JPH03165092A - Manufacture of throughhole printed wiring board - Google Patents

Manufacture of throughhole printed wiring board

Info

Publication number
JPH03165092A
JPH03165092A JP30540889A JP30540889A JPH03165092A JP H03165092 A JPH03165092 A JP H03165092A JP 30540889 A JP30540889 A JP 30540889A JP 30540889 A JP30540889 A JP 30540889A JP H03165092 A JPH03165092 A JP H03165092A
Authority
JP
Japan
Prior art keywords
layer
hole
copper
board
electroless copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30540889A
Other languages
Japanese (ja)
Inventor
Hisashi Nakamura
中村 恒
Hiroshi Sogo
十河 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30540889A priority Critical patent/JPH03165092A/en
Publication of JPH03165092A publication Critical patent/JPH03165092A/en
Pending legal-status Critical Current

Links

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

PURPOSE:To improve considerably the reliability of throughhole connection and the yield of manufacture by performing thin electroless copper plating in advance after performing catalytic treatment in throughholes made in a laminated board that is covered with copper and again, performing electroless copper plating after forming each pattern that is required for both side layers of an insulating board. CONSTITUTION:Each throughhole is made at a laminated board which is obtained by bonding copper foils 9 on both side layers of an insulating board 8. Catalytic layers 11 are attached in order to deposit electroless copper plating over the whole surface and then, a 1st electroless copper metallic layer 12 having a thin film is deposited after being immersed in an electroless plating solution. Then, an etching resist 13 is applied to the whole surface and further, ultraviolet exposure and development treatment are performed by making a film where each desired pattern is formed come closely into contact with the above metallic layer and thus, a resist layer 13 that is resistance to etching properties is formed. Subsequently, the above board is treated with etching and a required circuit conductor layer is formed. Then a permanent resist layer 14 is formed selectively and further, its layer is immersed in the electroless copper plating solution and a 2nd electroless copper plating metallic layer 15 is deposited at each throughhole 10 and at a part of the circuit conductor layer 9 in the peripheral part of the throughhole 10.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は広範な電子機器に用いられる高密度のヌル−ホ
ールプリント配線“板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION This invention relates to a method of manufacturing high density null-hole printed wiring "boards" used in a wide range of electronic equipment.

従来の技術 近年、エレクトロニクス技術の急速な進展に伴ってプリ
ント配線板の需要が著しく増加している。
BACKGROUND OF THE INVENTION In recent years, with the rapid development of electronics technology, the demand for printed wiring boards has increased significantly.

とシわけ、昨今の電子機器の小型化や高性能化指向に伴
うプリント配線板の高密度化へのニーズは極めて高く、
高多層化や微細配線化を指向した高密度スルーホールプ
リント配線板の必要性はますます増加している。
In particular, there is an extremely high need for higher density printed wiring boards due to the recent trend toward smaller size and higher performance of electronic devices.
The need for high-density through-hole printed wiring boards that are oriented toward high multilayering and fine wiring is increasing more and more.

従来、このような高密度ヌルーホールプリント配線板の
製造技術としてはいろいろな方法が実施されてきている
が、その−例として通称パートリ−アディティブ法と呼
ばれる製造方法がある。
Conventionally, various methods have been used to manufacture such high-density null-hole printed wiring boards, and one example is a manufacturing method commonly called a part-additive method.

この代表的な製造工程を第2図A−Hに示した。This typical manufacturing process is shown in Figures 2A-H.

第2図において、1は絶縁基板、2は銅箔(回路導体層
)、3は貫通孔、4Fi触媒層、6は耐エツチングレジ
スト、6は耐無電解めっき性永久レジスト層、7は無電
解銅めっき金属層である。
In Fig. 2, 1 is an insulating substrate, 2 is a copper foil (circuit conductor layer), 3 is a through hole, 4 is a Fi catalyst layer, 6 is an etching-resistant resist, 6 is an electroless plating-resistant permanent resist layer, and 7 is an electroless It is a copper plated metal layer.

このパートリ−アディティブ法によるプリント配線板は
エツチング法とアディティブ法によるプリント配線板の
両者の特徴を生かしたものであう。
The printed wiring board produced by this part-additive method takes advantage of the characteristics of both printed wiring boards produced by the etching method and the additive method.

その代表的な製造プロセスは次の通シである。The typical manufacturing process is as follows.

