JPH09256220A - Polyester fiber for rubber reinforcement - Google Patents

Polyester fiber for rubber reinforcement

Info

Publication number
JPH09256220A
JPH09256220A JP8070207A JP7020796A JPH09256220A JP H09256220 A JPH09256220 A JP H09256220A JP 8070207 A JP8070207 A JP 8070207A JP 7020796 A JP7020796 A JP 7020796A JP H09256220 A JPH09256220 A JP H09256220A
Authority
JP
Japan
Prior art keywords
antimony
nickel
polyester fiber
rubber
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8070207A
Other languages
Japanese (ja)
Inventor
Minoru Uchida
実 内田
Yuhei Maeda
裕平 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP8070207A priority Critical patent/JPH09256220A/en
Publication of JPH09256220A publication Critical patent/JPH09256220A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Tyre Moulding (AREA)
  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the subject fibers having desired high dimensional stability, excellent in heat resistance, and capable of replacing rayon by containing respectively a specific amount of a nickel compound and an antimony compound. SOLUTION: A polyester containing a nickel compound (e.g. nickel acetate) in an amount of 2-120ppm reduced to a nickel metal and an antimony compound (e.g. antimony trioxide) in an amount of 150-450ppm reduced to an antimony metal is fiberized and a total amount of intermediate elongation (elongation corresponding to 4.5g/d stress in a stress-strain curve; defined in this invention) and dry heat shrinkage (at 150 deg.C) is made to <8% to obtain the objective polyester fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ゴム補強用ポリエ
ステル繊維に関するものである。更に詳しくは、従来品
に比べて寸法安定性およびゴム中耐熱性に優れ、レーヨ
ン代替が可能なゴム補強用ポリエステル繊維に関するも
のである。
TECHNICAL FIELD The present invention relates to a polyester fiber for rubber reinforcement. More specifically, the present invention relates to a polyester fiber for rubber reinforcement, which has excellent dimensional stability and heat resistance in rubber as compared with conventional products and can substitute rayon.

【0002】[0002]

【従来の技術】ポリエステル繊維は機械的性質・寸法安
定性・耐久性に優れるため衣料用だけでなく、タイヤ、
ベルト、ホース等のゴム製品の補強用材料として産業用
途にも幅広く用いられている。特にタイヤコードなどの
ゴム補強用途ではその優れた性能を生かし多量に利用さ
れている。従来、タイヤコード用途では低配向の未延伸
糸を高倍率延伸した高強度の原糸が使用されていたが、
かかる高強度糸では乾熱収縮率が高く、タイヤコードと
してゴム中に埋め込んでタイヤを成形するとコードの収
縮のためタイヤの均一性が悪化するという問題があっ
た。かかる問題の解決のため、比較的高配向の未延伸糸
(いわゆるPOY)を延伸して高強度糸とすることによ
り、タイヤコードとしての寸法安定性を向上させること
が提案され、これが近年のタイヤコード技術の主流とな
っている。このような高配向紡糸と延伸の技術によって
収縮の低減化は図れるものの、依然としてそのレベルは
レーヨンコードに比べ高収縮であるため、さらなる収縮
率の低減化が望まれている。
2. Description of the Related Art Polyester fiber has excellent mechanical properties, dimensional stability, and durability, and is therefore used not only for clothing but also for tires.
It is widely used in industrial applications as a reinforcing material for rubber products such as belts and hoses. In particular, it is widely used in rubber reinforcing applications such as tire cords by taking advantage of its excellent performance. Conventionally, a high-strength raw yarn obtained by stretching a low-oriented undrawn yarn at a high ratio has been used for tire cord applications.
Such a high-strength yarn has a high dry heat shrinkage ratio, and when a tire cord is embedded in rubber to form a tire, there is a problem that the uniformity of the tire is deteriorated due to the shrinkage of the cord. In order to solve such a problem, it has been proposed to improve the dimensional stability as a tire cord by drawing a relatively highly oriented undrawn yarn (so-called POY) to obtain a high strength yarn. It has become the mainstream of code technology. Although shrinkage can be reduced by such highly oriented spinning and drawing techniques, since the level is still higher than that of rayon cord, further reduction of shrinkage rate is desired.

