JPH03161509A - Polyester fiber for reinforcing rubber - Google Patents

Polyester fiber for reinforcing rubber

Info

Publication number
JPH03161509A
JPH03161509A JP1296586A JP29658689A JPH03161509A JP H03161509 A JPH03161509 A JP H03161509A JP 1296586 A JP1296586 A JP 1296586A JP 29658689 A JP29658689 A JP 29658689A JP H03161509 A JPH03161509 A JP H03161509A
Authority
JP
Japan
Prior art keywords
amount
antimony
dimensional stability
compound
germanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1296586A
Other languages
Japanese (ja)
Other versions
JP2775923B2 (en
Inventor
Futoshi Sasamoto
太 笹本
Takehiko Mitsuyoshi
三吉 威彦
Tsutomu Sakano
坂野 力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1296586A priority Critical patent/JP2775923B2/en
Publication of JPH03161509A publication Critical patent/JPH03161509A/en
Application granted granted Critical
Publication of JP2775923B2 publication Critical patent/JP2775923B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title fiber consisting of a polyester using an antimony compound and germanium compound as a polymerization catalyst, having specific physical property, good dimensional stability, high strength and excellent endurance. CONSTITUTION:The aimed fiber consisting of a polyester obtained by using 30-150ppm, preferably 80-120ppm antimony compound and 5-120ppm, preferably 6-30ppm germanium compound as a polymerization catalyst and having characteristics having (A) <=25eq/ton, preferably <=21eq/ton content of carboxyl terminal group, (B) <=1.3wt.%, preferably <=1.1wt.% diethylene glyool content (DEG), (C) <=12.0%, preferably 0.95-1.3 intrinsic viscosity, (D) <=12.0%, preferably 8-10% dimensional stability (intermediate elongation + dry heat shrinkage) and (E) <=50g/d, preferably <=35g/d terminal modulus (Mt).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はゴム補強用ポリエステル繊維に関する。さらに
詳しくは、寸法安定性が良好で、高強度であり耐久性に
優れたゴム補強用ポリエステル繊維に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to polyester fibers for rubber reinforcement. More specifically, the present invention relates to polyester fibers for reinforcing rubber that have good dimensional stability, high strength, and excellent durability.

[従来の技術] ポリエステル繊維は機械的性質、寸法安定性、耐久性に
優れ衣料用途のみでなく産業用途にも広く利用されてい
る。なかでもタイヤコードなどのゴム補強用途ではその
特徴を生かし多量に利用されている。タイヤコード用途
では従来低配向の未延伸糸を高倍率延伸した高強度原糸
が使用されていたが、近年は比較的高配向の未延伸糸(
いわゆるPOY)を延伸して得た原糸が使用されるよう
になった。これは強度を若干犠1f1にしても]一ドの
寸法安定性を良((ノタイヤ性能、特に均一性を向上さ
せようというニーズから生まれた技術である。
[Prior Art] Polyester fibers have excellent mechanical properties, dimensional stability, and durability, and are widely used not only for clothing applications but also for industrial applications. Among these, it is widely used in rubber reinforcement applications such as tire cords, taking advantage of its characteristics. For tire cord applications, high-strength raw yarn made by drawing low-oriented undrawn yarn at a high ratio has been used, but in recent years, relatively highly oriented undrawn yarn (
Raw yarn obtained by drawing so-called POY has come to be used. This technology was born from the need to improve tire performance, especially uniformity, even if the strength was slightly sacrificed (1f1).

しかしながら近年タイヤの性能をより向上させるため、
\1法安定性を保持しながら高強度、高タフネスをh′
TJ−るタイA7コードの要求が高:Lっている。かか
る要求に対し例えば特開昭60−88 1 2 0尽公
報にはPOYを低速延伸する例が記戟きれているが、か
かる延伸技術では繊維自体のタフネス(強伸度積〉の向
上巾は小さく、タイヤ]一ドだ(ノての画期的な強度上
昇には至らず、要求される強度・タフネスのレ八ルを満
定でき乙大い。タフネス向七のためには繊維中の欠陥を
減少さ゛1!ることが有効であると考えられる。すなわ
ちタイヤコード中には種々の欠陥(異物)が存在するが
、この欠陥はポリマ中に存在する粒子が主因でdるり、
かかる粒子は重合触媒に起因するものが多く、かかる粒
子を根本的に無くしてい(ことが必要である。
However, in recent years, in order to further improve the performance of tires,
\1 High strength and toughness while maintaining stability
TJ-ru tie A7 code request is high:L. In response to such demands, for example, Japanese Patent Application Laid-open No. 1988-120 describes an example of low-speed stretching of POY, but such stretching technology cannot improve the toughness (strength/stretchability product) of the fiber itself. (It is not a revolutionary increase in strength, but it is great for satisfying the required level of strength and toughness. In order to achieve toughness, it is necessary to It is thought that it is effective to reduce defects.In other words, various defects (foreign objects) exist in tire cords, but these defects are mainly caused by particles present in the polymer.
Many of these particles are caused by polymerization catalysts, and it is necessary to fundamentally eliminate such particles.

これまでゴム補強用ポリエステル繊維を製造づ−るため
に用いられた触媒については、例えば特公昭37−58
21号公報に酢酸マンガン、二酸化アンヂモン、リン酸
の触媒系が、又特開昭55−12871号公報に酢酸カ
ルシウム、二酸化アンチtン、亜リン酸の例が、y特聞
昭51−134789号公報には酢酸リチウム、三酸化
アンチモン、亜リン酸の例が記戟きれている。これらの
触媒を用いて重合した場合には触媒C起困した粒子が数
多(生成し、繊雑巾で欠陥こなり、最近の高い強度、タ
フネスの飲求レベルを満たす繊維は得られない。
Regarding catalysts that have been used to date to produce polyester fibers for rubber reinforcement, for example, Japanese Patent Publication No. 37-58
No. 21 discloses a catalyst system of manganese acetate, anddimon dioxide, and phosphoric acid, and JP-A No. 55-12871 discloses an example of calcium acetate, antitium dioxide, and phosphorous acid. The publication contains examples of lithium acetate, antimony trioxide, and phosphorous acid. When polymerization is carried out using these catalysts, a large number of catalyst C particles are generated, and fibers that meet the recent high strength and toughness requirements cannot be obtained because of defects caused by lint cloth.

[発明が解決lノようεずる課題] 本発明省らは寸法安定性が良好でしかも強度・タフネス
に滑れるボリエスアル繊維を得るべく、ボリマから根本
的に鋭意検討1ノ、高タノネスで、寸法安定性および耐
熱性、耐久性の良好なゴム補強用ボリjニステル繊維に
到達1,たものて゛ある。
[Problems to be solved by the invention] The Ministry of the Invention and others have conducted fundamental studies from the viewpoint of the BORIMA, in order to obtain a boris-al fiber that has good dimensional stability, strength and toughness, and is dimensionally stable. Polyester fibers for rubber reinforcement that have good properties, heat resistance, and durability have been developed.