即ち第2図ムに示すようにガラスエポキシ積層基板等の
絶縁基板1の両面に銅箔2を接着した。
That is, as shown in FIG. 2, copper foils 2 were bonded to both sides of an insulating substrate 1 such as a glass epoxy laminate substrate.

いわゆる銅張り積層基板を使用して、先ず第2図Bに示
すようにヌル−ホール接続を必要とする箇所にドリル加
工等によって貫通孔3をあけ、活性化処理を行って貫通
孔3を含む銅張多積層基板全体に金属パラジウムの微粒
子核から成る触媒層4を付着し、次いで第2図Gに示す
ように触媒処理を施した貫通孔と銅張シ基板の表裏両面
層に写真法やスクリーン印刷法によって所望とする回路
図形状に耐エツチング性のレジスト層6を形成し、エツ
チング処理全行って必要な金属層を溶解除去し、絶縁基
板1の表裏画面に必要とする回路導体層2を形成した後
で貫通孔3とその周辺部の回路導体層2の一部を残して
その他の部分に第2図りに示すように耐無電解鋼めっき
性の永久レジスト6を被覆し、最終的に無電解銅めっき
を行って第2図Eに示すように貫通孔すの内壁面とその
周辺部の回路導体層2に銅金属層7を厚く形成する方法
によシ作られたものである。
Using a so-called copper-clad laminate board, first, as shown in FIG. 2B, through-holes 3 are drilled at locations where null-hole connections are required, and then activated to include the through-holes 3. A catalyst layer 4 consisting of fine particle nuclei of metallic palladium is adhered to the entire copper-clad multilayer substrate, and then, as shown in FIG. An etching-resistant resist layer 6 is formed in the desired circuit diagram shape by a screen printing method, and the entire etching process is performed to dissolve and remove the necessary metal layer. After forming the through hole 3 and a part of the circuit conductor layer 2 around it, the other parts are coated with a permanent resist 6 that is resistant to electroless steel plating as shown in the second diagram. It is made by electroless copper plating to form a thick copper metal layer 7 on the inner wall surface of the through hole and the circuit conductor layer 2 in its surrounding area as shown in FIG. 2E. .

発明が解決しようとする課題 しかしながらこのような従来例によるスルーホールプリ
ント配線板は、貫通孔に無電解銅めっきを行ってスルー
ホール接続を行うに際し、無電解銅めっきを析出させる
ための前処理として行う触媒処理を行った後で無電解鋼
めっきに至るまでに耐エツチングレジストの形成工程、
エツチング処理工程、レジスト除去工程、耐無電解銅め
っきレジスト形成工程等の多くの工程を経由しなければ
ならず、エツチング等の化学的処理やレジスト形成に於
ける熱的処理等によって触媒層の活性力が低下し、無電
解銅めっきの付回り性が悪くなるため製造歩留まりの低
下と、スルーホール接続の信頼性に欠けるという問題点
があった。
Problems to be Solved by the Invention However, in the through-hole printed wiring board according to the conventional example, when performing electroless copper plating on the through-holes and making through-hole connections, as a pre-treatment for depositing electroless copper plating. After the catalytic treatment and before electroless steel plating, the process of forming an etching resist,
It must go through many processes such as etching process, resist removal process, electroless copper plating resist formation process, etc., and the catalyst layer is activated by chemical treatment such as etching and thermal treatment during resist formation. There were problems in that the strength was reduced and the coverage of electroless copper plating deteriorated, resulting in a reduction in manufacturing yield and a lack of reliability in through-hole connections.

本発明はこのような従来の問題を解決して無電解鋼めっ
きによるスルーホール接続をより確実に行うことのでき
る高密度のスルーホールプリント配線板の製造方法を提
供することを目的としたものである。
The present invention aims to solve these conventional problems and provide a method for manufacturing a high-density through-hole printed wiring board that can more reliably connect through-holes using electroless steel plating. be.

