JPH03159990A - Element having superlattice structure - Google Patents

Element having superlattice structure

Info

Publication number
JPH03159990A
JPH03159990A JP30051389A JP30051389A JPH03159990A JP H03159990 A JPH03159990 A JP H03159990A JP 30051389 A JP30051389 A JP 30051389A JP 30051389 A JP30051389 A JP 30051389A JP H03159990 A JPH03159990 A JP H03159990A
Authority
JP
Japan
Prior art keywords
substance
superlattice
lattice constant
substrate
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30051389A
Other languages
Japanese (ja)
Inventor
Takeshi Karasawa
武 柄沢
Kazuhiro Okawa
和宏 大川
Tsuneo Mitsuyu
常男 三露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30051389A priority Critical patent/JPH03159990A/en
Publication of JPH03159990A publication Critical patent/JPH03159990A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To obtain an element having superlattice structure and useful for a device requiring a high-quality crystallinity by forming a buffer layer with a substance having a lattice constant larger than that of the substrate and alternately depositing specific substances having different lattice constant on the buffer layer. CONSTITUTION:A buffer layer composed of a substance A having a lattice constant aA is formed on a substrate composed of a substance S having a lattice constant aS(aA>aS). A substance B having a lattice constant aB(aB<aS) and the substance A are alternately deposited on the buffer layer to obtain the objective element having superlattice structure. The presence of the buffer layer composed of a substance having a lattice constant larger than the lattice constant of the substrate is effective in decreasing the influence of the compressive stress on the substance having larger lattice constant among the substances constituting the superlattice and improving the stability of the deposition. Accordingly, the controllability of the structure can be improved compared with the direct formation of a superlattice on the substrate.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高品質の結晶性を必要とする各種の電子素子
,オプトエレクトロニクス素子などに利用される超格子
構造素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a superlattice structure element used in various electronic devices, optoelectronic devices, etc. that require high quality crystallinity.

従来の技術 超格子は自然界には存在しない原子,分子配列をもつ物
質であり、それを人工的に作製し、在来物質ではできな
い機能の向上を図ったり,新たな機能の創造をめざす試
みとしてその研究開発は近年益力盛んになってきている
。とくに砒化ガリウム/砒化7ルミ( GaAs/Ae
As系)などのm−v族化合物半導体超格子を利用した
ものは既にデバイス化されているものもある。現在実用
化されているデバイスのへテロ積層{苗造あるいは超格
子構造においては、基板と超格子、あるいは超格子を構
威している物質同士の結晶格子定数はきわめて近い値を
有してお9、結晶欠陥を生ずることなく良質のへテロエ
ビタキシャル或長が可能な紐合せが比較的容易に得られ
ている。
Conventional technology A superlattice is a material with an arrangement of atoms and molecules that does not exist in nature.It is artificially created to improve functions that cannot be achieved with conventional materials, or as an attempt to create new functions. Research and development has become increasingly profitable in recent years. In particular, gallium arsenide/7lumium arsenide (GaAs/Ae
Some devices have already been made using m-v group compound semiconductor superlattices such as (As-based). In the heterostack or superlattice structure of devices currently in practical use, the crystal lattice constants of the substrate and the superlattice, or of the substances that make up the superlattice, have extremely close values. 9. It is relatively easy to obtain a string that allows high-quality heteroevitaxial growth without producing crystal defects.

一方,格子定数に数%あるいけそれ以上の差があb、結
晶成長にとっては無視し得ない影響があるが、他の物質
では代用が困難であるなどの理由から、これらの歪を取
ジ込んだ形でのいわゆる歪超格子も各種試みられている
。これは格子が若干の歪を有した状態で、かつ格子緩和
を起こさないようにしてエビタキシャル或長させようと
するものである。
On the other hand, differences in lattice constants of a few percent or more have a non-negligible effect on crystal growth, but it is difficult to substitute them with other materials, so it is difficult to eliminate these strains. Various attempts have been made to create so-called strained superlattices in a complicated manner. This is an attempt to evitaxially elongate the lattice in a state where the lattice has some strain and without causing lattice relaxation.