1]課題を解決するための千段] 前記i〜た本発明の目的は、アンチモンとi一で30へ
−150ρρm (7) 量のアンチモン化合物とゲル
マニビ7ムと1.2で5−”120ppmの遠のゲルマ
ニウム化合物を和合触媒だ}7て用いたポリ、〕:.ス
テルから成り、下記の特性を有ずるゴム補強用ボリ王久
デル繊維によって達或できる。
1] A Thousand Steps to Solve the Problems] The object of the present invention as described above is to reduce the amount of antimony compound and germanium 7m to 1.2 to 5-120ppm. This can be achieved by using polyester fibers for rubber reinforcement, which are made of polystellate using a germanium compound as a catalyst and have the following properties.

A,カルボキシル末端基量( C O O H )C 
O O H≦25e!]/τon B.ジヱチレングリコール含有量(DEG)DEG≦1
.3wt% C.極限粘度(iV) IV≧0.85 I)1一法安定性(S)(中間伸度十乾熱収縮率)S≦
12,0% E.ターミナルモジエラス(Mt) Mt≦50g/d 本発明のポリヱステルとはエチ1/ンテレフタ?ー1・
を主たる繰り返1ノ単泣II:ずるボリ]ニスjルをい
う。ポリエステルとしノでは、寸法安定性、強度の向上
のため、副生ジ1.チレングリニ1〜ル以外の第3成分
の添加、共重合や無磯粒子等の添加剤を実質的に含有(
ノないボリエブーレンi゛レフタレ−1へであるここが
好ましい。
A, Carboxyl terminal group amount (C O OH )C
O O H≦25e! ]/τon B. Diethylene glycol content (DEG) DEG≦1
.. 3wt%C. Intrinsic viscosity (iV) IV≧0.85 I) 1-method stability (S) (intermediate elongation and dry heat shrinkage rate) S≦
12.0%E. Terminal mosieras (Mt) Mt≦50g/d What is the polyester of the present invention? -1・
The main repetition is 1. Single crying II: Zurubori] Nisjru. In order to improve the dimensional stability and strength of polyester Toshino, by-products 1. Substantially contains additives such as the addition of a third component other than tylenegriny, copolymerization, and non-silicone particles (
It is preferable to use no Borieburen I'rephthalate 1.

本発明■らは寸法安定性を良好に保ちつつ高強度、高タ
フネス化を実現ずるため繊維の強度を低下させる要因に
ついて鋭意検討を行なっlJoその結果高強度化を阻害
しているの(ま糸中の欠崩、特に触媒に起國すゐ粒子で
あることを′つき占めた。さらにこれらの粒子のうちで
も特に重合触媒だ1ノで利用するアンチモン化合物から
還元により牛或づーる金属アンナモンが強度、タフネス
に悪影費を与えることを見出したのである。
In order to achieve high strength and high toughness while maintaining good dimensional stability, the present inventors have conducted intensive studies on the factors that reduce the strength of fibers. In particular, it was discovered that the particles were particles originating from catalysts.Furthermore, among these particles, the metal annamonium was recovered by reduction from the antimony compound used in the polymerization catalyst. They discovered that it gives strength and toughness a negative impact.

そこでこの舎屈アンチ′〔ンの減少についで鋭意検討し
た結果、重合触媒としてアンチモン化合物とゲルマニウ
ム化合物を併用ずることでカルボキシル末@基量、ジエ
チ1ノングリコール最などの他のボリマ特性を阻害する
ことなク−1二記の異物の減少が図れることを見出した
Therefore, as a result of intensive investigation into the reduction of this sclerotic anti', we found that by using an antimony compound and a germanium compound together as a polymerization catalyst, other polymer properties such as the amount of carboxyl powder and diethyl non-glycol were inhibited. It has been found that the amount of foreign substances in Kotona Ku-12 can be reduced.

従って、本発明では重合触媒としてアンチモン化合物と
ゲルマニウム化合物を併用する必要がある。通常の重縮
合時間で目標のIVのポリマを得るにはアンチモン化合
物のみでは使用量の減少には限界があり、そのため金属
アンチモンの減少には自ずから限界がある。又、ゲルマ
ニウム化合物のみではジエチレングリコール量が増加し
、糸の寸法安定性が悪化する。重合触媒として用いられ
るアンチモン化合物としては三酸化アンチモン、五酸化
アンチモンが好ましく、ゲルマニウム化合物としては二
酸化ゲルマニウムが好ましく用いられる。本発明のポリ
エステル繊維に含まれるアンチモン化合物の量はアンチ
モンとして30〜150ppmである必要がある。アン
チモン化合物の量が30ppm未満では重合反応性を保
つためには併用するゲルマニウム化合物を多量に用いな
くてはならずコストが高くなるばかりでなく、ジエチレ
ングリコール量が高くなり、寸法安定性が低下する。
Therefore, in the present invention, it is necessary to use an antimony compound and a germanium compound together as a polymerization catalyst. In order to obtain a target IV polymer in a normal polycondensation time, there is a limit to reducing the amount of antimony compound used alone, and therefore there is a natural limit to reducing the amount of antimony metal. Further, if only a germanium compound is used, the amount of diethylene glycol increases, and the dimensional stability of the yarn deteriorates. As the antimony compound used as a polymerization catalyst, antimony trioxide and antimony pentoxide are preferably used, and as the germanium compound, germanium dioxide is preferably used. The amount of antimony compound contained in the polyester fiber of the present invention needs to be 30 to 150 ppm as antimony. If the amount of the antimony compound is less than 30 ppm, a large amount of the germanium compound used in combination must be used in order to maintain polymerization reactivity, which not only increases cost, but also increases the amount of diethylene glycol and reduces dimensional stability.