課at解決するための手段 この目的を達成するために本発明は、樹脂系絶縁基板の
表裏面の最外層に銅箔を接着した銅張り積層基板の所定
の位置に貫通孔を設け、この貫通孔の内壁面を含む前記
銅張り積層基板の表裏全面に無電解銅めっき法によって
第一の銅金属薄膜層を形成し、前記貫通孔内壁面と前記
銅張多積層基板の表裏両面層に所望とする配線回路図形
状に耐エツチング性のレジスト層を形成し、前記レジス
ト層で徨われていない第一の銅金属薄膜層をエツチング
法により溶解除去した後でレジスト層を除去して回路導
体層を形成し、前記貫通孔と少なくともその周辺部の回
路導体層の一部を除いた部分に耐無電解めフき性の永久
レジスト層を選択的に被覆し、しかる後に再度無電解銅
めっき法によフて貫通孔と露出した回路導体層の表面層
に第二の銅金属厚膜層を形成したものである。
Means for Solving the Issues In order to achieve this object, the present invention provides through holes at predetermined positions of a copper-clad laminated board in which copper foil is bonded to the outermost layer of the front and back surfaces of a resin-based insulating board, and A first copper metal thin film layer is formed on the entire front and back surfaces of the copper-clad multilayer substrate including the inner wall surface of the hole by electroless copper plating, and a desired layer is formed on the inner wall surface of the through hole and both the front and back surfaces of the copper-clad multilayer substrate. An etching-resistant resist layer is formed in the shape of a wiring circuit diagram, and the first copper metal thin film layer that is not covered by the resist layer is dissolved and removed by an etching method, and then the resist layer is removed to form a circuit conductor layer. A permanent resist layer with electroless plating resistance is selectively coated on the through hole and at least a part of the circuit conductor layer around the through hole, and then electroless copper plating is applied again. A second copper metal thick film layer is formed on the surface layer of the circuit conductor layer exposed through the through hole.

作用 これKよシ、銅張り積層基板に設けた貫通孔に触媒処理
を行った直後に予め薄く無電解銅めっきを行って確実に
スルーホール接続ができたか否かを確認した後で絶縁基
板の表裏両面層に必要なパターンの形成を行い、最終的
に無電解銅めっきの厚付けを行うことによシ貫通孔を含
む回路導体層の必要部分に銅の厚膜層を形成するため、
無電解銅めっきによるスルーホール接続の信頼性と製造
歩留まりの大幅な向上が実現されることとなる。
Function: Immediately after catalytic treatment of the through-holes in the copper-clad laminate board, a thin layer of electroless copper plating is applied in advance to confirm whether or not the through-hole connection has been established. By forming the necessary patterns on both the front and back layers and finally applying thick electroless copper plating, a thick copper layer is formed on the necessary parts of the circuit conductor layer, including through holes.
Electroless copper plating will significantly improve the reliability and manufacturing yield of through-hole connections.

実施例 以下、本発明の一実施例について図面を参照しながら説
明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図ム〜Fは本発明の第一の実施例におけるヌル−ホ
ールプリント配線板の製造工程を示した断面図である。
FIGS. 1M to 1F are cross-sectional views showing the manufacturing process of a null-hole printed wiring board in a first embodiment of the present invention.

第1図A〜Fにおいて8は絶縁基板、9は銅箔(回路導
体層)、1oは貫通孔、11は触媒層、12は第一無電
解銅めっき金属層、13は耐エツチングレジスト層、1
4は耐無電解銅めっきレジスト層、16は第二無電解銅
めっき金属層である。
In FIGS. 1A to 1F, 8 is an insulating substrate, 9 is a copper foil (circuit conductor layer), 1o is a through hole, 11 is a catalyst layer, 12 is a first electroless copper plating metal layer, 13 is an etching-resistant resist layer, 1
4 is an electroless copper plating resist layer, and 16 is a second electroless copper plating metal layer.

以上のように構成されたスルーホールプリント配線板に
ついて以下その製造方法の詳細を説明する。
The manufacturing method for the through-hole printed wiring board configured as described above will be explained in detail below.

第一の実施例によ′れけ、第1図ムに示すようにガラス
繊維シートにエポキシ樹脂を含浸させた絶縁シートを積
層して作った絶縁基板8の表裏両面層に電解法や圧延法
による厚さ10〜36μの銅箔9を接着した、いわゆる
銅張り積層板を使用して、先ず第1図Bに示すようにこ
の銅張り積層基板の必要な位置に超硬ドリルを用いてス
ルーホール接続のための任意の径を有する貫通孔10を
あける。この後1例えば塩化第一ヌズと塩化パラジウム
から成る活性化処理液に順次浸漬して、貫通孔1oを含
む銅張多積層基板の全面に無電解銅めっきを析出させる
ための金属パラジウムの微粒子から成る触媒層11を付
着させる。
According to the first embodiment, as shown in FIG. Using a so-called copper-clad laminate to which a copper foil 9 with a thickness of 10 to 36 μm is adhered, first, as shown in FIG. A through hole 10 having an arbitrary diameter is drilled for hole connection. After this, 1 fine particles of metallic palladium are sequentially immersed in an activation treatment solution consisting of, for example, dichloromethane and palladium chloride to deposit electroless copper plating on the entire surface of the copper-clad multi-layered substrate including the through holes 1o. A catalyst layer 11 consisting of is deposited.