発明が解決しようとする課題 超格子の作製には各種の或膜方法が用いられているが、
制御性の良さからみて分子線エビタキシー法(MBE法
)やMOCVD法が主流となっている。超格子の構造は
,その目的にもよるが周期がきわめて短いもの、たとえ
ば1oないし20入程度のものを作製する必要が生ずる
場合もある。
Problems to be Solved by the Invention Various film methods are used to fabricate superlattices, but
The molecular beam epitaxy method (MBE method) and the MOCVD method have become mainstream in view of their good controllability. Depending on the purpose of the superlattice, it may be necessary to fabricate a superlattice structure with a very short period, for example, one having a period of about 1 to 20 times.

短周期構造の正確な制御には、いわゆる原子層エビタキ
シー法(▲LX法)が最も適していると考えられる。A
LE法は基板温度が適切であれば、結合を形成した原子
面上にそれと同一の原子は付着せず、異種の原子層を形
成できるという原理を利用している。
The so-called atomic layer epitaxy method (▲LX method) is considered to be most suitable for accurately controlling the short-period structure. A
The LE method utilizes the principle that if the substrate temperature is appropriate, the same atoms will not adhere to the atomic plane on which a bond has been formed, and a layer of different types of atoms can be formed.

しかしながら、超格子作製に際し,ALE法を用いた場
合、意図する超格子の構造によっては必ずしも一層ずつ
形威される理想的なALE戒長にはならないという問題
がある。
However, when the ALE method is used to fabricate a superlattice, there is a problem that depending on the intended structure of the superlattice, an ideal ALE method that is formed layer by layer may not necessarily be obtained.

たとえば、人という物質が3層.Bという物質が2層か
らなる超格子を作製しようとすると,▲が実際には3層
ではなく2層というようなことが起こり得る。さらに,
▲の予定層厚(Il1.)に対して何層(III)形成
されるかはBの層厚にも依存している。例として第2図
の直線(B)で物質A(テルル化亜鉛ZnTe )の実
際の付着層数mと物質B(硫化亜鉛Zn8 )の層厚と
の関係を示す。これは、ZnTe−ZnS超格子を物質
C(GaAs)上に或長させるに際し、ALIC法によ
p ZnTeを3層形成しようとした場合にZnSの層
厚によって実際に堆積するZnTa層数が影響を受け、
ZnS層が厚くなるほどZnTeが堆積しにくくなって
いる様子を示している。超格子作製の制御性向上のため
にはこのような現象は好1しくなく、各層の付着率(層
数/予定層数=m/mo)をできる限シ均一化6ベーノ する必要がある。
For example, the human substance has three layers. When trying to create a superlattice made of two layers of substance B, it is possible that ▲ actually has two layers instead of three. moreover,
The number of layers (III) to be formed relative to the planned layer thickness (Il1.) of ▲ also depends on the layer thickness of B. As an example, the straight line (B) in FIG. 2 shows the relationship between the actual number m of deposited layers of substance A (zinc telluride ZnTe) and the layer thickness of substance B (zinc sulfide Zn8). This is because when trying to form three layers of p ZnTe using the ALIC method when making a ZnTe-ZnS superlattice a certain length on material C (GaAs), the number of ZnTa layers actually deposited is affected by the layer thickness of ZnS. receive,
It shows that the thicker the ZnS layer, the more difficult it is for ZnTe to deposit. In order to improve the controllability of superlattice production, such a phenomenon is not desirable, and it is necessary to make the adhesion rate of each layer (number of layers/planned number of layers=m/mo) as uniform as possible.

本発明は上記従来の問題点を解決するもので、格子定数
の異なる物質の組み合せによる超格子構造素子を提供す
ることを目的とする。
The present invention solves the above-mentioned conventional problems, and aims to provide a superlattice structure element using a combination of materials having different lattice constants.

課題を解決するための手段 この目的を達戒するために、本発明においては超格子を
構或する物質のうちで基板ようも格子定数が大きい物質
のみからなるバッファ一層を基板上に形成し、このバッ
ファ一層上に超格子を形成したものである。
Means for Solving the Problems In order to achieve this object, in the present invention, a single layer of buffer is formed on a substrate, consisting only of substances having a larger lattice constant than that of the substrate among the substances constituting the superlattice, A superlattice is formed on one layer of this buffer.

作用 超格子作製の際に,名層の付着率が超格子の構造によジ
影響されるメカニズムは必ずしも明らかではないが、格
子定数の相違のために変化しているものと考えられる。
The mechanism by which the deposition rate of the superlattice is affected by the structure of the superlattice during the fabrication of the working superlattice is not necessarily clear, but it is thought that the change is due to the difference in the lattice constant.