【0003】タイヤの性能をより向上させるため、低収
縮化を図る技術として従来から種々の提案がなされてい
る。例えば特開昭63−165547号公報に記載され
ているように紡糸速度5000m/分以上として未延伸
糸のΔnを80×10-3以上、密度1.375g/cm
3 以上に配向結晶化を進めさせる方法が開示されてい
る。また、特開昭61−132616号公報、特開昭6
1−252332号公報、特開昭62−69819号公
報にも同様な思想による低収縮タイヤコードが提案され
ている。しかしながら、前記した従来の技術による方法
では寸法安定性(中間伸度+乾熱収縮率が低い)の良好
なタイヤコードが得られるものの、いずれも強度が実用
レベルに未達であったり、ゴム中の耐熱性が著しく低下
するためタイヤコードとして使用してもタイヤの寿命が
短く、耐久性に問題があった。また、ゴム中の耐熱性に
問題があるためビスオキサゾリン化合物やエポキシ化合
物、カルボジイミド化合物等のような低COOH化剤を
添加し、ポリエステル中に含まれる末端カルボキシル基
量の低減化を図ることによって上記の欠点を補っている
ものの、かかる低COOH化剤の使用は製糸性の悪化、
毛羽の増加など操業上の問題があったり、強度低下、耐
疲労性の低下、コストアップ等を伴い、使用においては
多くの問題点があった。
In order to further improve the performance of tires, various proposals have heretofore been made as techniques for achieving low shrinkage. For example, as described in JP-A-63-165547, when the spinning speed is 5000 m / min or more, the Δn of the undrawn yarn is 80 × 10 −3 or more and the density is 1.375 g / cm 3.
A method of promoting oriented crystallization to 3 or more is disclosed. In addition, JP-A-61-232616 and JP-A-6-132616
A low shrinkage tire cord based on a similar idea is also proposed in JP-A 1-252332 and JP-A-62-69819. However, although the above-mentioned method according to the conventional technique can provide a tire cord with good dimensional stability (intermediate elongation + low dry heat shrinkage), it does not reach a practical level in strength, Since the heat resistance of the tire is remarkably reduced, the life of the tire is short even if it is used as a tire cord, and there is a problem in durability. Further, since there is a problem in heat resistance in rubber, by adding a low COOH agent such as a bisoxazoline compound, an epoxy compound, or a carbodiimide compound to reduce the amount of terminal carboxyl groups contained in the polyester, However, the use of such a low COOH agent deteriorates the spinnability,
There have been many problems in use due to operational problems such as increased fluff, reduced strength, reduced fatigue resistance, and increased costs.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は上記従
来の問題を解消し、寸法安定性およびゴム中の耐熱性に
優れ、レーヨン代替が可能なゴム補強用ポリエステル繊
維を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a rubber-reinforcing polyester fiber which is excellent in dimensional stability and heat resistance in rubber and which can be substituted for rayon. .

【0005】[0005]

【課題を解決するための手段】本発明の目的は、次の構
成によって達成される。ニッケル金属として2〜120
ppmのニッケル化合物およびアンチモン金属として1
50〜450ppmのアンチモン化合物を含有したポリ
エステルからなり、寸法安定性(中間伸度+乾熱収縮
率)が8%未満であるゴム補強用ポリエステル繊維。
The object of the present invention is achieved by the following constitutions. 2-120 as nickel metal
1 ppm as nickel compound and antimony metal
A polyester fiber for rubber reinforcement, comprising polyester containing 50 to 450 ppm of an antimony compound and having a dimensional stability (intermediate elongation + dry heat shrinkage) of less than 8%.

【0006】[0006]

【発明の実施の形態】以下に本発明を詳細に説明する。
本発明のポリエステル繊維に含まれるアンチモン化合物
の量はアンチモン金属量として150〜450ppmで
ある必要がある。アンチモン化合物はポリエステルの重
合触媒として用いられるが、アンチモン量が150pp
m未満では重合反応性が不十分であるため、実用的な極
限粘度を有するポリマを良好な生産性で得ることができ
ないだけでなく、紡糸時の配向結晶化挙動に影響するア
ンチモン化合物に起因する粒子が少なくなるため、寸法
安定性の低下やゴム中耐熱性が低下する。アンチモン量
が450ppmより多く存在していると、アンチモン化
合物による粗大粒子が生成して繊維の強度が低下する。
また、異物欠陥が多くなるのでゴム中耐熱性が不良とな
り、好ましくない。かかる観点からアンチモン化合物の
アンチモン金属量は180〜400ppmが好ましく、
さらに好ましくは200〜350ppmにするのがよ
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The amount of the antimony compound contained in the polyester fiber of the present invention needs to be 150 to 450 ppm as the amount of antimony metal. Antimony compounds are used as polymerization catalysts for polyester, but the amount of antimony is 150 pp
If it is less than m, the polymerization reactivity is insufficient, so that it is not possible to obtain a polymer having a practical intrinsic viscosity with good productivity, but also it is caused by an antimony compound that influences the oriented crystallization behavior during spinning. Since the number of particles decreases, the dimensional stability and heat resistance in rubber decrease. If the amount of antimony is more than 450 ppm, coarse particles are generated by the antimony compound and the strength of the fiber is reduced.
Further, since the number of foreign matter defects increases, the heat resistance in rubber becomes poor, which is not preferable. From this viewpoint, the antimony metal content of the antimony compound is preferably 180 to 400 ppm,
More preferably, it should be 200 to 350 ppm.