次いでこの銅張多積層基板を銅錯塩のアルカリ溶液とホ
ルマリンから成る通常の無電解銅めっき液に浸漬して第
1図Cに示すように貫通孔101含む銅張多積層基板全
体に約1〜2μ程度の薄膜から成る第一の無電解銅めっ
き金属層12を析出させる。
Next, this copper-clad multi-layer board is immersed in an ordinary electroless copper plating solution consisting of an alkaline solution of a copper complex salt and formalin, so that the entire copper-clad multi-layer board including the through-holes 101 is coated with about 1 to A first electroless copper plating metal layer 12 consisting of a thin film of about 2 μm is deposited.

そして、第1図りに示すように貫通孔1oの内壁面を含
む基板の全面に高解像性を有するエツチングレジスト1
3を塗布し、所望とするパターンを形成したフィルムを
密着させて紫外線露光、現像処理を行って1貫通孔1o
および無電解銅めっきを行った銅張多積層基板の表裏両
面層に所望する配線回路図形状に耐エツチング性のレジ
スト層13を形成する。
As shown in the first diagram, an etching resist 1 having high resolution is applied to the entire surface of the substrate including the inner wall surface of the through hole 1o.
3 is applied, the film with the desired pattern is brought into close contact with the film, exposed to ultraviolet rays, and developed to form 1 through hole 1o.
Then, an etching-resistant resist layer 13 is formed in a desired wiring circuit diagram shape on both the front and back surfaces of the copper-clad multilayer board that has been subjected to electroless copper plating.

この場合、エツチングレジスト層13の形成方法として
はIED法(電着法)や感光性レジストを塗布したドラ
イフィルム法、液状レジスト材料布する方法、さらには
貫通孔10に容易に除去可能なインクを充填し、エツチ
ングレジストインクをスクリーン印刷法によって基板の
表裏両面にパターン状に塗布する方法が可能である。
In this case, the etching resist layer 13 can be formed using an IED method (electrodeposition method), a dry film method coated with a photosensitive resist, a method using a liquid resist material, or a method in which easily removable ink is applied to the through holes 10. It is possible to fill the substrate and apply etching resist ink in a pattern to both the front and back surfaces of the substrate by screen printing.

そしてこの基板を塩化第二鉄や塩化第一銅溶液に浸漬し
てエツチング処理を行い、第1図Xに示すようにエツチ
ングレジスト層13が被覆されていない銅金属層を溶解
除去し、必要とする回路導体層を形成する。
Then, this substrate is immersed in a ferric chloride or cuprous chloride solution to perform an etching process, and as shown in FIG. form a circuit conductor layer.

この回路導体層の形成にあたって、微細パターンの形成
を必要とする場合には銅箔の厚さを呂来るだけ薄くした
銅張り積層板の使用が好ましいが。
In forming this circuit conductor layer, if it is necessary to form a fine pattern, it is preferable to use a copper-clad laminate in which the thickness of the copper foil is made as thin as possible.

本実施例では最低60μのパターン幅を有する回路導体
層の形成を必要としたため18μの銅箔を接着した銅張
り積層基板を使用する。
In this embodiment, since it was necessary to form a circuit conductor layer having a pattern width of at least 60 μm, a copper-clad laminate board with 18 μm copper foil bonded thereto was used.

それから第1図Fに示すように、薄い無電解銅めっきに
よって予めスルーホール接続を行った貫通孔10とその
周辺部の回路導体層および必要によシ貫通孔を有さない
回路導体面が露出するように、その他の部分に耐無電解
銅めっき性を有する永久レジスト層14を選択的に形成
する。
Then, as shown in FIG. 1F, the through holes 10 and the circuit conductor layer around them, and the circuit conductor surface that does not have the through holes, are exposed by thin electroless copper plating. A permanent resist layer 14 having resistance to electroless copper plating is selectively formed on other parts so as to do so.

