JPH0316240A - Wiring method for semiconductor integrated circuit - Google Patents

Wiring method for semiconductor integrated circuit

Info

Publication number
JPH0316240A
JPH0316240A JP1151793A JP15179389A JPH0316240A JP H0316240 A JPH0316240 A JP H0316240A JP 1151793 A JP1151793 A JP 1151793A JP 15179389 A JP15179389 A JP 15179389A JP H0316240 A JPH0316240 A JP H0316240A
Authority
JP
Japan
Prior art keywords
wiring
cell row
net
cell
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1151793A
Other languages
Japanese (ja)
Other versions
JPH0821628B2 (en
Inventor
Ryuichi Yamaguchi
龍一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1151793A priority Critical patent/JPH0821628B2/en
Publication of JPH0316240A publication Critical patent/JPH0316240A/en
Publication of JPH0821628B2 publication Critical patent/JPH0821628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce wiring length and layout area by optimizing assignment of a through region, and evaluating cell line length so as to optimize the number of third through regions. CONSTITUTION:Based on the net, which expresses the connective information of fellow terminals of polycells, and the positions of the terminals, the wiring path, where, for example, the wiring length is minimum, is sought, and the through wiring position on a cell line is given initially. Next, the region, through which the through wiring passes, is portioned out into a first through region, where the signal line inside the cell is used as through wiring, a second through region for through wiring inside the cell, and a third through region, where through wiring is secured by widening the cell interval. And the cell line, where the cell line length has become long by the use of the third through region, is selected, and a net, which includes one or more third through regions, is searched, and through regions are reassigned, and the third through region within the cell line, which has become long by the processing 17, is deleted, and the length of the cell line is shortened. Hereby, wiring length and layout area can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は ポリセル方式の半導体集積回路の配線方法に
関すん 従来の技術 ポリセル方式の半導体集積回路は、 論理機能を持った
一般的に一様な高さの矩形のセルを並べてセル行を構或
獣 さらにセル行を複数行配置して行間に配線を施すこ
とにより構或されも複数のセル行にまたがった端子を接
続する場合にはセル行を通過する貫通配線を使用するの
が一般的であも 第4図(a)〜(c)は貫通配線のレ
イアウト図を示していも 第4図において、21はセル
行、23は配IL  24は貫通配亀31は第1の端子
、32は第2の端子、33はセ/k  34は第1の貫
通領坂35は第2の貫通領域 36は第3の貫通領域で
あも第4図(a)に示すように 貫通配線24は第1の
端子31と第2の端子32とを接続できるようにセル行