基板の格子定数よりも大きな格子定数を有する物質でバ
ッファ一層を形威することによう、超格子を構或する異
なる物質のうち格子定数の大きな物質に及ぼす圧縮応力
の影響を低減でき、付着率の安定化を図ることができる
。したがって、超格子を基板上に直接形成する6ページ 場合に比べてその構造制御性の向上を可能とする。
By forming the buffer layer with a material that has a larger lattice constant than that of the substrate, it is possible to reduce the effect of compressive stress on the material with a large lattice constant among the different materials that make up the superlattice, and improve the adhesion rate. can be stabilized. Therefore, it is possible to improve the controllability of the structure compared to the case where the superlattice is directly formed on the substrate.

実施例 本発明は格子定数の異なる物質の組み合せによる超格子
の作製に広く利用できる構造を提供するものであるが,
ここではI−Vl族化合物半導体による超格子’il−
V族化合物半導体基板上に形成した場合について図に沿
って説明する。
Examples The present invention provides a structure that can be widely used to create a superlattice by combining materials with different lattice constants.
Here, the superlattice 'il-
A case where the semiconductor device is formed on a group V compound semiconductor substrate will be described with reference to the drawings.

第1図は本発明の一実施例における超格子構造素子の断
面図,第2図における直線Aは本発明による超格子構造
素子の結晶戒長時における付着率(層数/予定層数)、
直aBは従来の超格子構造素子の結晶戒長時における付
着率、第3図は本発明の一実施例における超格子構造素
子の製作に用いた装置の概略構或図である。
FIG. 1 is a cross-sectional view of a superlattice structure element according to an embodiment of the present invention, and the straight line A in FIG.
Direction aB is the adhesion rate during crystal lengthening of a conventional superlattice structure element, and FIG. 3 is a schematic diagram of an apparatus used to fabricate a superlattice structure element in an embodiment of the present invention.

第1図に示すように本発明による超格子構造素子は,I
−V族化合物半導体の単結晶基板1(物質S)上にI−
M族化合物の物質▲からなるバッファ一層2を形威し、
その上にI−Vl族化合物の中から選択された物質B3
と物質▲4とを交互に堆積した構造を有している。5は
物質B3と物質7・\−ノ A4を交互に堆積した層を示す。ここに、基板1を構戒
する物質Sは砒化ガリウム(GaAs) ,  jlン
化インジウム( InP )、1たは砒化インジウム(
 InAs )等のi−v族化合物半導体の単結晶であ
り、バッファ一、層とその上に形成される超格子層とを
構或する物質Aと物質BとはそれぞれH■族化合物、例
えば硫化亜鉛( ZnS ) ,硫化カドミウム( C
(IS) ,オたはセレン化亜鉛( ZnSe )等の
中から選択された2種の物質である。なお、前記物質S
,AおよびBの選択にあたっては、各各の格子定数2L
8.aAおよびaBがa, )a, )a Bの関係を
満足しなければならない。
As shown in FIG. 1, the superlattice structure element according to the present invention has an I
-I-
Forming a buffer layer 2 consisting of M group compound substance ▲,
A substance B3 selected from the I-Vl group compounds is added thereto.
It has a structure in which material (4) and material (4) are alternately deposited. 5 shows a layer in which material B3 and material 7.\-noA4 are deposited alternately. Here, the substance S surrounding the substrate 1 is gallium arsenide (GaAs), indium arsenide (InP), or indium arsenide (
Substances A and B, which constitute the buffer layer and the superlattice layer formed thereon, are single crystals of group IV compound semiconductors such as InAs), and are each made of group H compounds such as sulfide. Zinc (ZnS), cadmium sulfide (C
These two materials are selected from among (IS), zinc selenide (ZnSe), and the like. Note that the substance S
, A and B, each lattice constant 2L
8. aA and aB must satisfy the relationship a, )a, )aB.

次に、第3図に示す装置を用いて本発明の一実施例に釦
ける超格子構造素子の製作方法を説明する。
Next, a method of manufacturing a superlattice structure element according to an embodiment of the present invention will be explained using the apparatus shown in FIG.