この場合、永久レジスト層14としては耐薬品性はもと
より電気絶縁性、耐熱性等に優れた性質を有することが
望ましく、このような要求を満足するレジスト材料とし
て本実施例ではエポキシ樹脂、エポキシ変性のアクリル
樹脂を使用し、これらのレジスト材料をスクリーン印刷
法や写真法によって選択的に形成する。
In this case, it is desirable that the permanent resist layer 14 has excellent properties such as not only chemical resistance but also electrical insulation and heat resistance, and in this example, epoxy resin, epoxy modified resin, etc. These resist materials are selectively formed by screen printing or photography using acrylic resin.

そして、この永久レジスト層14を選択的に被覆した基
板をさらに無電解銅めっき液に浸漬して貫通孔10とそ
の周辺部の回路導体層9の一部に第二の無電解銅めっき
金属層16110〜30μ程度の厚さになるように析出
させ、ヌル−ホール接続した高密度プリント配線板を完
成させた。
Then, the substrate selectively coated with this permanent resist layer 14 is further immersed in an electroless copper plating solution, and a second electroless copper plating metal layer is applied to the through hole 10 and a portion of the circuit conductor layer 9 around the through hole 10. A high-density printed wiring board with null-hole connections was completed by depositing to a thickness of about 16110 to 30 μm.

尚、この場合第二の無電解銅めっき16はスルーホール
接続の信頼性を確保するために厚付けを行うが、その銅
被膜の物性はスルーホール接続の信頼性を確保するため
に延展性や伸び特性に優れたものでなくてはならないが
1本実施例ではこの目的に合致した無電解鋼めっき法と
して銅−EDTム錯塩とホルマリンから成る基本浴に添
加剤として2.2ビビリシールを微量添加しためっき浴
を使用してpH12,0〜13.0 、浴温度70℃で
8〜10時間浸漬めっきを行う。この条件によってスル
ーホール接続を行ったプリント配線板は−55”C〜1
50°(゛のヒートサイクル試験や、260”Cのオイ
ルデイツプ試験等の過酷な熱衝撃試験に対していずれも
スルーホール抵抗値の変化はほとんどなく良好な信頼性
が確保できることがわかった。
In this case, the second electroless copper plating 16 is thickened to ensure the reliability of through-hole connections, but the physical properties of the copper coating are such as ductility and ductility to ensure reliability of through-hole connections. It must have excellent elongation properties, and in this example, as an electroless steel plating method that meets this purpose, a small amount of 2.2 Chatter Seal is added as an additive to a basic bath consisting of a copper-EDT complex salt and formalin. Immersion plating is carried out for 8 to 10 hours at a pH of 12.0 to 13.0 and a bath temperature of 70° C. using the added plating bath. The printed wiring board with through-hole connections under these conditions is -55"C ~ 1
It was found that there was almost no change in the through-hole resistance value in any of the severe thermal shock tests such as the heat cycle test at 50°C and the oil dip test at 260"C, and good reliability could be ensured.

また一方、第二の実施例では最外層の全面に銅箔を接着
する積層基板として、予め積層基板の内層に任意の層数
の回路導体層を形成した多層配線用の基板を使用する。
On the other hand, in the second embodiment, a multilayer wiring board in which an arbitrary number of circuit conductor layers are previously formed on the inner layer of the multilayer board is used as the multilayer board on which copper foil is bonded to the entire surface of the outermost layer.

そして表裏両面の最外層に銅箔を接着した後で、貫通孔
をあけてこの貫通孔の内壁面に内層回路導体層の一部を
露出させ、この貫通孔を含む積層基板の全面に無電解銅
めっきによって銅の薄膜層を形成し、以下前述した第一
実施例と同様な方法によって所望とする回路導体層を形
成し、最終的に必要部分に無電解銅めっきの厚付けを行
ってヌル−ホール接続による高密度多層プリント配線板
を完成させる。
After bonding copper foil to the outermost layer on both the front and back sides, a through hole is made to expose a part of the inner circuit conductor layer on the inner wall surface of this through hole, and the entire surface of the laminated board including this through hole is electroless. A thin copper film layer is formed by copper plating, a desired circuit conductor layer is formed by the same method as in the first embodiment described above, and finally a thick layer of electroless copper plating is applied to the necessary areas to form a null layer. -Complete high-density multilayer printed wiring boards using hole connections.