2lをまたがって配線するために用いられも 一般に貫
通配線24(上  第4図(b)に示すように セル3
3の内部の信号線(端子と端子の接続情報 すなわちネ
ットが与えられている)を第1の貫通領域34として用
いる場合と、セル33内部にあらかじめ設定された貫通
配線用の第2の貫通領域35を使用する場合と、第4図
(C)に示すように セル33の間隔を広げて第3の貫
通領域36を使用する場合の3種類により実現されも 
ただし 第3の貫通領域36を使用する場合の次 セル
行2lの長さが長くなも一般的に 全体の配線昆 セル
行の長さおよびレイアウト図の面積(よ 配線の経路を
変えて貫通配線の個数を変えることにより変化す氏 第
5図は貫通配線の個数を変えた時のレイアウト図を示し
ていも 第5図において、2lはセル行、22は端子、
24は貫通領域を示してい瓜 第5図(a)に示した場
合は4個の貫通領域24を使用し 第5図(b)に示し
た場合は2個の貫通領域24を使用していも第5図(a
)は横方向の配線本数が第5図(b)に比べて少ないた
亀 高さが低くなることが期待される力支 貫通配線2
4を通すために第3の貫通領域を使用した場合はセル行
2lの長さがより長くなる可能性があも さらに 配線
長が第5図(a)と第5図(b)では一般的に異なん 
また 第3の貫通領域の個数により第5図(C)のよう
にセル行2lの長さにばら付きが生じて面積が大きくな
る場合があも 従って、各ネットに貫通領域を1個しか
割り当てないかあるいは複数割り当てる力\ すなわち
貫通領域24の割り当ての効率的な方法は配線問題にお
いて重要な課題であも 第6図(友 従来の配線方法における貫通領域割り当て
のアルゴリズムを示してい,k  51〜57は各処理
であも 上記のように構或された従来の配線方法における貫通領
域割り当てについて、以下その手順を説明すも 処理5
1でセル行に含まれる第1の貫通領域と第2の貫通領域
とセル行の長さから貫通領域の利用しやすさを表現する
余裕度をセル行毎に設定すも 処理52で(友 配線の
経路探索を行な八貫通配線を用いる場合にはその位置を
探索すも処理53でGEL  処理5lで設定された余
裕度をもとにして貫通領域を割り当てるかどうか判断し
 割り当てる余裕がある場合には処理54で貫通領域を
割り当てて処理55で貫通領域の余裕度を更新し 余裕
がない場合には処理56で他の経路を探索す屯さらに 
未処理のネットがあれば処理52に戻り、未処理のネッ
トがなければ処理を終了すん発明が解決しようとする課
題 しかしながら上記のような構或で(よ 配線が割り当て
られることにより貫通領域の余裕度が次第に少なくなり
、割り当てる順番が最後の方の配線に関しては十分に貫
通領域が確保されなb〜 貫通領域が割り当てられるか
どうかは配線を行なう順番に依存すも そのた取 配線
長およびレイアウト面積を考慮して貫通領域を1個のセ
ル行で複数個使用したい場合でL 貫通領域が1個しか
使用できない場合があも また セル行毎に第3の貫通
領域の使用された個数が異なる場合、セル行の長さにば
らつきが生じるという課題を有していも本発明はこのよ
うな点を考慮よ 貫通領域の最適化を行なって配線長と
レイアウト面積の縮小が実現できる半導体集積回路の配
線方法を提供することを目的とすも 課題を解決するための手段 本発明(上 ポリセルの端子同士の接続情報を表現する
ネットと前記端子の位置とに基づいて前記端子を接続す
る配線経路を求めてセル行上を貫通する配線に対して初
期的にセル行上の貫通配線位置を与える貫通配線位置探
索手段と、ポリセル内部の信号線を貫通配線として使用
する第1の貫通領域と、ポリセル内部に用意された貫通
配線用の第2の貫通領域と、ポリセル間の間隔を広げる
ことにより確保される貫通配線用の第3の貫通領域とに
前記貫通配線位置から貫通配線が通過する領域を割り当
てる貫通領域割り当て手段と、前記第3の貫通領域が使
用されることによりセル行の長さが長くなった第1のセ
ル行を選択するセル行選択手段と、前記第1のセル行玄
 同一ネットに使用された貫通領域が2個以上複数個存
在し そのうち前記第2の貫通領域あるいは第3の貫通
領域が1個以上含まれる第1のネットを探索するネット
探索手段と、前記第1のネットの配線経路を変更し 前
記第1のセル行上で前記第1のネットに割り当てられた
貫通領域の数を減らして前記第1のセル行上に存在する
貫通領域の再割り当てをすることにより前記第1のセル
行に含まれる第3の貫通領域を削除して前記第1のセル
行の長さを短くする短縮手段とを備えたことを特徴とす
る半導体集積回路の配線方法 作用 本発明は前記した構或によって、貫通配線を行なう順番
に関係なく、必要である順に貫通領域を割り当てること
ができ、有効に貫通領域を使用して配線長を縮小するこ
とが可能であも また セル行長を評価して第3の貫通
領域の個数を最適化することにより、セル行の長さを制
御してレイアウト面積を縮小することができも 実施例 第1図は本発明の実施例における半導体集積回路の配線
方法における貫通領域割り当てのアルゴリズムを示し 
第2図は本実施例における貫通領域制限と貫通領域再割
り当てのアルゴリズムを示レ 第3図は本実施例を適用
したレイアウト図を示すものであも 第1図において、
11〜18は各処理を示してい為 第2図において、4
1〜46は各処理を示していも 第3図において、21
はセル行、22は端子、23は配織24は貫通領域を示
していも以上のように構或された本実施例の半導体集積
回路の配線手法の貫通領域割り当てについて、以下その
手順を説明すも 処理11でζよ ポリセルの端子同士
の接続情報を表現するネットと前記端子の位置とに基づ