1−V族化合物半導体基板、たとえばGaAs( a6
aAs=6.e 5 3 3人)基板上にI−4族化合
物半導体、たとえばZnTe( a2,Te=6.10
37人)釦よびZnS ( aznS =5.j$09
3A)からなる超格子の形成は次のようにして行う。Z
nTe−ZnS系超格子結晶或長は、超高真空下での高
純度,非平衡状態での低温戒長.分子線をシャッター操
作により瞬時に切り替えることによる急峻な界面の形戒
などの利点を考え、分子線エビタキシー装置(MBE装
置)を用いる。第3図に本発明の超格子構造素子の作製
に用いたMBE装置の概略構或図を示す。或長室部分の
・みを示し、ロードロック室,基板移動機構などは省略
してある。基板ホルダー25にセットされたGaAs基
板24は加熱機構23によって必要な温度に保持される
。戒長室21内の真空度は電離真空計27で、1た残留
ガスは四重極型質量分析装置26によ・クて測定される
。薄膜結晶或長中の様子は反射高速電子線回折装置(R
HEED)29によって観察し、そのパターンはスクリ
ーン28に映し出される。
1-V group compound semiconductor substrate, for example GaAs (a6
aAs=6. e 5 3 3 people) I-4 group compound semiconductor, such as ZnTe (a2, Te=6.10
37 people) Button Yoto ZnS (aznS =5.j$09
The superlattice consisting of 3A) is formed as follows. Z
The nTe-ZnS superlattice crystal has high purity under ultra-high vacuum and low temperature stability in non-equilibrium state. A molecular beam epitaxy device (MBE device) is used, considering the advantages of instantaneous switching of the molecular beam by shutter operation, such as the formation of a steep interface. FIG. 3 shows a schematic diagram of the MBE apparatus used to fabricate the superlattice structure element of the present invention. Only a certain long chamber is shown, and the load lock chamber, substrate moving mechanism, etc. are omitted. The GaAs substrate 24 set on the substrate holder 25 is maintained at a required temperature by the heating mechanism 23. The degree of vacuum in the chief chamber 21 is measured by an ionization vacuum gauge 27, and the residual gas is measured by a quadrupole mass spectrometer 26. The appearance of thin film crystals and crystals was observed using a reflection high-speed electron diffractometer (R
(HEED) 29, and the pattern is projected on the screen 28.

排気系22で或長室21内を1 Cr10Torr台1
で排気し、lた原料の入ったセル31a〜310をそれ
ぞれ所定の分子線強度が得られる温度に安定させた後、
Ga As基板24の温度を600゜Cに上げ表面酸化
膜を離脱させる。このときRHEED9ペー7 パターンのシャープなヌトリークをスクリーン28上テ
観察してサーマルエッチングが完了したことを確認する
。次に基板温度を目的に応じておよそ200〜350゜
Cに下げ,超格子形成を開始する。
The inside of the long chamber 21 is heated to 1 Cr10 Torr level 1 using the exhaust system 22.
After evacuation and stabilizing the cells 31a to 310 containing the raw materials at a temperature at which a predetermined molecular beam intensity is obtained,
The temperature of the GaAs substrate 24 is raised to 600°C to remove the surface oxide film. At this time, the RHEED 9 page 7 pattern of sharp nuts is observed on the screen 28 to confirm that the thermal etching has been completed. Next, the substrate temperature is lowered to about 200-350°C depending on the purpose, and superlattice formation is started.

