on examples.

実施例1 一面側に予め厚さ2,000人のITO膜からなる表示
側の電極が形成されている厚さ1.1 mmのガラス板
からなる基板を使用し、この基板の電極上に順次、高周
波スパッタリング法による厚さ5,000人のTa2O
,からなる第1の誘電層、電子ビーム蒸着法による厚さ
5,000人のZnS :Mnからなる発光層、高周波
スパッタリング法による厚さ1,000人のAlzO3
からなる下層側の絶縁性薄膜層と高周波スパッタリング
法による厚さ3.000人のTa、O,からなる上層側
の半絶縁性薄膜層との二層構造である第2の誘電層、電
子ビーム蒸着法による厚さ1,000人の酸化ニオブ層
、抵抗加熱蒸着法による厚さ1,500人のAl膜から
なる所定パターンを有する背面側の電極を形成して、第
1図で示す構造のEL素子A1を作製した。
Example 1 A substrate made of a 1.1 mm thick glass plate on which a display side electrode made of a 2,000-thick ITO film was formed in advance on one side was used. , 5,000 thick Ta2O by high frequency sputtering method
, a first dielectric layer consisting of 5,000 nm thick ZnS by electron beam evaporation; a light emitting layer consisting of Mn; 1,000 nm thick AlzO3 by high frequency sputtering.
The second dielectric layer has a two-layer structure, consisting of a lower insulating thin film layer formed by high-frequency sputtering and an upper semi-insulating thin film layer made of Ta, O, with a thickness of 3,000 yen by high-frequency sputtering, and an electron beam. A back side electrode having a predetermined pattern consisting of a niobium oxide layer with a thickness of 1,000 thick by vapor deposition and an Al film with a thickness of 1,500 thick by resistance heating vapor deposition was formed to form the structure shown in FIG. An EL element A1 was produced.

比較例1 酸化ニオブ層を形成しなかった以外は、実施例1と同様
にしてEL素子B1を作製した。
Comparative Example 1 EL element B1 was produced in the same manner as in Example 1 except that the niobium oxide layer was not formed.

比較例2 第2の誘電層を高周波スパッタリング法による厚さ5,
000人のTa、05からなる単層とした以外は、実施
例1と同様にしてEL素子B2を作製した。
Comparative Example 2 The second dielectric layer was formed by high frequency sputtering to a thickness of 5.
EL element B2 was produced in the same manner as in Example 1 except that the single layer was made of Ta of 0.000 and 0.05.

比較例3 第2の誘電層における絶縁性薄膜層と半絶縁性薄膜層の
上下関係を逆にした以外は、実施例1と同様にしてEL
素子B3を作製した。
Comparative Example 3 EL was carried out in the same manner as in Example 1, except that the vertical relationship between the insulating thin film layer and the semi-insulating thin film layer in the second dielectric layer was reversed.
Element B3 was produced.

実施例2 第1誘電層としてプラズマCVD法による厚さ2.00
0人のSt、N4からなる層、発光層を高周波スパッタ
リング法による厚さ5.000人のZns:Tb、Fか
らなる層、第2の誘電層の絶縁性薄膜層としてプラズマ
CVD法による厚さ1,000人の5iffN4からな
る層、同じく半絶縁性薄膜層として電子ビーム蒸着法に
よる厚さ3,000人のY2O,からなる層をそれぞれ
形成した以外は、実施例1と同様にしてBL素子A2を
作製した。
Example 2 The thickness of the first dielectric layer was 2.00 mm by plasma CVD method.
A layer consisting of 0.0 μm of St, N4, a thickness of 5.000 μm of Zns:Tb, a thickness of the light emitting layer by high frequency sputtering method, a layer of 5.000 μm of Zns:Tb, a thickness of the insulating thin film layer of the second dielectric layer by plasma CVD method. A BL element was fabricated in the same manner as in Example 1, except that a layer of 5iffN4 with a thickness of 1,000 and a layer of Y2O with a thickness of 3,000 by electron beam evaporation were formed as semi-insulating thin film layers. A2 was produced.

比較例4 酸化ニオブ層を形成しなかった以外は、実施例2と同様
にしてEL素子B4を作製した。
Comparative Example 4 EL element B4 was produced in the same manner as in Example 2 except that the niobium oxide layer was not formed.