アンチモン化合物の量が150ppmを越えるとゲルマ
ニウム化合物の併用によって金属アンチモンの減少をは
かることができず、糸の強度、タフネスの向上が図れな
い。又ゲルマニウム化合物の量はゲルマニウムとして5
〜1 20Dpmである必要がある。ゲルマニウム化合
物の量が5ppm未満では、重合反応性を保つために使
用するアンチモン化合物量のアンチモン量を150pp
m以下とすることはできない。又、ゲルマニウム化合物
のゲルマニウム屋が120ppmを越えると製造コスト
が大巾にアップするだけでなく、DEGIIが高くなり
寸法安定性が悪化する。かかる観点からアンチモン化合
物のアンチモン量は40〜120ppmが好ましく、8
0〜”+2oppmがざらに好ましい。又、ゲルマニウ
ムの量は5〜8 0 0 pmが好ましく、6〜3 0
 !) Dmがさらに好ましい。本発明のポリマの製造
方法は直接重合方法によってもジメチルテレフタレート
を介した製造方法、いわゆるDMT法によっても得られ
る。DMT法によつて製造する場合には、そのエステル
交換反応触媒としてはマンガン化合物を使用することが
好ましい。なお、リチウム化合物やマグネシウム化合物
などはポリエステル中に粒子を生成するので好ましくな
い。
If the amount of the antimony compound exceeds 150 ppm, it is impossible to reduce metallic antimony by using a germanium compound in combination, and the strength and toughness of the yarn cannot be improved. Also, the amount of germanium compound is 5 as germanium.
~120 Dpm is required. If the amount of germanium compound is less than 5 ppm, reduce the amount of antimony compound used to maintain polymerization reactivity to 150 ppm.
It cannot be less than m. Furthermore, if the germanium content of the germanium compound exceeds 120 ppm, not only the manufacturing cost will increase significantly, but also the DEGII will increase and the dimensional stability will deteriorate. From this point of view, the amount of antimony in the antimony compound is preferably 40 to 120 ppm, and 8
The amount of germanium is preferably 5-800 pm, and 6-30 pm.
! ) Dm is more preferred. The polymer of the present invention can be produced either by direct polymerization or by dimethyl terephthalate-mediated production, the so-called DMT method. When producing by the DMT method, it is preferable to use a manganese compound as the transesterification catalyst. Note that lithium compounds, magnesium compounds, and the like are not preferred because they generate particles in the polyester.

本発明のポリエステル繊維のカルボキシル末端基i (
COOH)は2 5 eg/ton以下である必要があ
る。COOHJtが25eQ/tonを越えるとゴム中
の劣化が早くゴム補強用資材として耐久性が不足する。
The carboxyl terminal group i (
COOH) needs to be 2 5 eg/ton or less. If COOHJt exceeds 25 eQ/ton, the rubber deteriorates quickly and lacks durability as a rubber reinforcing material.

かかる観点からCOOHiは2 1 eg/ton以下
が好ましい。
From this viewpoint, COOHi is preferably 2 1 eg/ton or less.

さらに本発明のポリエステル繊維中のジエチレングリコ
ール含有量(DEG)は1.3wt%以下である必要が
ある。DEC4が1.3w七%を越えると繊維の寸法安
定性が悪化するだけでなくゴム中での耐熱性も低下する
。かかる観点からDEG量は1.1wt%以下が好まし
い 本発明のポリエステル繊維の極限粘度(IV)は0.8
5以上である必要がある。IVがO.85未満では耐疲
労性が劣りゴム補強用資材として使用できない。かかる
観点からIVは0.9以上が好ましい。又、製糸性など
操業面の安定性からIVは1.3以下が好ましい。
Furthermore, the diethylene glycol content (DEG) in the polyester fiber of the present invention needs to be 1.3 wt% or less. When DEC4 exceeds 1.3w7%, not only the dimensional stability of the fiber deteriorates but also the heat resistance in the rubber decreases. From this point of view, the DEG amount is preferably 1.1 wt% or less, and the intrinsic viscosity (IV) of the polyester fiber of the present invention is 0.8.
Must be 5 or more. IV is O. If it is less than 85, fatigue resistance is poor and it cannot be used as a rubber reinforcing material. From this viewpoint, IV is preferably 0.9 or more. Further, from the viewpoint of operational stability such as silk-spinning property, the IV is preferably 1.3 or less.

本発明のポリエステル繊維の寸法安定性(中間伸度十乾
熱収縮〉は12%以下である必要がある。寸法安定性が
12%を越えるとタイヤ或型時のコードの寸法安定性が
劣り、タイヤのユニフオミイテイが低下する。かかる観
点から寸法安定性は10%以下が好ましく。又、製法の
容易さから寸法安定性は8%以上が好ましい。
The dimensional stability (intermediate elongation, dry heat shrinkage) of the polyester fiber of the present invention must be 12% or less. If the dimensional stability exceeds 12%, the dimensional stability of the cord during tire molding will be poor; The uniformity of the tire decreases.From this point of view, the dimensional stability is preferably 10% or less.In addition, from the viewpoint of ease of manufacturing, the dimensional stability is preferably 8% or more.

さらに本発明のポリエステルPAHのターミナルモジュ
ラスは5 0 g/d以下である必要がある。ターミナ
ルモジュラスが5 0 g/dを越えると撚糸時強力保
持率が低く、原糸の強度を高くしてもタイヤコードとし
ての強度は高くできない。かかる観点からターミナルモ
ジュラスは3 5 g/d以下とすることが好ましい。
Furthermore, the terminal modulus of the polyester PAH of the present invention must be 50 g/d or less. When the terminal modulus exceeds 50 g/d, the strength retention rate during twisting is low, and even if the strength of the yarn is increased, the strength of the tire cord cannot be increased. From this point of view, the terminal modulus is preferably 3 5 g/d or less.

以上の如く重合触媒としてアンチモン化合物とゲルマニ
ウム化合物を併用し、しかもその邑を厳密1こ制御づる
こどで触媒起因の粒子の生或が抑制て゛き、1ノかもC
 O O H量、DEG量などのボリマ持性が良好なボ
リマが得られる。このようなボリマを利用(ノて初めて
従来にない高性能のポリエステル械4雑が製造できるの
である。
As mentioned above, by using an antimony compound and a germanium compound together as a polymerization catalyst and by strictly controlling their concentration, the generation of particles caused by the catalyst can be suppressed, and it is possible to suppress the generation of particles caused by the catalyst.
A polymer with good retention properties such as O O H amount and DEG amount can be obtained. For the first time ever, it was possible to manufacture polyester machines with unprecedented high performance using such a volima.

すなわら、上述の如く本発明においては重合触媒と(ノ
で利用するアンヂモン化合物の還元により生成づ−るア
ンチモン金屈の最を極力減少させることが、本発明の目
的である高タフネスで(ノかも耐久性良好なゴム補強用
ポリエステル繊紺を得るために重要なのである。
In other words, as mentioned above, in the present invention, it is an object of the present invention to reduce as much as possible the amount of antimony produced by the reduction of the andimony compound used in the polymerization catalyst and (in). This is important in order to obtain a polyester fiber for rubber reinforcement with good durability.