1ず、物質A (ZnTeなど)からなるノくノファ一
層を形成する。その際にはALE法でもMBF,法でも
よいが、時間的にはMBE法の方が速いので、後者を例
にとる。亜鉛(Zn)およびテルノレ(Te)をそれぞ
れ単体の形で入一〕たセル31aおよび3lbのシャッ
ター30aとsob’l同時に開け、所定の時間の後に
閉じる。基板温度が330゜C、ZnおよびTeの分子
線強度がそれぞれ2X10−76X 1 0−7Tor
r(電離真空計κよるフシックスモニター値)にかいて
1時間でおよそ1500人堆積した。その後基板温度を
240゜Cに下げた後物質Bと物質Ai交互に堆積する
超格子或長に移−フた。分子線強度は一定の11である
。堆積する物質の切シ替えはシャッター30a〜30C
の開閉により行う。すなわち,物質BであるZnS堆積
中にはZnS原料の入ったセル310のシャツター10
ベーン 30Cをあけ、他のものは閉じておき、一定時間の後に
ZnSのシャッター300’Q閉じる。ZnSの分子線
強度は7 X I Cr7Torrである8ここでは超
高真空中での扱いを考え、ZnS化合物原料を用いたが
、Znおよび硫黄(S)それぞれの単体原料あるいはS
i硫化水素(H2S)ガスのクランキングにより供給し
てもよい。次に適当な間隔(1〜数秒)の後に物質Aで
あるZnTe f堆積させるためにZnおよびTe原料
の入−フたセル31aおよひ31bのシャッターSOa
と30bを交互に予め設定した回数開閉する。すなわち
、n層形成しようとする場合にはそれぞれn回開閉する
。この操作を繰シ返し、物質BであるZnSと物質人で
あるZnTeとを交互に堆積する。
1. First, a single layer of material A (such as ZnTe) is formed. In this case, the ALE method or the MBF method may be used, but since the MBE method is faster in terms of time, the latter will be used as an example. The shutters 30a and sob'l of the cells 31a and 3lb each containing zinc (Zn) and ternore (Te) in the form of a single substance are simultaneously opened and closed after a predetermined time. The substrate temperature is 330°C, and the molecular beam intensities of Zn and Te are 2X10-76X 10-7 Tor, respectively.
About 1,500 people were deposited in one hour according to r (fusix monitor value by ionization vacuum gauge κ). Thereafter, the substrate temperature was lowered to 240 DEG C., and then the substrate was transferred to a certain length of superlattice in which material B and material Ai were alternately deposited. The molecular beam intensity is constant 11. The substances to be deposited are switched using the shutters 30a to 30C.
This is done by opening and closing. That is, during the deposition of ZnS, which is substance B, the shutter starter 10 of the cell 310 containing the ZnS raw material
The vane 30C is opened, the others are closed, and the ZnS shutter 300'Q is closed after a certain period of time. The molecular beam intensity of ZnS is 7 X I Cr 7 Torr. 8 Here, a ZnS compound raw material was used in consideration of handling in an ultra-high vacuum, but Zn and sulfur (S) individual raw materials or S
i It may also be supplied by cranking hydrogen sulfide (H2S) gas. Next, after an appropriate interval (1 to several seconds), the shutters SOa of the cells 31a and 31b containing Zn and Te raw materials are opened to deposit ZnTef, which is the substance A.
and 30b are alternately opened and closed a preset number of times. That is, when attempting to form n layers, each gate is opened and closed n times. This operation is repeated to alternately deposit ZnS as the material B and ZnTe as the material.

以上のようにZnTeバッファ一層を形成したのちにそ
の上にZnTe.−ZnS超格子を形成した場合の超格
子を構或するZnTe層の層数mとZnS層数との関係
を第2図に直a (A)で示す。縦軸は実際のZnTe
層数mを予定層数m。で規格化してある。比較ノタめニ
zn’reバッファ一層のない場合も示し?1 ・クー
ノ てある。バッファ一層のないものは、GILAS基板の
サーマルエッチングの後に基板温度を240℃に下げ、
1つたく同様の条件で■超格子を戒長させた試料である
。この図から明らかなように、ZnTa−ZnS超格子
をGaAs基板上に直接或長させた場合にはZnTe層
数がZnS層数の増加とともに減少、すなわち、同じシ
ャッターの開閉数に対して実際の付着層数が大幅に低下
しているわけである。一方、ZnTeバッファ一層を用
いた場合には、このような傾向は改善され、ZnTaの
付着率の均一化が図れた。
After forming one layer of ZnTe buffer as described above, ZnTe. The relationship between the number m of ZnTe layers constituting the superlattice and the number of ZnS layers when a -ZnS superlattice is formed is shown directly in FIG. 2 by a (A). The vertical axis is the actual ZnTe
The number of layers m is the planned number of layers m. It has been standardized. Does it also show if there is no buffer for comparison? 1. There is Kuno. For those without a single buffer layer, after thermal etching of the GILAS substrate, lower the substrate temperature to 240 °C.
This is a sample in which the superlattice was lengthened under similar conditions. As is clear from this figure, when a ZnTa-ZnS superlattice is directly grown to a certain extent on a GaAs substrate, the number of ZnTe layers decreases as the number of ZnS layers increases. This means that the number of adhesion layers is significantly reduced. On the other hand, when a single layer of ZnTe buffer was used, this tendency was improved and the ZnTa deposition rate was made uniform.