いて、前記端子を接続するのに例えば配線長が最小にな
るような配線経路を求めて、セル行上を貫通する配線に
対して初期的にセル行上の貫通配線位置を与える。処理
l2でζよ ポリセル内部の信号線を貫通配線として使
用する第1の貫通領域と、ポリセル内部にあらかじめ用
意された貫通配線用の第2の貫通領域と、ポリセル間の
間隔を広げることにより確保される貫通配線用の第3の
貫通領域とに処理1lで与えられた貫通配線位置から貫
通配線が通過する領域を振り分けも全てのネットの処理
が終了したかどうかを処理13で判断し 未処理のネッ
トがある場叡 処理11に戻って、処理11と処理l2
を繰り返も 未処理のネットがなくなれIL  処理1
4に移も 処理l4では第3の貫通領域が使用されてセ
ル行の長さが長くなったセル行を選択すも 次に 処理
15で{友 処理l4で選択されたセル行上玄 同一ネ
ットに使用される貫通領域が2個以上複数個存在し そ
のうち前記第2の貫通領域あるいは第3の貫通領域が1
個以上含まれるネットを探索すも 処理16では探索さ
れたネットの配線経路を変更して、割り当てられた貫通
領域の数を減らす。さらに 貫通領域の再割り当てをす
ることにより、処理14で選択されたセル行に含まれる
第3の貫通領域を未使用にすも 処理l7では未使用に
なった第3の貫通領域を削除してセル行の長さを短くす
瓜 第3図(a)は処理16. 17を適用する以前の
レイアウト状態を示し第3図(b)は処理16. 17
を適用したレイアウト結果を示していも な抵 処理16で貫通領域を制限する手順は以下のよう
になん 処理41では処理l5で選択されたネットカ交
 対象とするセル行で第3の貫通領域があるかどうか判
断し ある場合は処理42に移り、ない場合は処理44
を行なう。処理42では第3の貫通領域を使用しないよ
うに経路の変更を行なl.k  処理43で第3の貫通
領域を未使用にすも 処理44では第2の貫通領域を使
用しないよう径路変更して、処理45で第2の貫通領域
を未使用にすも さらに処理46では対象としているセ
ル行に含まれる第3の貫通領域を使用しているネットを
、処理45で未使用になった第2の貫通領域に割り当て
なおすことにより第3の貫通領域を未使用にすもセル行
の長さを短くする際に 処理15, 16. 17を長
さの最も長いセル行に適用することにより、配置された
複数のセル行の長さを揃えることができも 第3図(a
)において(友 セル行21のR1、R2、R3、R4
うちで最も長いR2から第3の領域を削除することによ
りセル行2lの長さを短くすも セル行2lの長さの最
も長いセル行の長さを短くすることにより、セル行21
の長さが揃えられてレイアウト面積が縮小されも また
 処理16において1上 配線経路が変更されることに
より、第3図(b)においてセル行21のR2の上下の
領域玄 配線23が重複することにより配線23が長く
なる可能性かあも しかし 同一のセル行21に関して
、同じネットに接続される貫通領域24で、貫通領域2
4の間隔が最も狭いネットから順番に貫通領域24の数
を減らすことにより、配線長に与える影響が少なくなり
、セル行の長さの短縮とレイアウト面積の縮小とを実現
することができも発明の効果 以上説明したように 本発明によれば 貫通配線を行な
う順番に関係なく必要である順に貫通領域を割り当てる
ことができ、有効に貫通領域を使用して配線長を縮小す
ることが可能であも またセル行長を評価して第3の貫
通領域の個数を最適化することにより、セル行の長さを
制御してレイアウト面積を縮小することができ、その実
用的効果は大きL1
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a wiring method for polycell type semiconductor integrated circuits.Prior art polycell type semiconductor integrated circuits generally have uniform high Cell rows can be constructed by arranging rectangular cells.Furthermore, it can be constructed by arranging multiple cell rows and wiring between the rows.However, when connecting terminals that span multiple cell rows, it is possible to construct cell rows. Although it is common to use through wiring that passes through the wiring, Figures 4 (a) to (c) show layout diagrams of through wiring. Penetration hook 31 is the first terminal, 32 is the second terminal, 33 is the center/k, 34 is the first penetration region slope 35 is the second penetration region, and 36 is the third penetration region. As shown in (a), the through wiring 24 is used to connect the first terminal 31 and the second terminal 32 by wiring across the cell rows 2l. Cell 3 as shown in (b)