【0007】また、本発明のポリエステル繊維に含まれ
るニッケル化合物の量はニッケル金属量として2〜12
0ppmである必要がある。ニッケル量が2ppm未満
ではアンチモン化合物とニッケル化合物の併用による触
媒起因粒子の微細化効果が不十分となり、寸法安定性の
低下やゴム中耐熱性が不良となる。また、ニッケル量が
120ppmを越えると、ニッケル化合物に起因する粗
大粒子が生成し、繊維の強度やゴム中耐熱性が低下す
る。かかる観点から、ニッケル化合物の量はニッケル金
属量として3〜100ppmが好ましく、さらに好まし
くは5〜80ppmにするのがよい。
The amount of the nickel compound contained in the polyester fiber of the present invention is 2 to 12 as the amount of nickel metal.
It should be 0 ppm. If the amount of nickel is less than 2 ppm, the effect of refining the particles caused by the catalyst due to the combined use of the antimony compound and the nickel compound becomes insufficient, resulting in a decrease in dimensional stability and a poor heat resistance in rubber. Further, when the amount of nickel exceeds 120 ppm, coarse particles are generated due to the nickel compound, and the strength of the fiber and the heat resistance in rubber are reduced. From this point of view, the amount of the nickel compound is preferably 3 to 100 ppm, more preferably 5 to 80 ppm as the amount of nickel metal.

【0008】なお、本発明のポリエステル繊維に使用す
るアンチモン化合物としては三酸化アンチモン、五酸化
アンチモン、酢酸アンチモン等が使用されるが、これら
のうち特に三酸化アンチモンが好ましい。またニッケル
化合物としてはギ酸ニッケル、酢酸ニッケル、安息香酸
ニッケル、塩化ニッケル、臭素酸ニッケル等が使用され
るが、これらのうち特に酢酸ニッケルが好ましい。
As the antimony compound used for the polyester fiber of the present invention, antimony trioxide, antimony pentoxide, antimony acetate and the like are used, and among these, antimony trioxide is particularly preferable. As the nickel compound, nickel formate, nickel acetate, nickel benzoate, nickel chloride, nickel bromate and the like are used, and among these, nickel acetate is particularly preferable.

【0009】本発明のポリエステル繊維の寸法安定性
(中間伸度+乾熱収縮率)は8%未満である必要があ
る。寸法安定性が8%を越えるとタイヤ成形時のコード
の寸法安定性が劣り、タイヤの均一性が低下することか
らレーヨン代替は不可能である。かかる観点から寸法安
定性は7.5%以下が好ましい。
The dimensional stability (intermediate elongation + dry heat shrinkage) of the polyester fiber of the present invention must be less than 8%. If the dimensional stability exceeds 8%, the dimensional stability of the cord during tire molding becomes poor and the uniformity of the tire deteriorates, so rayon substitution is not possible. From this viewpoint, the dimensional stability is preferably 7.5% or less.

【0010】また、本発明のポリエステル繊維のカルボ
キシル基末端量(以下COOHという)は25eq/t
on以下とするのがゴム中耐熱性の点で好ましく、ま
た、ジエチレングリコール量(以下DEGという)は
1.3wt%以下とするのがゴム中耐熱性や寸法安定性
の点で好ましいが、これに限定されるものではない。
The polyester fiber of the present invention has a carboxyl group terminal amount (hereinafter referred to as COOH) of 25 eq / t.
On or less is preferable from the viewpoint of heat resistance in rubber, and it is preferable that the amount of diethylene glycol (hereinafter referred to as DEG) is 1.3 wt% or less from the viewpoint of heat resistance in rubber and dimensional stability. It is not limited.