以上、GaAs基板上にZnSでバッファ一層を形成し
,そのバッファ一層上にZnTe層とZnS層とを交互
に堆積して超格子構造素子とした例について述べたが,
他にも良好な結晶の得られる組み合わせは多くある。以
下,基板を構或するI−V族化合物物質をS,バッファ
一層を構或するI−M族化合物物質を▲、そして超格子
構造を構戒する1−%’l族化合物物質を▲(バッファ
一層を構或する物質と同一)およびBとしてその組み合
わせを述べる。
Above, we have described an example in which a buffer layer of ZnS is formed on a GaAs substrate, and a ZnTe layer and a ZnS layer are alternately deposited on the buffer layer to create a superlattice structure element.
There are many other combinations that yield good crystals. Hereinafter, the I-V group compound material forming the substrate is S, the I-M group compound material forming the buffer layer is ▲, and the 1-%'I group compound material forming the superlattice structure is ▲( (same as the material constituting the buffer layer) and the combination thereof will be described as B.

基板SとしてGaAsを選択した場合、物質▲がCdS
 , CdSeまたはCdTeであシ,物質BがZnS
とした組み合わせがよい。1た基板SとしてInPを選
択した場合、物質AがZnTe , CdSe または
CdTeであり、物質BがZnSまたはZnSeとした
組み合わせがよい。1た基板SにInAI9 jたはG
arbを選択した場合、物質▲がCdTe ,物質Bが
OdS , ZnSe−!たはZnSとした組み合せが
よい。
When GaAs is selected as the substrate S, the material ▲ is CdS
, CdSe or CdTe, substance B is ZnS
A good combination is When InP is selected as the substrate S, it is preferable to use a combination in which material A is ZnTe, CdSe or CdTe, and material B is ZnS or ZnSe. 1 InAI9 j or G on the substrate S
When arb is selected, material ▲ is CdTe, material B is OdS, ZnSe-! A good combination is ZnS or ZnS.

発明の効果 本発明により、超格子或長に際して、それを構戒する物
質のうちで基板の格子定数よシも大きな格子定数を有す
る物質によるバッファ一層を形威し、その上に超格子を
或長させた構造により、格子定数の大きな方の物質の付
着率の超格子構造への依存性を低減し、高品質の結晶性
を必要とするデバイスに必要な超格子構造素子を実現で
きた。
Effects of the Invention According to the present invention, when elongating a superlattice, a buffer layer is formed of a material having a lattice constant larger than that of the substrate among the materials that control the superlattice, and the superlattice is formed on the buffer layer. The elongated structure reduces the dependence of the deposition rate of substances with larger lattice constants on the superlattice structure, making it possible to realize superlattice structure elements necessary for devices that require high-quality crystallinity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による超格子構造素子の概略
断面図、第2図は超格子を基板上に直接13ベー/ 戒長させたときに,格子定数が大きな方の物質の実際の
層数がベアを組む相手の物質の層数により影響される様
子(B)および本発明によるバッファ一層の効果(A)
を示す特性図、第3図は本発明の一実施例における超格
子構造素子の製造に用いる分子線エビタキシー装置の概
略構戒図である。 1・・・・・・単結晶基板(基板)、2・・・・・・バ
ッファ一層、3・・・・・・物質B,4・・・・・・物
質A,5・・・・・・物質Bと物質▲を交互に堆積した
層。
Figure 1 is a schematic cross-sectional view of a superlattice structure element according to an embodiment of the present invention, and Figure 2 shows the actual state of the material with a larger lattice constant when the superlattice is directly placed on a substrate with a length of 13 be/cm. How the number of layers is influenced by the number of layers of the material with which the bare material is assembled (B) and the effect of the buffer layer according to the present invention (A)
FIG. 3 is a schematic diagram of a molecular beam epitaxy apparatus used for manufacturing a superlattice structure element in an embodiment of the present invention. 1...Single crystal substrate (substrate), 2...Buffer single layer, 3...Substance B, 4...Substance A, 5...・A layer in which substance B and substance ▲ are deposited alternately.