When using the signal line inside cell 33 (to which terminal-to-terminal connection information, that is, the net is given) as the first penetration region 34, and when using the second penetration region for penetration wiring set in advance inside the cell 33. This can be realized in three ways: by using the cell 35, and by widening the interval between the cells 33 and using the third penetration region 36 as shown in FIG. 4(C).
However, when using the third through area 36, even if the length of the cell row 2l is long, the length of the entire wiring line and the area of the layout diagram (by changing the route of the wiring and the through wiring Figure 5 shows a layout diagram when the number of through wiring is changed. In Figure 5, 2l is a cell row, 22 is a terminal,
Reference numeral 24 indicates a penetrating region. In the case shown in FIG. 5(a), four penetrating regions 24 are used, and in the case shown in FIG. 5(b), two penetrating regions 24 may be used. Figure 5 (a
) has fewer horizontal wires than in Figure 5(b), so it is expected that the height will be lower.Through-wiring 2
If the third through region is used to route 4, the length of the cell row 2l may become longer. There is no difference
Also, depending on the number of third penetration regions, the length of the cell row 2l may vary as shown in Figure 5(C), resulting in a large area. Therefore, only one penetration region is assigned to each net. In other words, an efficient method for allocating the through area 24 is an important issue in wiring problems. 57 is each process, but the procedure for allocating a through area in the conventional wiring method configured as described above will be explained below. Process 5
In step 1, a degree of margin expressing the ease of use of the penetration area is set for each cell row from the lengths of the first penetration region, the second penetration region, and the cell row included in the cell row. When searching for a wiring route and using eight-penetration wiring, the position is searched, and in process 53 it is determined whether or not to allocate a through-hole area based on the margin set in GEL process 5l, and there is enough margin for allocation. If so, a penetration area is allocated in process 54 and the margin of the penetration area is updated in process 55. If there is no margin, another route is searched for in process 56.