比較例5 第2の誘電層をプラズマCVD法による厚さ2゜000
人のSt、N4からなる単層とした以外は、実施例1と
同様にしてEL素子B5を作製した。
Comparative Example 5 The second dielectric layer was formed with a thickness of 2°000 by plasma CVD method.
EL element B5 was produced in the same manner as in Example 1 except that a single layer consisting of human St and N4 was used.

上記実施例および比較例のEL素子について、それぞれ
lK11z駆動による輝度−電圧特性および発光効率−
電圧特性を測定した。その結果を、EL素子A1とB1
〜B3については第2図に、EL素子A2とB4.B5
については第3図に、それぞれ示す。なお、両図におい
て、実線で示す曲線は輝度−電圧特性、破線で示す曲線
は発光効率電圧特性であり、各曲線の符号はEL素子の
符号に対応している。
Luminance-voltage characteristics and luminous efficiency by lK11z driving for the EL elements of the above examples and comparative examples, respectively.
The voltage characteristics were measured. The results are expressed as EL elements A1 and B1.
~B3 is shown in FIG. 2, and EL elements A2 and B4. B5
The details are shown in Figure 3. In both figures, the curve shown by a solid line is the luminance-voltage characteristic, the curve shown by a broken line is the luminous efficiency voltage characteristic, and the code of each curve corresponds to the code of the EL element.

第2図および第3図の結果から、この発明に係るEL素
子Al、A2は、発光開始しきい電圧(Vth)が低い
上に輝度の立ち上がりが早く、かつ到達輝度が著しく高
く、しかも非常に高い発光効率を示すことが明らかであ
る。これに対し、酸化ニオブ層を形成しなかったEL素
子Bl、B4は発光開始しきい電圧が高い上に輝度の立
ち上がりが遅く、かつ到達輝度および発光効率ともにE
L素子AI、A2に比べて大きく劣ることが判る。
From the results shown in FIGS. 2 and 3, the EL elements Al and A2 according to the present invention have a low threshold voltage (Vth) for starting light emission, a fast rise in brightness, and a significantly high final brightness. It is clear that it exhibits high luminous efficiency. On the other hand, the EL elements B1 and B4, which did not have a niobium oxide layer, had a high threshold voltage for starting light emission, a slow rise in brightness, and both the final brightness and light emitting efficiency.
It can be seen that this is significantly inferior to L elements AI and A2.

また、酸化ニオブ層に接する誘電層を単層としたEL素
子B2.B5や該誘電層の両薄膜層が逆の層序であるE
L素子B3では、発光開始しきい値電圧が比較的低く、
輝度の立ち上がりも早く高到達輝度を示すが、発光効率
ではEL素子AI、A2よりかなり劣ることが判る。
Further, EL element B2. in which the dielectric layer in contact with the niobium oxide layer is a single layer. B5 and E where both thin film layers of the dielectric layer have opposite stratigraphy.
In the L element B3, the threshold voltage for starting light emission is relatively low;
It can be seen that the luminance rises quickly and reaches high luminance, but the luminous efficiency is considerably inferior to EL elements AI and A2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係るエレクトロルミネッセンス素子
の構造例を示す断面図、第2図は実施例1および比較例
1〜3の同上素子の輝度1発光効率−電圧特性図、第3
図は実施例2および比較例4.5の同上素子の輝度1発
光効率−電圧特性図である。 2.7・・・電極、3,5・・・誘電層、4・・・発光
層、5a・・・絶縁性薄膜層、5b・・・半絶縁性薄膜
層、6・・・酸化ニオブ層 特許出願人  日立マクセル株式会社(外1名)溺メ桧
祈シ
FIG. 1 is a cross-sectional view showing a structural example of an electroluminescent device according to the present invention, FIG.
The figure is a luminance 1 luminous efficiency-voltage characteristic diagram of the same elements of Example 2 and Comparative Examples 4.5. 2.7... Electrode, 3,5... Dielectric layer, 4... Light emitting layer, 5a... Insulating thin film layer, 5b... Semi-insulating thin film layer, 6... Niobium oxide layer Patent applicant: Hitachi Maxell, Ltd. (1 other person)

Claims (3)