Claims (4)

【特許請求の範囲】[Claims] (1)格子定数がa_Sである物質Sからなる基板上に
格子定数a_Aが前記a_Sより大なる物質Aからなる
バッファー層を形成し、そのバッファー層上に格子定数
a_Bが前記a_Sより小なる物質Bと前記物質Aを交
互に堆積してなる超格子構造素子。
(1) A buffer layer made of a substance A whose lattice constant a_A is larger than a_S is formed on a substrate made of a substance S whose lattice constant is a_S, and a buffer layer made of a substance A whose lattice constant a_B is smaller than a_S is formed on the buffer layer. A superlattice structure element formed by alternately depositing B and the substance A.
(2)物質SがGaAsであり、物質BがZnSであり
、物質AがZnTe、CdS、CdSeまたはCdTe
である請求項1記載の超格子構造素子。
(2) Substance S is GaAs, substance B is ZnS, and substance A is ZnTe, CdS, CdSe or CdTe.
The superlattice structure element according to claim 1.
(3)物質SがInPであり、物質BがZnSまたはZ
nSeであり、物質AがZnTe、CdSeまたはCd
Teである請求項1記載の超格子構造素子。
(3) Substance S is InP, Substance B is ZnS or Z
nSe, and substance A is ZnTe, CdSe or Cd
The superlattice structure element according to claim 1, which is Te.
(4)物質SがInAsまたはGaSbであり、物質A
がCdTeであり、物質BがCdS、ZnSまたはZn
Seである請求項1記載の超格子構造素子。
(4) The substance S is InAs or GaSb, and the substance A
is CdTe, and substance B is CdS, ZnS or Zn
The superlattice structure element according to claim 1, which is Se.
JP30051389A 1989-11-17 1989-11-17 Element having superlattice structure Pending JPH03159990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30051389A JPH03159990A (en) 1989-11-17 1989-11-17 Element having superlattice structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30051389A JPH03159990A (en) 1989-11-17 1989-11-17 Element having superlattice structure

Publications (1)

Publication Number Publication Date
JPH03159990A true JPH03159990A (en) 1991-07-09

Family

ID=17885723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30051389A Pending JPH03159990A (en) 1989-11-17 1989-11-17 Element having superlattice structure

Country Status (1)

Country Link
JP (1) JPH03159990A (en)

Similar Documents

Publication Publication Date Title
US5810924A (en) Low defect density/arbitrary lattice constant heteroepitaxial layers
EP0532104A1 (en) II-VI Compound semiconductor epitaxial layers having low defects, method for producing and devices utilizing same
JP4705079B2 (en) III-V / II-VI Semiconductor Interface Manufacturing Method
US5113473A (en) Nonlinear, optical thin-films and manufacturing method thereof
Pessa et al. Atomic layer epitaxy of CdTe on the polar (111) A and (111) B surfaces of CdTe substrates
JPH09102596A (en) Manufacture of quantum dot and quantum dot apparatus
US5039626A (en) Method for heteroepitaxial growth of a two-dimensional material on a three-dimensional material
US5091335A (en) MBE growth technology for high quality strained III-V layers
Tsukamoto et al. Evaluation of crystallinity of lattice-matched Ge/GeSiSn heterostructure by Raman spectroscopy
JPH03159990A (en) Element having superlattice structure
US5094974A (en) Growth of III-V films by control of MBE growth front stoichiometry
JP2870061B2 (en) Super lattice structure element
JPH02289499A (en) Superlattice structural element
RU2089656C1 (en) Method of production of photosensitive resistive and optically nonlinear thin-filmed heterostructures based on semiconductor and dielectric materials
JPH0787179B2 (en) Method for manufacturing superlattice semiconductor device
JP2563530B2 (en) Superlattice structure element
Nanishi et al. Plasma-excited MBE—Proposal and achievements through R&D of compound semiconductor materials and devices
JPH02285630A (en) Superlattice structural element
Zhang et al. Control of crystal orientation of CdTe epitaxial layers grown on (0 0 1) GaAs with ZnSe buffer layer by molecular beam epitaxy
JPH02263798A (en) Superlattice element
JPH03250621A (en) Manufacture of semiconductor film
Usami et al. Molecular beam epitaxy of GaAs on nearly lattice-matched SiGe substrates grown by the multicomponent zone-melting method
Manninen Improving Group IV Photonics: Examining Material Properties of Epitaxially Grown, Low-Temperature Silicon and Gallium-Doped Silicon Thin Films
JPH01125818A (en) Heterointerface formation
KR920007338B1 (en) Molecular beam epitaxy apparatus containing dual molecular beam cell and forming method of dual-epitaxial layer