【0011】本発明におけるポリエステルは、ポリエチ
レンテレフタレート(以下PETと略す)およびポリブ
チレンテレフタレートを主体とするものが好ましく、P
ETが更に好ましいものであるが、そのジカルボン酸成
分の一部をイソフタル酸、5−ナトリウムスルホイソフ
タル酸、2,6−ナフタレンジカルボン酸、ジフェノキ
シエタンジカルボン酸、アジピン酸、セバシン酸、アゼ
ライン酸、ドデカンジカルボン酸等の一種またはそれ以
上で置換したものでもよい。また、グリコール成分の一
部をプロピレングリコール、ネオペンチルグリコール、
ヘキサメチレングリコール、ペンタメチレングリコー
ル、1,4−シクロヘキサンジメタノール、グリセリ
ン、ペンタエリスリトール、ポリエチレングリコール、
ポリテトラメチレングリコール等で置き換えてもよい。
更に、酸化チタン、酸化ケイ素、炭酸カルシウム、チッ
化ケイ素、クレー、タルク、カオリン、カーボンブラッ
ク等の顔料のほか、従来公知の着色防止剤、安定剤、抗
酸化剤等の添加剤を含有しても差支えない。また、本発
明のポリエステルには上記の改質ポリエステル樹脂を2
種類以上ブレンドしてもよく、更にはポリアミド、ポリ
エステルアミド、エポキシ樹脂、シリコーン樹脂、ポリ
オレフィン樹脂、各種ゴム、ポリカーボネート、ポリウ
レタン、ポリアクリレートなどの樹脂を少量ブレンドし
たものでもよい。
The polyester in the present invention is preferably one mainly composed of polyethylene terephthalate (hereinafter abbreviated as PET) and polybutylene terephthalate, and P
ET is more preferable, but a part of the dicarboxylic acid component is isophthalic acid, 5-sodium sulfoisophthalic acid, 2,6-naphthalenedicarboxylic acid, diphenoxyethanedicarboxylic acid, adipic acid, sebacic acid, azelaic acid, It may be substituted with one or more of dodecanedicarboxylic acid and the like. In addition, part of the glycol component is propylene glycol, neopentyl glycol,
Hexamethylene glycol, pentamethylene glycol, 1,4-cyclohexanedimethanol, glycerin, pentaerythritol, polyethylene glycol,
It may be replaced with polytetramethylene glycol or the like.
Further, in addition to pigments such as titanium oxide, silicon oxide, calcium carbonate, silicon nitride, clay, talc, kaolin, carbon black, etc., conventionally known coloring inhibitors, stabilizers, antioxidants and other additives are contained. Does not matter. In addition, the above-mentioned modified polyester resin is added to the polyester of the present invention.
More than one kind may be blended, and further, a small amount of resins such as polyamide, polyesteramide, epoxy resin, silicone resin, polyolefin resin, various rubbers, polycarbonate, polyurethane and polyacrylate may be blended.

【0012】本発明のゴム補強用ポリエステル繊維は、
例えば以下のような方法によって得られる。重合触媒と
してアンチモン化合物を用いると共にニッケル化合物を
併用し、リン化合物を用いて重縮合反応を行なう。重縮
合に際しては、仕込み量、重合温度、重合時間を適宜選
択し、極限粘度0.65以上、COOH≦25eq/t
on、DEG≦1.3wt%のPETチップを得る。
The polyester fiber for rubber reinforcement of the present invention is
For example, it can be obtained by the following method. An antimony compound is used as a polymerization catalyst, a nickel compound is used in combination, and a phosphorus compound is used to perform a polycondensation reaction. In the polycondensation, the charged amount, the polymerization temperature, and the polymerization time are appropriately selected, the intrinsic viscosity is 0.65 or more, and COOH ≦ 25 eq / t.
On, a PET chip with DEG ≦ 1.3 wt% is obtained.

【0013】かくして得られたチップを常法に従って固
相重合し、極限粘度0.95以上とした後、溶融紡糸
し、口金から吐出した糸条を加熱帯で徐冷した後、チム
ニー風で冷却固化させ、引取速度3500m/分以上、
好ましくは4000m/分以上で引取る。この際、紡糸
時の滞留時間、紡糸温度をコントロールし、COOHが
25eq/ton以下の糸条を得る。また、低COOH
化剤等の添加剤は製糸性の悪化、強度低下をもたらすの
で使用しないことが好ましい。引き続き、または一旦巻
き取った後に常法に従い、延伸・熱処理を行ないポリエ
ステル延伸糸を得る。かくして得た延伸糸を常法に従い
10cmあたり、30〜60回の撚り(上撚り)をかけ
た後、複数本合糸し、反対方向に10cmあたり30〜
60回の撚り(下撚り)をかけ、コードとする。次いで
このコードを常法に従い接着剤処理し、処理コードを得
る。
The chips thus obtained are subjected to solid phase polymerization according to a conventional method to obtain an intrinsic viscosity of 0.95 or more, melt spinning, and the yarn discharged from the spinneret is gradually cooled in a heating zone and then cooled by chimney air. Solidify, take-off speed 3500 m / min or more,
It is preferably collected at 4000 m / min or more. At this time, the residence time during spinning and the spinning temperature are controlled to obtain a yarn having a COOH of 25 eq / ton or less. Also, low COOH
It is preferable not to use additives such as agents because they deteriorate the spinnability and reduce the strength. Sequentially or after being once wound, a polyester stretched yarn is obtained by stretching and heat treatment according to a conventional method. The drawn yarn thus obtained is twisted 30 times to 60 times (up-twisting) per 10 cm according to a conventional method, then a plurality of plied yarns are combined, and 30 to 10 cm per 10 cm in the opposite direction.
Twist 60 times (bottom twist) to make a cord. Then, this cord is treated with an adhesive according to a conventional method to obtain a treated cord.