If there is an unprocessed net, the process returns to step 52, and if there is no unprocessed net, the process ends.Problems to be Solved by the InventionHowever, with the above structure (as shown in FIG. As the number of wires gradually decreases, sufficient penetration area is not secured for the wiring that is allocated last in the order of allocation.Whether or not the penetration area is allocated depends on the order in which the wiring is done. If you want to use multiple through regions in one cell row taking into consideration L, there may be cases where only one through region can be used.Also, if the number of third through regions used differs from cell row to cell row. However, the present invention takes this point into consideration even though there is a problem of variations in the length of cell rows.Wiring of semiconductor integrated circuits that can realize reduction of wiring length and layout area by optimizing penetration area Means for Solving the Problems The present invention (1) finds a wiring route connecting the terminals based on a net expressing connection information between the terminals of a polycell and the position of the terminal. a through wiring position search means for initially determining the through wiring position on the cell row for the wiring that penetrates on the cell row; a first through region that uses a signal line inside the polycell as a through wiring; Allocate an area through which the through wiring passes from the through wiring position to a second through area for the through wiring prepared in the second through area and a third through area for the through wiring secured by widening the interval between the polycells. penetration area allocation means; cell row selection means for selecting a first cell row whose cell row length is increased by using the third penetration area; a net search means for searching for a first net in which there are two or more penetration regions used in the first net and one or more of the second penetration regions or the third penetration region is included; and reallocating the through areas existing on the first cell row by reducing the number of through areas allocated to the first net on the first cell row. A wiring method for a semiconductor integrated circuit, comprising shortening means for shortening the length of the first cell row by deleting a third through region included in the first cell row. With the above-mentioned structure, it is possible to allocate the penetration areas in the order of necessity regardless of the order in which the penetration wiring is performed, and it is possible to effectively use the penetration areas to reduce the wiring length.Also, it is possible to reduce the wiring length. By evaluating the number of third through regions and optimizing the number of third through regions, it is possible to control the length of the cell row and reduce the layout area. An algorithm for allocating penetration areas in circuit wiring methods is presented.
Figure 2 shows the algorithm for restricting the penetration area and reallocating the penetration area in this embodiment. Figure 3 shows a layout diagram to which this embodiment is applied.
11 to 18 indicate each process, so in Figure 2, 4
Although 1 to 46 indicate each process, in Fig. 3, 21
22 is a cell row, 22 is a terminal, and 23 is a weave 24 is a through area. The procedure for allocating the through area in the wiring method of the semiconductor integrated circuit of this embodiment configured as described above will be explained below. In process 11, ζ Based on the net expressing the connection information between the terminals of the polycell and the position of the terminal, find a wiring route that minimizes the wiring length to connect the terminal, and A through wiring position on a cell row is initially given to a wiring that penetrates on a row. In process 12, ζ is secured by increasing the distance between the first through area where the signal line inside the polycell is used as the through wiring, the second through area for the through wiring prepared in advance inside the polycell, and the interval between the polycells. The area through which the through wiring passes is distributed from the through wiring position given in process 1l to the third through area for the through wiring to be processed.In process 13, it is determined whether the processing of all nets has been completed. If there is a net of
Even if you repeat the process, there will be no unprocessed net. IL Processing 1
Moving on to 4, in process 14, the third penetration area is used to select a cell row with a longer cell line length.Next, in process 15, the cell line selected in process 14 is the same net. There are two or more penetration regions used for
In step 16, the wiring route of the searched net is changed to reduce the number of allocated through areas. Furthermore, by reallocating the penetration area, the third penetration area included in the cell row selected in process 14 is made unused.In process 17, the unused third penetration area is deleted. Figure 3 (a) shows process 16. Shortening the length of the cell row. FIG. 3(b) shows the layout state before applying process 16. 17
The procedure for restricting the penetration area in process 16 is as follows. In process 41, there is a third penetration area in the target cell row selected in process 15. If yes, proceed to process 42; otherwise, proceed to process 44.
Do the following. In process 42, the route is changed so that the third penetration area is not used.l. k In process 43, the third penetration area is made unused.In process 44, the route is changed so that the second penetration area is not used, and in process 45, the second penetration area is made unused.Furthermore, in process 46, the route is changed so that the second penetration area is not used. The third penetration area can be made unused by reassigning the net using the third penetration area included in the target cell row to the second penetration area that became unused in process 45. Process 15, 16 when shortening the length of a cell row. By applying 17 to the longest cell row, the lengths of multiple arranged cell rows can be made the same.