本発明者らの研究によると重合触媒と1ノで用いたアン
ヂモン化合物の還元により生或したアンLtン金属の嬶
を5ppm以下どすることが史(耐久性タフネスの向上
が図れるので好ましく、3Dpm以下がさらに好ましい
。かかるアンヂモン金屈の減少のため重合条件(時間・
温度)を厳密に制往1することが好ま(ノく、ざらに紡
糸時に異常滞沼ゾーンが極力無いよう配慮することや、
配管、バック部品にクロムメッキやテフロンコーティン
グ等を行ない還元反応を抑制ずることが好ましい。さら
にタイヤコードの如きゴム補強用資材では寸法安定性を
良好に(ノつつ(中間伸度十乾熱収縮を低い11aに保
らつつ)、タフネスの向上を図ることが要求ざれる。
According to the research conducted by the present inventors, it is preferable to reduce the content of the antonium metal produced by reduction of the polymerization catalyst and the andimony compound used in step 1 to 5 ppm or less (it is preferable to improve durability and toughness, and The following is more preferable: Polymerization conditions (time,
It is preferable to strictly control the temperature (temperature).
It is preferable to suppress the reduction reaction by applying chrome plating or Teflon coating to the piping and back parts. Further, rubber reinforcing materials such as tire cords are required to have good dimensional stability (while maintaining intermediate elongation and dry heat shrinkage at a low level 11a) and to improve toughness.

本発明者らは、かかる要求についても鋭意検討した結果
、重合時に使用するリン化合物の添加方法や績および種
類を厳密にコントロールすることが上記要求のため、重
要であることを兄出した。リン化合物は一般にボリマの
耐熱性向上のため使用されるがリン化合物が上記の如く
繊維の寸法安定性とタフネスの関係(,:影費するとい
うのは正に驚(べき事実であり、本発明者らの研究の結
果兄出(ノた新しい知見である。
The inventors of the present invention have conducted extensive studies regarding these requirements, and have found that it is important to strictly control the addition method, performance, and type of phosphorus compound used during polymerization to meet the above requirements. Phosphorus compounds are generally used to improve the heat resistance of volima, but it is a surprising fact that phosphorus compounds influence the relationship between the dimensional stability and toughness of fibers as described above. As a result of their research, this is a new finding.

本発明者らの研究の結果、リン化合物と(ノてはリン酸
を使用し、残存最をリン元素と(ノU10−40ppm
、かつ添加時朗は重縮合初明に添加することが好ましい
ことを見出した。かかるリン化合物のコン1〜ロールに
より同一の寸法安定性に対する繊維のタフネスを高(で
きる。
As a result of the research conducted by the present inventors, it was found that a phosphorus compound (phosphoric acid) was used, and the residual content was reduced to 10-40 ppm.
, and it has been found that it is preferable to add it at the beginning of polycondensation. By using such a phosphorus compound, the toughness of the fiber can be increased for the same dimensional stability.

′g′なわら 強伸度積( ’T ./Tl”’ )こ(中間伸度十乾
収)+22.0 なる数式を満足する如く同一の寸法安定性でも高タフネ
スの繊維が11られるので好ま(ノい。
'g' Straw strength elongation product ('T ./Tl''') (intermediate elongation ten-dry yield) + 22.0 Since the fiber with high toughness is 11 with the same dimensional stability, Like (noi)

かかるリン化合物の効県の原因については明確でないが
本発明者らはリン酸の明き3官能リン化合物の増粘作用
{こより紡糸時の繊維構造形成が制御されるためと推定
されでいる。上)ホの如<Tff≧S+22.0を満足
するポリエステル繊mを使用ずると、従来に比較して著
しく耐疲労性の向Eが図れる。
The reason for the effectiveness of the phosphorus compound is not clear, but the present inventors believe that it is due to the thickening effect of the trifunctional phosphorus compound of phosphoric acid, which controls the formation of the fiber structure during spinning. Above) By using polyester fiber m that satisfies <Tff≧S+22.0 as shown in E, the fatigue resistance can be significantly improved compared to the conventional method.

本発明のポリエステル繊維は具体的には以下の方法によ
り製造できる。
Specifically, the polyester fiber of the present invention can be produced by the following method.

重合触媒としてアンチモン化合物、ゲルマニウム化合物
を併用tノ、重縮合反応を行なう。この際リン化合物と
してリン酸を用いリン酸を重縮合初明にアンヂモン化合
物、ゲルマニウム化合物の添加以前に添加することが好
ましい。重縮合に際しては、仕込み最、重合温度、重合
時間を適宜選択1ノ、IVO、651スJ−,Cool
〜1≦26eMton ,DEG≦L 3wt%のポリ
エチレンテレフタレー1〜チップを得る。
The polycondensation reaction is carried out using an antimony compound and a germanium compound as a polymerization catalyst. In this case, it is preferable to use phosphoric acid as the phosphorus compound and add the phosphoric acid to the initial stage of polycondensation before addition of the andimony compound and the germanium compound. During polycondensation, the amount of preparation, polymerization temperature, and polymerization time are appropriately selected.
~1≦26eMton, DEG≦L 3wt% polyethylene terephthalate 1~ chip is obtained.

かくして得られたチップを常法に従がい固相重合し、[
COOH]≦1 6eMton ,  I V 1 .
O以上のポリエチレンテレフタレートを冑、次いで}容
融妨糸(ノ、加熱帯で徐冷1ノた後、チムニー風で冷却
固化しつつ引敗る。この際紡糸機中の配管及びバック部
品をクロムメッキ(ノ、アンチモン金属の析出(還元)
を抑制することが好ま(ノい。又、;戸過用のフィルタ
として絶対戸過径30μ以下の金属線(SUS)不織帛
を用いることが好まIノい。ざらに固相重合に使用する
チッ素や紡糸機内のチッ素中のダス1一畳を極力減少す
るとともチムニー風に用いる空気の戸過を行ないダス1
へ榮を減少することがより好ましい。かかる製糸方法に
より糸中k二存在する宜物故を800個/mg以下、よ
り好ま(ノク(91500個/町以下のレベルに保つこ
とがタフネス耐久性向上のため好ましい。
The chips thus obtained were subjected to solid phase polymerization according to a conventional method, and [
COOH]≦16eMton, IV 1 .
Polyethylene terephthalate with a weight of 0 or higher is melted and then slowly cooled in a heating zone for 1 time, then cooled and solidified in a chimney wind. At this time, the piping and back parts in the spinning machine are coated with chrome. Plating (No. Antimony metal precipitation (reduction)
Also, it is preferable to use a metal wire (SUS) non-woven fabric with an absolute diameter of 30 μm or less as a door filter. In addition to reducing the amount of nitrogen contained in the nitrogen and the amount of nitrogen in the spinning machine as much as possible, we also conducted a chimney-style air passage.
It is more preferable to reduce the amount of hair loss. It is preferable to maintain the amount of filtrate present in the yarn at a level of 800 pieces/mg or less, more preferably 91,500 pieces/mg or less, in order to improve toughness and durability.