【0014】本発明のポリエステル繊維は寸法安定性お
よびゴム中耐熱性が向上する理由は明らかではないが、
特定量のニッケル金属を含有させることでポリマ中のア
ンチモン化合物に起因する粒子を微細化させ、紡糸時の
配向結晶化挙動を制御できるために寸法安定性の低下を
抑制できること、さらにポリエステル繊維中の微細構造
の乱れが少なくなるために加水分解による劣化の促進が
阻止、抑制されることによるものと考えられる。一般に
寸法安定性を良好とするためにポリエステルを高速紡糸
すると繊維の微細構造(特に非晶構造)が乱れるので、
本発明のポリエステル繊維は高速紡糸糸に特に適してい
る。
It is not clear why the polyester fiber of the present invention has improved dimensional stability and heat resistance in rubber.
Particles due to the antimony compound in the polymer are made finer by containing a specific amount of nickel metal, and it is possible to control the orientation crystallization behavior during spinning, and thus it is possible to suppress a decrease in dimensional stability, and further to reduce the dimensional stability. It is considered that this is because the disorder of the fine structure is reduced and the promotion of deterioration due to hydrolysis is prevented or suppressed. Generally, when polyester is spun at high speed to improve dimensional stability, the fine structure of the fiber (particularly the amorphous structure) is disturbed.
The polyester fibers of the present invention are particularly suitable for high speed spinning yarns.

【0015】以上述べたように本発明のポリエステル繊
維はゴム補強用、特にタイヤコード用として適したもの
であり、従来品に比べて寸法安定性およびゴム中での耐
熱性に優れたレーヨン代替可能なポリエステル繊維であ
る。
As described above, the polyester fiber of the present invention is suitable for rubber reinforcement, particularly for tire cords, and can be used as a substitute for rayon, which is more excellent in dimensional stability and heat resistance in rubber than conventional products. It is a polyester fiber.

【0016】[0016]

【実施例】以下に実施例を挙げて本発明を詳細に説明す
る。実施例中の物性は次の様にして測定した。
The present invention will be described in detail below with reference to examples. Physical properties in the examples were measured as follows.

【0017】(1)強伸度、中間伸度 東洋ボールドウイン社製テンシロン引張試験機を用い、
試長25cm、引取速度30cm/分でS−S曲線を求
め強伸度を算出した。また、S−S曲線から強度4.5
g/dに対応する伸度を読みとり中間伸度を求めた。
(1) Strength and Intermediate Elongation Using a Tensilon tensile tester manufactured by Toyo Baldwin,
An elongation curve was calculated by obtaining an SS curve at a test length of 25 cm and a take-up speed of 30 cm / min. In addition, the strength is 4.5 from the SS curve.
The elongation corresponding to g / d was read to determine the intermediate elongation.

【0018】(2)乾熱収縮率 試料をかせ状にとり、20℃、65%RHの温調室に2
4時間以上放置したのち、試料の0.1g/dに相当す
る荷重をかけて測定された長さL 0 の試料を無張力状態
で150℃のオーブン中に30分放置した後、オーブン
から取り出して前記温調室で4時間放置し、再び上記荷
重をかけて測定した長さL 1 から次式により算出した。 乾熱収縮率=〔(L 0 −L 1 )/L 0 〕×100(%)
(2) Dry Heat Shrinkage Samples are taken in a skein shape and placed in a temperature control room at 20 ° C. and 65% RH.
After standing for 4 hours or more, a sample with a length L 0 measured by applying a load equivalent to 0.1 g / d of the sample was left in an oven at 150 ° C for 30 minutes in a tensionless state, and then removed from the oven. Then, the temperature was left for 4 hours in the temperature control room, and the above load was applied again to calculate from the length L 1 measured by the following equation. Dry heat shrinkage = [(L 0 −L 1 ) / L 0 ] × 100 (%)

【0019】(3)ポリマ中および繊維中の金属量 蛍光X線法により求めた。(3) Amount of metal in polymer and fiber It was determined by the fluorescent X-ray method.

【0020】(4)COOH 試料0.5gをo−クレゾール10mlに溶解し、完全
溶解後冷却してからクロロホルム3mlを加え、NaO
Hのメタノール溶液にて電位差滴定を行ない求めた。
(4) 0.5 g of COOH sample was dissolved in 10 ml of o-cresol, completely dissolved and cooled, and then 3 ml of chloroform was added to the solution, and NaO was added.
It was determined by performing potentiometric titration with a methanol solution of H.

【0021】(5)DEG 試料をアルカリ分解した後、ガスクロマトグラフィを用
いて定量した。
(5) The DEG sample was alkali-decomposed and then quantified by gas chromatography.