) in (friend cell row 21 R1, R2, R3, R4
The length of cell row 2l is shortened by deleting the third region from R2, which is the longest among them.By shortening the length of the longest cell row of cell row 2l, cell row 21 is
Even if the lengths of the lines are aligned and the layout area is reduced, the wiring routes above and below R2 of the cell row 21 overlap in FIG. However, regarding the same cell row 21, in the through area 24 connected to the same net, the through area 2
By reducing the number of through regions 24 in order from the net with the narrowest interval, the influence on the wiring length is reduced, and the length of the cell rows and layout area can be shortened. Effects As explained above, according to the present invention, it is possible to allocate the penetration regions in the order of necessity regardless of the order in which the penetration wiring is performed, and it is possible to effectively use the penetration regions to reduce the wiring length. Also, by evaluating the cell row length and optimizing the number of third penetration regions, it is possible to control the cell row length and reduce the layout area, which has a large practical effect on L1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における貫通領域割り当ての
アルゴリズムを示すフローチャートは第2図は同実施例
の貫通領域の制限方法のアルゴリズムを示すフローチャ
ートa  第3図(a)は同実施例を適用する以前の状
態を示すレイアウトは第3図(b)は同実施例を適用し
た結果を示すレイアウトa  第4図(a)〜(c)は
貫通配線と第1の貫通領域と第2の貫通領域と第3の貫
通領域を示すレイアウトは 第5図(a), (b)は
貫通配線の状態を示すレイアウト& 第5図(C)はセ
ル行にばら付きのある状態を示すレイアウト飄 第6図
は従来の貫通領域割り当てのアルゴリズムを示すフロー
チャート図であも
FIG. 1 is a flowchart showing an algorithm for allocating a penetration area in an embodiment of the present invention. FIG. 2 is a flowchart showing an algorithm for a method of limiting penetration areas in the embodiment. FIG. 3(b) is a layout showing the state before application of the same example. FIG. 4(a) to (c) is a layout showing the state before application of the same example. The layout showing the through area and the third through area is shown in Figure 5(a), (b) is the layout showing the state of the through wiring, and Figure 5(C) is the layout showing the state with variations in cell rows. Figure 6 is a flowchart showing the conventional penetration area allocation algorithm.

Claims (3)

【特許請求の範囲】[Claims] (1)論理機能を含むポリセルを複数個並べてセル行を
形成して、そのセル行を複数行配置して行間に配線を施
すことにより構成されるポリセル方式の半導体集積回路
において、前記ポリセルの端子同士の接続情報を表現す
るネットと前記端子の位置とに基づいて前記端子を接続
する配線経路を求めてセル行上を貫通する配線に対して
初期的にセル行上の貫通配線位置を与える貫通配線位置
探索手段と、ポリセル内部の信号線を貫通配線として使
用する第1の貫通領域と、ポリセル内部に用意された貫
通配線用の第2の貫通領域と、ポリセル間の間隔を広げ
ることにより確保される貫通配線用の第3の貫通領域と
に前記貫通配線位置から貫通配線が通過する領域を割り
当てる貫通領域割り当て手段と、前記第3の貫通領域が
使用されることによりセル行の長さが長くなった第1の
セル行を選択するセル行選択手段と、前記第1のセル行
で、同一ネットに使用された貫通領域が2個以上複数個
存在し、そのうち前記第2の貫通領域あるいは第3の貫
通領域が1個以上含まれる第1のネットを探索するネッ
ト探索手段と、前記第1のネットの配線経路を変更し、
前記第1のセル行上で前記第1のネットに割り当てられ
た貫通領域の数を減らして前記第1のセル行上に存在す
る貫通領域の再割り当てをすることにより前記第1のセ
ル行に含まれる第3の貫通領域を削除して前記第1のセ
ル行の長さを短くする短縮手段とを備えたことを特徴と
する半導体集積回路の配線方法。
(1) In a polycell type semiconductor integrated circuit constructed by arranging a plurality of polycells including logic functions to form a cell row, arranging the cell rows in multiple rows and providing wiring between the rows, the terminals of the polycell A through-hole that initially determines a wiring route that connects the terminals based on a net expressing connection information between the two and the position of the terminal, and initially determines the through-wire position on the cell row for the wiring that passes through the cell row. Securing the wiring position by widening the distance between the wiring position search means, the first through area for using the signal line inside the polycell as a through wiring, the second through area for the through wiring prepared inside the polycell, and the polycell. a through area allocation means that allocates a region through which the through wiring passes from the through wiring position to a third through area for the through wiring to be used; cell row selection means for selecting a longer first cell row; and in the first cell row, there are two or more through regions used for the same net, and among them, the second through region or a net search means for searching for a first net including one or more third through regions; and changing a wiring route of the first net;
the first cell row by reducing the number of penetration regions allocated to the first net on the first cell row and reallocating the penetration regions existing on the first cell row; A wiring method for a semiconductor integrated circuit, comprising: shortening means for shortening the length of the first cell row by deleting a third through region included therein.