このような方法により作った多層プリント配線板は貫通
孔径の小さいものでもその内壁面へのスルーホールめっ
きが均−且つ確実にでき、アスペクト比の高い多層プリ
ント配線板のヌル−ホール接続の信頼性を著しく向上さ
せることができた。
Multilayer printed wiring boards made using this method can uniformly and reliably plate through-holes on the inner wall surfaces even if the through-hole diameter is small, and the reliability of null-hole connections in multilayer printed wiring boards with high aspect ratios is improved. could be significantly improved.

発明の効果 以上のように1本発明によるスルーホールプリント配線
板は1貫通孔を設けた銅張り積層基板の全面に触媒処理
を行った直後に無電解銅めっきを予め薄く均一に行った
後で、エツチング法によるパターン形成を行うので、従
来例に比べて触媒処理から多くの工程を経由して無電解
銅めっきを行う方法に比べ、貫通孔の内壁面に付着した
触媒層の活性能力の低下が防止できスルーホール接続が
確実に行えているか否かを確認した状態で後工程に流す
ことができるので製造歩留まりの向上と。
Effects of the Invention As described above, the through-hole printed wiring board according to the present invention has the following properties: Immediately after catalytic treatment is applied to the entire surface of a copper-clad laminate board provided with through-holes, electroless copper plating is applied thinly and uniformly in advance. Since pattern formation is performed using an etching method, the activation ability of the catalyst layer attached to the inner wall surface of the through hole is reduced compared to the conventional method in which electroless copper plating is performed through many steps from catalyst treatment. It is possible to prevent through-hole connections and proceed to subsequent processes after confirming that the through-hole connections have been made reliably, improving manufacturing yields.

スルーホール接続の信頼性が顕著に向上する効果が得ら
れる。
The effect of significantly improving the reliability of through-hole connections can be obtained.

また多層配線板のスルーホール接続に適用することによ
って板厚に対する孔径の小さい、即ち高アスペクト比の
多層配線板の内層回路導体層間のスルーホール接続の信
頼性も著しく向上する効果が得られる。
Furthermore, by applying the present invention to through-hole connections in multilayer wiring boards, it is possible to significantly improve the reliability of through-hole connections between inner circuit conductor layers of multilayer wiring boards with small hole diameters relative to board thickness, that is, high aspect ratios.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(に〜(F)は本発明によるスルーホールプリン
ト配線板の一実施例を説明するための製造工程を示す断
面図、第2図(A)〜<Tgは従来例によるスルーホー
ルプリント配線板の製造工程を示す断面図である。 8・・・・・・絶縁基板、9・・・・・・銅箔(回路導
体層)、10・・・・・・貫通孔、11・・・・・・触
媒層、12・・・・・・第一無電解銅めっき金属層、1
3・・・・・・エツチングレジスト層、14・・・・・
・耐無電解めっきレジスト層、16・・・・・・第二無
電解銅めっき金属層。
Figures 1 to (F) are cross-sectional views showing the manufacturing process for explaining one embodiment of the through-hole printed wiring board according to the present invention, and Figures 2 (A) to <Tg are through-hole printed wiring boards according to the conventional example. It is a sectional view showing a manufacturing process of a wiring board. 8... Insulating substrate, 9... Copper foil (circuit conductor layer), 10... Through hole, 11... ... Catalyst layer, 12 ... First electroless copper plating metal layer, 1
3... Etching resist layer, 14...
- Electroless plating resistant resist layer, 16... second electroless copper plating metal layer.