かくして口金から吐出した糸条を引取速度1000m/
分以上、より好ましくは2000m/分以上4000m
/分以下で高配向紡糸する。
The yarn thus discharged from the nozzle was taken at a speed of 1000 m/
min or more, preferably 2000m/min or more 4000m
Highly oriented spinning at less than /min.

この未延伸糸を紡糸にひき続き、又は一度巻取った後、
ホットローラ延伸を行ない220℃以上の温度で熱セッ
トする。この際延伸倍率やリラックス率を適宜安定して
ターミナルモジュラスを5 0 C)/d以下とする。
After spinning this undrawn yarn or winding it once,
Hot roller stretching is performed and heat set at a temperature of 220°C or higher. At this time, the stretching ratio and relaxation rate are appropriately stabilized so that the terminal modulus is 5 0 C)/d or less.

[実施例] 以下実施例により本発明を更に詳細に説明する。[Example] The present invention will be explained in more detail with reference to Examples below.

なお実施例中の物性は次の様にして測定した。Note that the physical properties in the examples were measured as follows.

A.ボリマ中及びti&M中の金属量(アンチモン、ゲ
ルマニウム、リン量など)は螢光X線法により求めた。
A. The amounts of metals (antimony, germanium, phosphorus, etc.) in the bolimar and ti&M were determined by a fluorescent X-ray method.

B.カルボキシル末端基量(Coo口〉試料0.5gを
O−クレゾール10dに溶解し、完全溶解後冷却してか
らクロロホルム3−を加え、NaO口のメタール溶液に
て電位差滴定を行ない求めた。
B. Amount of carboxyl terminal group (Coo) was determined by dissolving 0.5 g of a sample in 10 d of O-cresol, cooling it after complete dissolution, adding chloroform 3-, and performing potentiometric titration with a metal solution of NaO.

C.DEG屋 試料をアルカリ分解した後、ガスクロマトグラフィを用
いて定量した。
C. After the DEG shop sample was subjected to alkali decomposition, it was quantified using gas chromatography.

D.強伸度、中間伸度、ターミナルモジ1ラス東洋ボー
ルドウイン社製テンシロン引張試験機を用い、試長25
cm、引取速度30cml分でS−S曲線を求め、強伸
度を算出した。
D. Strong elongation, intermediate elongation, terminal modulus 1 lath using Toyo Baldwin Tensilon tensile tester, test length 25
cm, an SS curve was obtained at a take-up speed of 30 cm, and the strength elongation was calculated.

また同じS−S曲線から強度4.5g/dに対応する伸
度を読みとり中間伸度を求めた。
Further, from the same SS curve, the elongation corresponding to the strength of 4.5 g/d was read to determine the intermediate elongation.

ターミナルモジュラスは切断伸度から2.4%を減じた
点における応力と破断応力との差を2.4X10−”で
除して求めた。
The terminal modulus was determined by dividing the difference between the stress at the point where 2.4% was subtracted from the cutting elongation and the breaking stress by 2.4 x 10-''.

E.乾熱収縮率ΔSd 試料をカセ状にとり20℃、65%R口の温調室に24
時間以上敢置したのち、試料の0,1q/dに相当する
荷重をかけて測定した長ざ0.oの試料を、無張力状態
で150℃のオーブン中に15分放置したのら、オーブ
ンから取り出し前記@調至で4時間放置し、再び上記荷
重をかけて測定した長さ琵1から次式により算出した。
E. Dry heat shrinkage rate ΔSd Take the sample in the form of a skein and place it in a temperature-controlled room at 20°C and 65% R for 24 hours.
After leaving it for more than an hour, the length was measured by applying a load equivalent to 0.1q/d of the sample. After leaving the sample o in an oven at 150°C for 15 minutes without tension, take it out of the oven and leave it in the above @adjustment for 4 hours, apply the above load again, and calculate the measured length from the following formula. Calculated by.

△Sd= (Qo−0.1)/D.o x100 (%
)F.糸中異物数 試料を単糸1本ずつに分割し、スライドガラスにたるま
ないように張ってサンプリングした試料(長さ6 cm
 )を、オリンパス製光学顕微鏡(位相差法)を用い、
倍率200倍でスキャンし、糸中異物の数をカウントす
る。
ΔSd=(Qo-0.1)/D. ox100 (%
)F. Number of Foreign Matter in Threads The sample was divided into single threads, and sampled by placing them on a slide glass so that they did not sag (length: 6 cm).
) using an Olympus optical microscope (phase contrast method),
Scan at 200x magnification and count the number of foreign objects in the thread.

測定数5でくり返し行ない平均値×(個/6cm )を
求め、この値をmgあたりの異物数に換算する。
Repeat the measurement with 5 measurements to find the average value × (pieces/6 cm 2 ), and convert this value to the number of foreign particles per mg.

G.極限粘度(IV) 温度25℃においてオルソク口ロフェノール(以下OC
Pとする)10−に対し試料0.8tjを溶解し、オス
トワルド粘度計を用いて相対粘度(ηT)を下式により
求め、更にlVを算出する。
G. Intrinsic viscosity (IV) At a temperature of 25°C, orthocrophenol (hereinafter referred to as OC)
Dissolve 0.8 tj of the sample in 10- (referred to as P), determine the relative viscosity (ηT) using the following formula using an Ostwald viscometer, and further calculate lV.

ηT=η/η0 −tXd/to xciQIV=0.
02427)T+0.2634η :ポリマ溶液の粘度 η0:溶媒の粘度 t :溶液の落下時間(秒) d :溶液の密度( Q / aj )to:OcPの
落下時間(秒) do:OcPの密度( Q / cTj)口.アンチモ
ン金属量 ボリ740gをオルソク口ロフェノール(OCP)50
0mk:i解し遠心分離(12,000rpmx2hr
)後、洗浄、乾燥スル。
ηT=η/η0 −tXd/to xciQIV=0.
02427) T+0.2634η: Viscosity of polymer solution η0: Viscosity of solvent t: Falling time of solution (seconds) d: Density of solution (Q/aj)to: Falling time of OcP (seconds) do: Density of OcP (Q / cTj) Mouth. 740g of antimony metal and 50g of orthochlorphenol (OCP)
0mk: i-dissolved centrifugation (12,000 rpm x 2 hr
) After washing and drying.

得られた遠沈粒のスペクトルをX線回折装置により測定
し、スペクトルから金属アンチモンを定量する。
The spectrum of the obtained centrifuged grains is measured using an X-ray diffraction device, and metal antimony is determined from the spectrum.