(2)短縮手段は、最も長いセル行から順次短くするこ
とにより、配置された複数のセル行の長さを揃えること
を特徴とする特許請求の範囲第1項記載の半導体集積回
路の配線方法。
(2) The wiring method for a semiconductor integrated circuit according to claim 1, wherein the shortening means aligns the lengths of the plurality of arranged cell rows by sequentially shortening the longest cell row. .
(3)短縮手段は、同じネットに接続される貫通領域の
間隔が最も狭いネットから、貫通領域の数を減らすこと
を特徴とする特許請求の範囲第1項または第2項記載の
半導体集積回路の配線方法。
(3) The semiconductor integrated circuit according to claim 1 or 2, wherein the shortening means reduces the number of through regions connected to the same net starting from a net having the narrowest interval. wiring method.
JP1151793A 1989-06-14 1989-06-14 Wiring method for semiconductor integrated circuit Expired - Lifetime JPH0821628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1151793A JPH0821628B2 (en) 1989-06-14 1989-06-14 Wiring method for semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1151793A JPH0821628B2 (en) 1989-06-14 1989-06-14 Wiring method for semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH0316240A true JPH0316240A (en) 1991-01-24
JPH0821628B2 JPH0821628B2 (en) 1996-03-04

Family

ID=15526419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1151793A Expired - Lifetime JPH0821628B2 (en) 1989-06-14 1989-06-14 Wiring method for semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0821628B2 (en)

Also Published As

Publication number Publication date
JPH0821628B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
US4823276A (en) Computer-aided automatic wiring method for semiconductor integrated circuit device
EP0248513B1 (en) Method for routing
US4858143A (en) Work ordering routine for use in a method of routing
US4593363A (en) Simultaneous placement and wiring for VLSI chips
US7818703B2 (en) Density driven layout for RRAM configuration module
US4903214A (en) Method for wiring semiconductor integrated circuit device
WO1988010472A1 (en) Moat router for integrated circuits
JPH0316240A (en) Wiring method for semiconductor integrated circuit
EP1061583A1 (en) Semiconductor integrated circuit device and apparatus for producing the layout thereof
US6449760B1 (en) Pin placement method for integrated circuits
KR100275489B1 (en) How to divide a multi-pin net into a double pin net for wiring symmetrical field-processed semiconductors
US6760896B2 (en) Process layout of buffer modules in integrated circuits
Alia et al. Automated module placement and wire routeing according to a structured biplanar scheme in printed boards
KR100385862B1 (en) Method of improving routing delay for symmetrical FPGA
JPS6353947A (en) Method of wiring semiconductor integrated circuit
CA1269157A (en) Work ordering method for use in a method of routing
JPH10189750A (en) Method for placing cell automatically
JP3617366B2 (en) Semiconductor integrated circuit design method
JPH11265940A (en) Wiring method of semiconductor integrated circuit
JPH0496250A (en) Block shape determining method for semiconductor integrated circuit
JPH08110917A (en) Lsi wiring method
JPH04291744A (en) Wiring of semiconductor device
JPH01165140A (en) Automatic wiring system in semiconductor integrated circuit
JPS6159752A (en) Wiring method
JPS63276177A (en) Allocating system for terminal of package substrate