【0022】(6)極限粘度(IV) 温度25℃においてオルソクロロフェノール(以下OC
Pとする)10m■に対し試料0.8gを溶解し、オス
トワルド粘度計を用いて相対粘度(ηr)を下式により
求め、IVを算出する。 ηr=η/η0 =(t×d)/(t0 ×d0 ) IV=0.0242ηr+0.2634 η :ポリマ溶液の粘度 η0 :OCPの粘度 t :溶液の落下時間(秒) d :溶液の密度(g/cm3 ) t0 :OCPの落下時間(秒) d0 :OCPの密度(g/cm3
(6) Intrinsic viscosity (IV) Orthochlorophenol (hereinafter OC)
Dissolve 0.8 g of the sample in 10 m of P), calculate the relative viscosity (ηr) using the Ostwald viscometer by the following formula, and calculate IV. ηr = η / η 0 = (t × d) / (t 0 × d 0 ) IV = 0.0242 ηr + 0.2634 η: Viscosity of polymer solution η 0 : Viscosity of OCP t: Drop time of solution (seconds) d: Solution density (g / cm 3 ) t 0 : OCP fall time (sec) d 0 : OCP density (g / cm 3 )

【0023】(7)ゴム中耐熱性 コードをゴム中に埋め込み、150℃、6時間加硫後の
強力保持率で評価した。強力保持率60%以上を◎、5
0%以上60%未満を○、50%未満を×とした。
(7) Heat resistance in rubber The cord was embedded in rubber and evaluated by the strength retention after vulcanization at 150 ° C. for 6 hours. Strength retention of 60% or more is ◎, 5
0% or more and less than 60% was evaluated as O, and less than 50% was evaluated as X.

【0024】(8)タイヤ均一性 タイヤ製造においてポストキュアインフレーション(P
CI)工程を省略してタイヤ製造を行ない、タイヤ表面
温度が45℃以下になった時点でタイヤ円周方向に8か
所(45度間隔)のタイヤ直径を測定し、測定値の最小
値を測定値の最大値で除して100を乗じた値が90以
上を◎、80以上90%未満を○、80未満を×とし
た。
(8) Tire Uniformity Post cure inflation (P
When the tire surface temperature becomes 45 ° C. or less, tire diameters are measured at eight locations (at intervals of 45 degrees) in the tire circumferential direction, and the minimum measured value is obtained. A value obtained by dividing by the maximum value of the measured values and multiplying by 100 was 90 or more, ⊚, 80 or more and less than 90% was ◯, and less than 80 was x.

【0025】実施例1〜4および比較例1 テレフタル酸ジメチル100部とエチレングリコール5
0部に酢酸マンガン4水塩0.036部を添加し、常法
によりエステル交換反応を行なった。得られた生成物に
リン酸0.014部を加えた後、三酸化アンチモン0.
033部、酢酸ニッケル0.012部を加え、重合温度
285℃にて重縮合反応を行なった。得られたポリマ
は、極限粘度0.70、COOH量16.8eq/ton、D
EG0.83%であり、ポリマ中のニッケル量は28p
pm、アンチモン量は275ppmであった。このポリ
マを160℃で5時間予備乾燥後、225℃で固相重合
し、極限粘度1.15のPET固相重合チップを得た。
この固相重合後のPETチップをエクストルーダー型紡
糸機で紡糸した。紡糸は直径0.6mmφの吐出孔の口
金から吐出した。紡出糸を長さ300mm、温度350
℃の加熱筒で徐冷した後、18℃の冷風をあてて冷却固
化させ、引取速度を変更して引取った。このようにして
得られた未延伸糸を延伸温度85℃、熱処理温度240
℃で倍率・リラックス率を変更して、表1に示すような
1000d−240fの延伸糸を得た。この延伸糸に下
撚りをS方向に49T/10cm、上撚りをZ方向に4
9T/10cmかけコードとした。次にこのコードをリ
ッラー社製コンピュートリータを用いて接着剤処理し、
処理コードを作成した。
Examples 1 to 4 and Comparative Example 1 100 parts of dimethyl terephthalate and 5 parts of ethylene glycol
0.036 parts of manganese acetate tetrahydrate was added to 0 parts, and transesterification was carried out by a conventional method. After adding 0.014 parts of phosphoric acid to the obtained product, antimony trioxide (0.14 parts) was added.
033 parts and nickel acetate 0.012 parts were added, and polycondensation reaction was performed at a polymerization temperature of 285 ° C. The polymer obtained has an intrinsic viscosity of 0.70, a COOH content of 16.8 eq / ton, D
EG is 0.83% and the amount of nickel in the polymer is 28 p
The amount of pm and antimony were 275 ppm. This polymer was pre-dried at 160 ° C. for 5 hours and then solid-phase polymerized at 225 ° C. to obtain a PET solid-state polymerized chip having an intrinsic viscosity of 1.15.
The PET chips after the solid-state polymerization were spun by an extruder type spinning machine. The spinning was discharged from a spinneret having a discharge hole having a diameter of 0.6 mm. Spinned yarn length 300 mm, temperature 350
After gradually cooling with a heating cylinder of ℃, it was cooled and solidified by applying a cold air of 18 ℃, and the take-up speed was changed to take it up. The undrawn yarn thus obtained is drawn at a drawing temperature of 85 ° C. and a heat treatment temperature of 240.
The draw ratio and the relaxation rate were changed at 0 ° C. to obtain drawn yarns of 1000d-240f as shown in Table 1. The twisted yarn has a lower twist of 49 T / 10 cm in the S direction and an upper twist of 4 T in the Z direction.
9T / 10cm cord was used. Next, this code is treated with an adhesive using a Liller computer,
Created the processing code.