■.ゴム中での耐熱性 コードをゴム中にうめ込み150℃で6時間加硫後の強
力保持率で評価した。強力保持率70%以上を◎、60
〜70%を○、60%未満をXとして示した。
■. Heat resistance in rubber The cord was embedded in rubber and evaluated by strength retention after vulcanization at 150°C for 6 hours. Strong retention rate of 70% or more ◎, 60
~70% is shown as ○, and less than 60% is shown as X.

d.耐疲労性(GY寿命) ASTM−0885に準じチューブ内圧3.5 K’J
 / ctA、回転速度850rpm、チューブ角度9
0’ としてチューブの破裂時間を求めた。
d. Fatigue resistance (GY life) Tube internal pressure 3.5 K'J according to ASTM-0885
/ ctA, rotation speed 850 rpm, tube angle 9
The rupture time of the tube was determined as 0'.

結果は ◎は従来品(東レ(株)製の市販タイヤ〕一ド1 00
0−240−703M>に比べ3割以上アップしたもの Oは従来比で1〜3割アップしたもの △は従来品レベルのもの で示した。
The results are: ◎ is a conventional product (commercial tire made by Toray Industries, Inc.) 1.00
0-240-703M> O indicates an increase of 1 to 30% compared to the conventional product. Δ indicates a conventional product level.

実施例1 テ1ノフタル酸ジメヂル100部とエチレングリ]一ル
50.2部に酢酸マンガン4水塩0.035部を添加し
、常法によりTステル交換反応を行なった。次いで得ら
れた生成物にリン酸を0.009部加えた11(P.:
して29Dpm>、二酸化ゲルマニウム0.0025部
(Geとしで17ppm>をhロえ、さらに三酸化アン
チモン0.0125部(Sbと(ノて104ppm)加
えて3時間10分重綜合反応を行なった。
Example 1 0.035 parts of manganese acetate tetrahydrate was added to 100 parts of dimethyl te1-nophthalate and 50.2 parts of ethylene glycol, and a T transesterification reaction was carried out in a conventional manner. Next, 11 (P.:
Then, 0.0025 part of germanium dioxide (17 ppm of Ge) was added, and 0.0125 part of antimony trioxide (104 ppm of Sb) was added to conduct a polymerization reaction for 3 hours and 10 minutes. .

(重合温度285℃) 得られたボリマの極限粘度(IV)は0. 72、カル
ボキシル末端量( [COO口])17.1eMton
 、DEGO、7wt%であった。
(Polymerization temperature: 285°C) The intrinsic viscosity (IV) of the obtained bolimar was 0. 72, Carboxyl terminal amount ([COO port]) 17.1 eMton
, DEGO, was 7 wt%.

又、得られたボリマ中のアンチモン量は100ppm、
ゲルマニウム供は10Dpm、リン量は2oppmであ
った。本ポリマ中のアンチモン金属量は0.3Dpmで
あった。
In addition, the amount of antimony in the obtained bolimar was 100 ppm,
The germanium content was 10 Dpm, and the amount of phosphorus was 2 oppm. The amount of antimony metal in this polymer was 0.3 Dpm.

上述のボリマを160℃で5時間予備乾燥後225℃で
同相重合(ノIV=1.35の固相重合チップを得た。
The above-mentioned volima was pre-dried at 160° C. for 5 hours and then subjected to in-phase polymerization at 225° C. (a solid-phase polymerized chip with IV=1.35 was obtained).

このチップをエクス1ヘルーダ型紡糸機で紡糸温度29
5℃にて紡糸した。この際フィルターとして絶対枦過径
15μの金属不fJ布を用い、口金はO。6mφの丸孔
を用いた。又ボリマ配管及びバック部品のボリマと接触
ずる部分にクロムメッキをほどこすとともに、チムニー
用チッ素は1μのフィルターにて枦過し使用した。
This chip was spun using an Ex1 Heruda type spinning machine at a temperature of 29
Spinning was carried out at 5°C. At this time, a metal non-J cloth with an absolute diameter of 15 μm was used as a filter, and the cap was O. A round hole of 6 mφ was used. In addition, chrome plating was applied to the parts of the bollima piping and back parts that came in contact with the bollima, and the nitrogen for the chimney was passed through a 1μ filter before use.

口金から吐出した糸を長さ25cm,内径25cmφ、
温度3 0 0 ’Cの加熱筒で徐冷後チムニー冷却風
をあて冷却固化させ、給油した後、表−1に示づ−引取
速度C引取った。得られた未延伸糸を延伸温度90℃、
熱遮理温度240℃で倍率、リラックス率を変更し、延
伸糸を得た。
The thread discharged from the nozzle has a length of 25 cm, an inner diameter of 25 cmφ,
After being slowly cooled in a heating cylinder at a temperature of 300'C, a chimney cooling air was applied to cool and solidify the material, and after oiling, it was taken off at a take-up speed C as shown in Table 1. The obtained undrawn yarn was stretched at a temperature of 90°C.
A drawn yarn was obtained by changing the magnification and relaxation rate at a heat shielding temperature of 240°C.

こうして製造したポリエステル繊維の糸中の異物数は1
50個/ffi!9 〜450個/m’Jであり、I0
.98へ−1.OLカルボキシル末端基は1 4eMt
on ,DEGは0.7wt%であった。
The number of foreign substances in the yarn of the polyester fiber produced in this way is 1
50 pieces/ffi! 9 to 450 pieces/m'J, and I0
.. To 98-1. OL carboxyl end group is 14eMt
on, DEG was 0.7 wt%.

次にこの延伸糸に下撚をS方向に49T/10cts、
上撚りをZ方向に49T/10rmかけ生コードとした
Next, this drawn yarn was first twisted in the S direction at 49T/10cts.
The first twist was applied at 49T/10rm in the Z direction to form a raw cord.

次にこのコードをリッラー社製のコンビュー1〜リータ
を用いて接着剤をデップして処理ロードを作或した。辺
理条件は乾燥温度160℃、定長処理、熱処理温度24
0℃の緊張処理、後処理温度は240℃の弛緩処理であ
った。この緊張率、弛緩率を調整することにより処理コ
ードの中間伸度を3−4%としたa原糸、生コード、逃
即]−F物性を表−1に示す。
Next, this cord was coated with adhesive using Convue 1~Rita manufactured by Riller Co., Ltd. to prepare a processing load. The processing conditions are drying temperature 160℃, fixed length treatment, heat treatment temperature 24℃.
The tension treatment was performed at 0°C, and the post-treatment temperature was 240°C for relaxation treatment. By adjusting the tension rate and relaxation rate, the intermediate elongation of the treated cord was set at 3-4%, and the physical properties of raw yarn, raw cord, and loose yarn are shown in Table 1.

表−1から明らかな如く特定のボリマを使用し、厳密な
製糸条件をとることにより本発明で規定した強伸度積を
越える高タフネス原糸(より詳細にはTa≧S+22.
0を満足する高タフネス原糸)が得られる。
As is clear from Table 1, high toughness yarn exceeding the strength/elongation product defined by the present invention (more specifically, Ta≧S+22.
A high toughness raw yarn that satisfies 0 is obtained.