【特許請求の範囲】[Claims] (1) 少なくとも一方が透明である対向する電極間に
発光層とこれを両側から挟む誘電層とが配設されてなる
二重絶縁形のエレクトロルミネツセンス素子において、
少なくとも一方の電極と誘電層との間に酸化ニオブ層が
形成され、かつこの酸化ニオブ層と発光層との間に位置
する誘電層が酸化ニオブ層に接する半絶縁性薄膜層と発
光層に接する絶縁性薄膜層との二層構造であることを特
徴とするエレクトロルミネツセンス素子。
(1) In a double-insulated electroluminescent element in which a light-emitting layer and dielectric layers sandwiching the light-emitting layer from both sides are arranged between opposing electrodes, at least one of which is transparent,
A niobium oxide layer is formed between at least one electrode and the dielectric layer, and the dielectric layer located between the niobium oxide layer and the light emitting layer is in contact with the semi-insulating thin film layer that is in contact with the niobium oxide layer and the light emitting layer. An electroluminescent element characterized by having a two-layer structure with an insulating thin film layer.
(2) 半絶縁性薄膜層が電子ビーム蒸着法またはスパ
ツタリング法で形成されるY_2O_3、Ta_2O_
3、Sm_2O_3、BaTiO_3、BaTa_2O
_6より選ばれる一種の薄膜からなる請求項(1)に記
載のエレクトロルミネツセンス素子。
(2) Y_2O_3, Ta_2O_ in which the semi-insulating thin film layer is formed by electron beam evaporation or sputtering
3, Sm_2O_3, BaTiO_3, BaTa_2O
The electroluminescent device according to claim 1, comprising a thin film selected from _6.
(3) 絶縁性薄膜層が電子ビーム蒸着法、スパツタリ
ング法およびCVD法のいずれかで形成されるSiO_
2、Si_3N_4、Al_2O_3、AlN、SiA
lONより選ばれる一種の薄膜からなる請求項(1)ま
たは(2)に記載のエレクトロルミネツセンス素子。
(3) SiO in which the insulating thin film layer is formed by electron beam evaporation, sputtering or CVD
2, Si_3N_4, Al_2O_3, AlN, SiA
The electroluminescent device according to claim 1 or 2, comprising a type of thin film selected from lON.
JP63301968A 1988-11-29 1988-11-29 Electroluminescence device Pending JPH02148598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63301968A JPH02148598A (en) 1988-11-29 1988-11-29 Electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63301968A JPH02148598A (en) 1988-11-29 1988-11-29 Electroluminescence device

Publications (1)

Publication Number Publication Date
JPH02148598A true JPH02148598A (en) 1990-06-07

Family

ID=17903296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63301968A Pending JPH02148598A (en) 1988-11-29 1988-11-29 Electroluminescence device

Country Status (1)

Country Link
JP (1) JPH02148598A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322392A (en) * 1989-06-20 1991-01-30 Matsushita Electric Ind Co Ltd Thin film el element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322392A (en) * 1989-06-20 1991-01-30 Matsushita Electric Ind Co Ltd Thin film el element

Similar Documents

Publication Publication Date Title
JPS6240836B2 (en)
JP2881212B2 (en) EL device
JP3247148B2 (en) Electroluminescence element
JPH01313892A (en) Image display device and manufacture thereof
JP4748940B2 (en) AC operation electroluminescence element
JPH11312585A (en) Organic el element
JPS61230296A (en) El element and manufacture thereof
JPH02148598A (en) Electroluminescence device
JP4433384B2 (en) Electroluminescence element and display device
KR100317989B1 (en) High luminance blue dc-electroluminescent display
KR100359945B1 (en) Organic electroluminescent device having multi-layer thin film inserted
JP2621057B2 (en) Thin film EL element
JPH08162273A (en) Thin film el element
JPH06231882A (en) Thin film electroluminescent element
JPH0123917B2 (en)
JPS6396896A (en) Electroluminescence device
JPH01130495A (en) Film type electroluminescence element
JPH0428196A (en) Organic thin-film type electroluminescent element
JPS623427B2 (en)
JPS63294690A (en) Film electroluminescent element
JPH046274B2 (en)
JPS63239797A (en) Electroluminescence device
JPH05335084A (en) Luminous element
JPH0244692A (en) Dc electroluminescence element
JPH05290975A (en) Thin film el display device