Claims (2)

【特許請求の範囲】[Claims] (1)樹脂系絶縁基板の表裏面の最外層に銅箔を接着し
た銅張り積層基板の所定の位置に貫通孔を設け、この貫
通孔の内壁面を含む前記銅張り積層基板の表裏全面に無
電解銅めっき法によって第一の銅金属薄膜層を形成し、
前記貫通孔内壁面と前記銅張り積層基板の表裏両面層に
所望とする配線回路図形状に耐エッチング性のレジスト
層を形成し、前記レジスト層で覆われていない第一の銅
金属薄膜層をエッチング法により溶解除去した後で、レ
ジスト層を除去して回路導体層を形成し、前記貫通孔と
少なくともその周辺部の回路導体層の一部を除いた部分
に耐無電解めっき性の永久レジスト層を選択的に被覆し
、しかる後に再度無電解銅めっき法によって貫通孔と露
出した回路導体層の表面層に第二の銅金属厚膜層を形成
したことを特徴とするスルーホールプリント配線板の製
造方法。
(1) A through-hole is provided at a predetermined position of a copper-clad laminate board in which copper foil is bonded to the outermost layer of the front and back surfaces of a resin-based insulating board, and the entire front and back surfaces of the copper-clad laminate board, including the inner wall surface of the through-hole, are forming a first copper metal thin film layer by electroless copper plating;
Forming an etching-resistant resist layer in a desired wiring circuit diagram shape on the inner wall surface of the through hole and on both the front and back surfaces of the copper-clad laminate board, and forming a first copper metal thin film layer not covered with the resist layer. After dissolving and removing it by an etching method, the resist layer is removed to form a circuit conductor layer, and a permanent resist that is resistant to electroless plating is applied to the through hole and at least a portion of the circuit conductor layer in the surrounding area. A through-hole printed wiring board characterized in that the layer is selectively coated, and then a second copper metal thick film layer is formed on the through-hole and the exposed surface layer of the circuit conductor layer by electroless copper plating again. manufacturing method.
(2)銅張り積層基板が、その内層部に任意の層数の回
路導体層を積層し、貫通孔の内壁部に内層の回路導体層
の一部が露出したものである請求項1記載のスルーホー
ルプリント配線板の製造方法。
(2) The copper-clad laminated board has an arbitrary number of circuit conductor layers laminated on its inner layer, and a part of the inner circuit conductor layer is exposed on the inner wall of the through hole. A method for manufacturing a through-hole printed wiring board.
JP30540889A 1989-11-24 1989-11-24 Manufacture of throughhole printed wiring board Pending JPH03165092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30540889A JPH03165092A (en) 1989-11-24 1989-11-24 Manufacture of throughhole printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30540889A JPH03165092A (en) 1989-11-24 1989-11-24 Manufacture of throughhole printed wiring board

Publications (1)

Publication Number Publication Date
JPH03165092A true JPH03165092A (en) 1991-07-17

Family

ID=17944771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30540889A Pending JPH03165092A (en) 1989-11-24 1989-11-24 Manufacture of throughhole printed wiring board

Country Status (1)

Country Link
JP (1) JPH03165092A (en)

Similar Documents

Publication Publication Date Title
JP3786554B2 (en) Circuit board manufacturing method for forming fine structure layer on both sides of flexible film
KR100688864B1 (en) Printed circuit board, flip chip ball grid array board and method for manufacturing the same
JP5213094B2 (en) Method and process for embedding conductive vias in a dielectric layer
US5137618A (en) Methods for manufacture of multilayer circuit boards
TWI400024B (en) Wiring substrate and its manufacturing process
US20090260868A1 (en) Printed circuit board and method of manufacturing the same
JPS60207395A (en) Method of producing through-hole plated electric printed circuit board
JPH06275933A (en) Circuit board and manufacture thereof
KR20050020699A (en) Double-sided wiring circuit board and process for producing the same
JPH06275950A (en) Manufacture of wiring board
JPH05335713A (en) Printed substrate lamination board with fine through-hole with one side closed and conduction plating method of the board
JPH03165092A (en) Manufacture of throughhole printed wiring board
JPH06132630A (en) Manufacture of flexible circuit board
JP2000036662A (en) Manufacture of build-up multilayer interconnection board
JP3130707B2 (en) Printed circuit board and method of manufacturing the same
CN113709984A (en) Method for manufacturing circuit board by using laser to process electroplating holes, welding pads, anti-plating and anti-corrosion patterns
JPH09223859A (en) Printed wiring board
GB2026918A (en) Component-carrying printed circuit board
WO2000059277A1 (en) Method of producing printed wiring boards
JPH04118992A (en) Manufacture of printed circuit board
JPH04239796A (en) Fabrication of printed wiring board
JPH0244796A (en) Manufacture of through hole wiring board
JPH03194992A (en) Manufacture of printed board
JPH06120667A (en) Multilayer printed wiring board
JP2000269644A (en) Manufacturing build-up multilayer wiring board