【0026】表1に原糸および処理コードの物性を示
す。表1から明らかなとおり、本発明の範囲を満たす実
施例1〜4は寸法安定性およびゴム中耐熱性が優れてい
る。しかしながら、比較例1は寸法安定性が8%以上で
あるためタイヤの均一性が不満足であり、本発明の目的
を達していなかった。
Table 1 shows the physical properties of the raw yarn and the treated cord. As is clear from Table 1, Examples 1 to 4 satisfying the range of the present invention have excellent dimensional stability and heat resistance in rubber. However, in Comparative Example 1, the uniformity of the tire was unsatisfactory because the dimensional stability was 8% or more, and the object of the present invention was not achieved.

【0027】実施例5 実施例1と同様にして固相重合後のチップを紡糸温度、
滞留時間を変えて紡糸し、COOH量の異なる糸を得
た。表1に原糸および処理コードの物性を示す。本発明
の範囲を満たす実施例5はゴム中耐熱性が良好である。
Example 5 In the same manner as in Example 1, the chips after solid state polymerization were subjected to spinning temperature,
Spinning was performed while changing the residence time to obtain yarns having different COOH contents. Table 1 shows the physical properties of the raw yarn and the treated cord. Example 5 satisfying the range of the present invention has good heat resistance in rubber.

【0028】実施例6 ポリマを製造する際にDEGを添加し、DEG含有量を
変更したチップを用いて実施例1と同様の方法で紡糸、
延伸した。本発明の範囲を満たす実施例6はゴム中耐熱
性が良好である。
Example 6 Spinning was carried out in the same manner as in Example 1 using chips in which DEG was added when producing a polymer and the DEG content was changed,
Stretched. Example 6 satisfying the range of the present invention has good heat resistance in rubber.

【0029】[0029]

【表1】 実施例7〜11および比較例2〜5 重合触媒として使用する三酸化アンチモンと酢酸ニッケ
ルの量を変更した以外は実施例1と同様にして紡糸し、
得られた未延伸糸は実施例1と同様に延伸し、処理コー
ドを作成した。表2から明らかなように、本発明の範囲
を満たす実施例7〜11は寸法安定性およびゴム中耐熱
性が優れている。しかしながら、ニッケル量が2ppm
未満の比較例2は寸法安定性およびゴム中耐熱性が不良
である。ニッケル量が120ppmを越える比較例3は
強度が低く、ゴム中耐熱性が不良であった。また、アン
チモン量が450ppmを越える比較例5は比較例2と
同様に強度が低く、ゴム中耐熱性も不良であった。アン
チモン量が150ppm未満の比較例4は重合反応性が
劣るため極限粘度0.65以上とするのに重合時間が8
時間以上かかっただけでなく、寸法安定性およびゴム中
耐熱性が不良である。
[Table 1] Examples 7 to 11 and Comparative Examples 2 to 5 Spinning was performed in the same manner as in Example 1 except that the amounts of antimony trioxide and nickel acetate used as the polymerization catalyst were changed.
The obtained undrawn yarn was drawn in the same manner as in Example 1 to prepare a treated cord. As is clear from Table 2, Examples 7 to 11 satisfying the range of the present invention have excellent dimensional stability and heat resistance in rubber. However, the amount of nickel is 2ppm
Comparative Example 2 below is poor in dimensional stability and heat resistance in rubber. In Comparative Example 3 in which the amount of nickel exceeds 120 ppm, the strength was low and the heat resistance in rubber was poor. Further, in Comparative Example 5 in which the amount of antimony exceeded 450 ppm, the strength was low as in Comparative Example 2, and the heat resistance in rubber was also poor. In Comparative Example 4 in which the amount of antimony is less than 150 ppm, the polymerization reactivity is inferior, and therefore the polymerization time is 8 to achieve the intrinsic viscosity of 0.65 or more.
Not only did it take more time, but the dimensional stability and heat resistance in rubber were poor.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】本発明のポリエステル繊維は、従来にな
い良好な寸法安定性とゴム中耐熱性を有するものである
のでレーヨン代替が可能なゴム補強用ポリエステル繊維
として好適である。
EFFECT OF THE INVENTION The polyester fiber of the present invention has excellent dimensional stability and heat resistance in rubber which have not been heretofore available, and therefore is suitable as a rubber-reinforcing polyester fiber that can be used as a rayon substitute.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル金属として2〜120ppmの
ニッケル化合物およびアンチモン金属として150〜4
50ppmのアンチモン化合物を含有したポリエステル
からなり、寸法安定性(中間伸度+乾熱収縮率)が8%
未満であるゴム補強用ポリエステル繊維。
1. A nickel compound of 2-120 ppm as nickel metal and 150-4 as antimony metal.
Made of polyester containing 50ppm antimony compound, 8% dimensional stability (intermediate elongation + dry heat shrinkage)
Polyester fiber for rubber reinforcement which is less than.
【請求項2】 カルボキシル末端基量が25eq/ton以下
である請求項1項記載のゴム補強用ポリエステル繊維。
2. The rubber-reinforcing polyester fiber according to claim 1, which has a carboxyl end group content of 25 eq / ton or less.
【請求項3】 ジエチレングリコール含有量が1.3w
t%以下である請求項1又は2項記載のゴム補強用ポリ
エステル繊維。
3. The diethylene glycol content is 1.3 w
The polyester fiber for rubber reinforcement according to claim 1 or 2, which has a content of t% or less.
【請求項4】 アンチモン化合物が三酸化アンチモンで
ある請求項1〜3のいずれか1項記載のゴム補強用ポリ
エステル繊維。
4. The polyester fiber for rubber reinforcement according to claim 1, wherein the antimony compound is antimony trioxide.
【請求項5】 ニッケル化合物が酢酸ニッケルである請
求項1〜4のいずれか1項記載のゴム補強用ポリエステ
ル繊維。
5. The polyester fiber for rubber reinforcement according to claim 1, wherein the nickel compound is nickel acetate.
JP8070207A 1996-03-26 1996-03-26 Polyester fiber for rubber reinforcement Pending JPH09256220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8070207A JPH09256220A (en) 1996-03-26 1996-03-26 Polyester fiber for rubber reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8070207A JPH09256220A (en) 1996-03-26 1996-03-26 Polyester fiber for rubber reinforcement