しかしながら、引取速度が低く寸法安定性が12を越え
るNα1はタイヤユニフォミティが不満足である。又N
(13と同一条件で紡糸したが、廷伸条件を変えターミ
ナルモジュラスが50を越えたNα5は原糸の強伸度積
は高くとも撚糸、ディップ時に強力低下し処理コードの
タフネスは従来と大差ないレベルに低下してしまう。高
タフネスでタイヤユニフォミテイも良好となるのは本発
明の範囲を満たすNα2〜4の繊維のみであった。
However, Nα1, which has a low take-up speed and a dimensional stability exceeding 12, has unsatisfactory tire uniformity. Also N
(Nα5 yarn was spun under the same conditions as No. 13, but the terminal modulus exceeded 50 by changing the elongation conditions. Although the strength-elongation product of the raw yarn was high, the strength decreased during twisting and dipping, and the toughness of the treated cord was not much different from that of the conventional yarn. Only fibers with Nα of 2 to 4 that meet the range of the present invention had high toughness and good tire uniformity.

実施例2 実施例1と同じボリマを用い紡糸温度と滞留時間を変更
してカルボキシル末端基の量を変更した未延伸糸を実施
例INα3と同一の条件で得た。表−2から明らかな如
くカルボキシル末端基量が25eg/ton以上となる
とゴム中耐熱性が悪化する。又、 表−2 実施例lのポソマ製造時にジエチレングリコールを添加
し、 DEG量を変更した。
Example 2 An undrawn yarn was obtained under the same conditions as Example INα3, using the same polymer as in Example 1 and changing the spinning temperature and residence time to change the amount of carboxyl end groups. As is clear from Table 2, when the amount of carboxyl terminal groups is 25 eg/ton or more, the heat resistance in the rubber deteriorates. Furthermore, diethylene glycol was added during the production of Posoma in Table 2 Example 1 to change the amount of DEG.

表−3 表−3如<DEGがl, 3wt%を越えると寸 法安定性が悪化するとともにゴム中の耐熱性も低下する
Table 3 As shown in Table 3, if the DEG content exceeds 1,3 wt%, the dimensional stability deteriorates and the heat resistance in the rubber also decreases.

実施例3 実施例1のボリマの製造に際1ノで、添加する二酸化ア
ンチモン及び二酸化ゲルマニウムのそを変更しIV0.
7のチップを得た。該ヂツブから実施例1の実験NQ3
に準じてポリエステル械雑を得た。結果を表−4にボリ
マ持性占合せCボした。
Example 3 During the production of the volima of Example 1, the antimony dioxide and germanium dioxide added were changed in Step 1 to obtain IV0.
I got 7 chips. Experiment NQ3 of Example 1 from the above
A polyester machine miscellaneous material was obtained according to the method. The results are shown in Table 4 in terms of volima retention.

(以下余白) 表−4から明らかな明くアンチーしンm M 1 5o
ppmを越える11、1 7でGtSbメl1が多く、
糸中異物数も多星となりタフネスが名しく低下するのが
わかる。又、アンチモンdが30ppm未満のNQ14
はゲルマニウム星111ppmなので重合反応性が悪(
IV0.7とするためには重合時間が長くなりCOOl
1が増加した。このため糸中のC O O 1−1が2
8.5F3Q/tonとなりゴム中の耐熱性が不満足で
ある。
(Left below) Bright anti-shine that is clear from Table 4 M M 1 5o
There is a lot of GtSb mel1 in 11,17 exceeding ppm,
It can be seen that the number of foreign substances in the thread increases and the toughness decreases. Also, NQ14 with antimony d less than 30 ppm
has a germanium star concentration of 111 ppm, so its polymerization reactivity is poor (
In order to obtain an IV of 0.7, the polymerization time becomes longer and COOl
1 increased. Therefore, C O O 1-1 in the yarn is 2
8.5F3Q/ton, and the heat resistance in the rubber is unsatisfactory.

一方、アンチモン量は301)Dm未満とし、それに伴
ないゲルマニウム量を180I)DrT1と多く添加し
たNO、15はl) E G mが増加し、ゴム中耐熱
性が不満足であった。又、ゲルマニウム星を5[)m未
満とした加α16はアンチモン星が1501)pm以下
では重合反応性が悪<COO口が増加する。このため糸
中のCOO口が29,(3 eg/ tonとなりゴム
中の耐熱性が不満足であつ Iこ。
On the other hand, NO, 15, in which the amount of antimony was less than 301)Dm and the amount of germanium added accordingly was as large as 180I)DrT1, l)E G m increased and the heat resistance in the rubber was unsatisfactory. Further, when the germanium star is set to less than 5[) m, the polymerization reactivity is poor and the COO opening increases when the antimony star is below 1501) pm. As a result, the COO opening in the yarn is 29,3 eg/ton, and the heat resistance in the rubber is unsatisfactory.

本発明の目的はsb暴30へ−150pF)mのアンヂ
モン化合物、Geffi5〜120p[Dmゲルマニウ
ム化合物を重合触媒して用いたNα12、L3のみで達
戒された。
The object of the present invention was achieved only with Nα12 and L3 using an andmone compound with a sb range of 30 to 150 pF) and a Geffi5 to 120 p[Dm germanium compound as a polymerization catalyst.

実施例4 重縮合反応に用いるリン戒分としてリン酸の変わりにリ
ン酸トリメチルを同一モルとなるように用いる以外は実
施例1同一の方法でポリマを得た。このボリマを実施例
INα3と同一方法で紡糸延伸し表−6に示す物性の延
伸糸を得た9表−6 表−6の如くリンの種類を変えると同一条件で紡糸した
時の収縮率が約l%高くなる。Nα3と同様高タフネス
の糸は出来るが同一の寸法安定性(中仲十乾収〉に対す
るタフネスという見方で比較すると低下する。(Tn≧
中仲十乾収+22.0を満さなくなる)Nα3とNQ 
1 8の耐疲労性はどちらも従来糸に比べ優れていたが
特にT√E≧S+22.0を満足するN(13がNα1
8より優れていた。
Example 4 A polymer was obtained in the same manner as in Example 1 except that trimethyl phosphate was used in the same molar amount instead of phosphoric acid as the phosphorus component used in the polycondensation reaction. This volima was spun and drawn in the same manner as in Example INα3 to obtain a drawn yarn with the physical properties shown in Table 6. Table 9 Table 6 As shown in Table 6, when the type of phosphorus was changed, the shrinkage rate when spinning under the same conditions was Approximately 1% higher. Similar to Nα3, a yarn with high toughness can be produced, but when compared in terms of toughness for the same dimensional stability (Nakanaka Juken Yield), it is lower (Tn≧
Nα3 and NQ
The fatigue resistance of both 1 and 8 was superior to that of conventional yarns, but in particular N (13 was Nα1) satisfying T√E≧S+22.0.
It was better than 8.