Publications (1)

Publication Number Publication Date
JPH09256220A true JPH09256220A (en) 1997-09-30

Family

ID=13424858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8070207A Pending JPH09256220A (en) 1996-03-26 1996-03-26 Polyester fiber for rubber reinforcement

Country Status (1)

Country Link
JP (1) JPH09256220A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7300967B2 (en) 2004-11-12 2007-11-27 Eastman Chemical Company Polyester polymer and copolymer compositions containing metallic titanium particles
US8987408B2 (en) 2005-06-16 2015-03-24 Grupo Petrotemex, S.A. De C.V. High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates
US9267007B2 (en) 2005-09-16 2016-02-23 Grupo Petrotemex, S.A. De C.V. Method for addition of additives into a polymer melt

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7300967B2 (en) 2004-11-12 2007-11-27 Eastman Chemical Company Polyester polymer and copolymer compositions containing metallic titanium particles
US8987408B2 (en) 2005-06-16 2015-03-24 Grupo Petrotemex, S.A. De C.V. High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates
US9267007B2 (en) 2005-09-16 2016-02-23 Grupo Petrotemex, S.A. De C.V. Method for addition of additives into a polymer melt

Similar Documents

Publication Publication Date Title
CN1020201C (en) High strength polyester yarn with improved fatigue resistance
KR101537132B1 (en) Polyethylene naphthalate fiber and process for producing the polyethylene naphthalate fiber
KR940002693B1 (en) Rubber-reinforcing polyester fiber and process for preparation thereof
JP3141862B2 (en) Tire cords and tires
KR20050003123A (en) High tenacity polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same
JP2007303056A (en) Polyester fiber material having high heat-resistance, tire cord, dip cord and method for producing polyester fiber material having high heat-resistance
JP2006336122A (en) Wet heat-resistant recycled polyester fiber
JPH09256220A (en) Polyester fiber for rubber reinforcement
JP2000199127A (en) Polyester fiber for rubber reinforcement
JP2977679B2 (en) Core-sheath type composite fiber and method for producing the same
JP7498264B2 (en) Polyester tire cord with excellent heat resistance and tire including same
JP2822503B2 (en) Polyester fiber for high toughness rubber reinforcement
JPH09256221A (en) Polyester fiber for rubber reinforcement
JP2770509B2 (en) Polyester dip cord
JP2887324B2 (en) Polyester fiber for rubber reinforcement and method for producing the same
JPH0450407B2 (en)
JP2000199126A (en) Polyester fiber for rubber reinforcement
JP2001336027A (en) Polyester fiber for reinforcing rubber
JPH1129629A (en) Copolyester and elastic fiber comprising the same
JP2003073920A (en) High strength polybutylene terephthalate-based fiber
JPH0790717A (en) High-strength polybutylene terephthalate-based yarn
JP2775923B2 (en) Polyester fiber for rubber reinforcement
JP2001336026A (en) Polyester fiber for reinforcing rubber
JPH0625916A (en) Polyester fiber for seat belt
JPH06264307A (en) Polyester fiber for reinforcing rubber