実施渕5 実施例INα3と同一条件で紡糸を行なった紡糸機は通
常用いる紡糸機を用い、パック部品も通常使用1゛るも
のを用いてP過フィルターも使用しなかった、 又、チッ素のう戸過等も特に配慮しなかった。
Example 5 Spinning was carried out under the same conditions as in Example INα3. A commonly used spinning machine was used, and pack parts were those normally used, and no P filter was used. No particular consideration was given to Utosu et al.

物性値を下記する9 (以下余白) 表−7 表−7に示したように紡糸条件が通常であると糸中異物
が増加しタフネスも従来品よりは依然高いもののNQ3
よりも低下する。
The physical properties are listed below 9 (blank below) Table 7 As shown in Table 7, when the spinning conditions are normal, foreign matter in the yarn increases and the toughness is still higher than the conventional product, but NQ3
decreases more than

[発明の効果] 本発明においてはポリマの触媒組成を規定し、かつポリ
エステル繊維を特定することにより、始めて高タフネス
で寸法安定性、耐熟性、耐久性が良好なゴム補弛用原糸
が得られる。この原糸はタイヤコード用に特に好適に用
いられ従来比レスエンズ、レスプライ化が可能でありタ
イヤ軽量化が実現できる。又、寸法安定性が良好でユニ
フォミティの良好なタイヤが得られる。
[Effect of the invention] In the present invention, by specifying the catalyst composition of the polymer and specifying the polyester fiber, for the first time, a yarn for rubber reinforcement with high toughness and good dimensional stability, ripening resistance, and durability has been created. can get. This yarn is particularly suitable for use in tire cords, and can be made with less ends and less ply than conventional cords, making it possible to reduce the weight of tires. Moreover, a tire with good dimensional stability and good uniformity can be obtained.

Claims (3)

【特許請求の範囲】[Claims] (1)アンチモンとして30〜150ppmの量のアン
チモン化合物とゲルマニウムとして5〜120ppmの
量のゲルマニウム化合物を重合触媒として用いたポリエ
ステルから成り、下記の特性を有するゴム補強用ポリエ
ステル繊維。 A、カルボキシル末端基量(COOH) COOH≦25eg/ton B、ジエチレングリコール含有量(DEG)DEG≦1
.3wt% C、極限粘度(IV) IV≧0.85 D、寸法安定性(S)(中間伸度+乾熱収縮率)S≦1
2.0% E、ターミナルモジュラス(Mt) Mt≦50g/d
(1) A polyester fiber for rubber reinforcement, which is made of polyester using as a polymerization catalyst an antimony compound in an amount of 30 to 150 ppm as antimony and a germanium compound in an amount of 5 to 120 ppm as germanium as a polymerization catalyst. A, Carboxyl terminal group amount (COOH) COOH≦25eg/ton B, Diethylene glycol content (DEG) DEG≦1
.. 3wt% C, intrinsic viscosity (IV) IV≧0.85 D, dimensional stability (S) (intermediate elongation + dry heat shrinkage) S≦1
2.0% E, terminal modulus (Mt) Mt≦50g/d
(2)光学顕微鏡により透過光法で測定される糸中異物
数が800個/mg以下である請求項(1)記載のゴム
補強用ポリエステル繊維。
(2) The polyester fiber for rubber reinforcement according to claim (1), wherein the number of foreign substances in the yarn as measured by the transmitted light method using an optical microscope is 800 pieces/mg or less.
(3)繊維のタフネス(T√E)と寸法安定性(S)が
下記式( I ) T√E≧S+22.0………( I ) を満たすことを特徴とする請求項(1)又は請求項(2
)記載のゴム補強用ポリエステル繊維。
(3) Claim (1) characterized in that the toughness (T√E) and dimensional stability (S) of the fiber satisfy the following formula (I): T√E≧S+22.0 (I); or Claim (2
) Polyester fibers for rubber reinforcement as described.
JP1296586A 1989-11-15 1989-11-15 Polyester fiber for rubber reinforcement Expired - Lifetime JP2775923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1296586A JP2775923B2 (en) 1989-11-15 1989-11-15 Polyester fiber for rubber reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1296586A JP2775923B2 (en) 1989-11-15 1989-11-15 Polyester fiber for rubber reinforcement

Publications (2)

Publication Number Publication Date
JPH03161509A true JPH03161509A (en) 1991-07-11
JP2775923B2 JP2775923B2 (en) 1998-07-16

Family

ID=17835465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1296586A Expired - Lifetime JP2775923B2 (en) 1989-11-15 1989-11-15 Polyester fiber for rubber reinforcement

Country Status (1)

Country Link
JP (1) JP2775923B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8968615B2 (en) 2004-09-02 2015-03-03 Eastman Chemical Company Low melting polyester polymers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105751A (en) 2000-07-28 2002-04-10 Toyobo Co Ltd Polyester yarn for reinforcing rubber and dipped cord

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8968615B2 (en) 2004-09-02 2015-03-03 Eastman Chemical Company Low melting polyester polymers

Also Published As

Publication number Publication date
JP2775923B2 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
US4690866A (en) Polyester fiber
PL184254B1 (en) Yarn made of continuous polyester monofilaments, polyester tyre reinforcement cord and method of making them
US5242645A (en) Rubber-reinforcing polyester fiber and process for preparation thereof
JP3141862B2 (en) Tire cords and tires
JPS6141320A (en) Polyester fiber
JPH03161509A (en) Polyester fiber for reinforcing rubber
JPH11107036A (en) High-tenacity polyester fiber and its production
JPS6269819A (en) Polyester fiber
JP2822503B2 (en) Polyester fiber for high toughness rubber reinforcement
JP2887324B2 (en) Polyester fiber for rubber reinforcement and method for producing the same
JP2770509B2 (en) Polyester dip cord
JPH0450407B2 (en)
JPH0323644B2 (en)
JP2629923B2 (en) High toughness polyester fiber and cord and tire comprising the same
JPH03185141A (en) Polyester dip cord for rubber reinforcing
JPH04194024A (en) Production of polyester fiber
JPH04342602A (en) Pneumatic tire
JP2776003B2 (en) Method for producing polyester fiber
JP4108873B2 (en) Polyester fiber
JPH0197212A (en) High-strength composite fiber
JPH09256220A (en) Polyester fiber for rubber reinforcement
JP5108937B2 (en) Polyethylene naphthalate fiber and method for producing the same
JPH10251919A (en) Polyester fiber and its production
JPH11158743A (en) Heat-resistant polyamide fiber and its production
KR960012825B1 (en) Polyester and dipping and the manufacturing method thereof