JPH02263798A - Superlattice element - Google Patents

Superlattice element

Info

Publication number
JPH02263798A
JPH02263798A JP8446489A JP8446489A JPH02263798A JP H02263798 A JPH02263798 A JP H02263798A JP 8446489 A JP8446489 A JP 8446489A JP 8446489 A JP8446489 A JP 8446489A JP H02263798 A JPH02263798 A JP H02263798A
Authority
JP
Japan
Prior art keywords
superlattice
substrate
lattice constant
zns
znte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8446489A
Other languages
Japanese (ja)
Inventor
Takeshi Karasawa
武 柄沢
Kazuhiro Okawa
和宏 大川
Tsuneo Mitsuyu
常男 三露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8446489A priority Critical patent/JPH02263798A/en
Publication of JPH02263798A publication Critical patent/JPH02263798A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To epitaxially grow a superlattice in the thickness exceeding the critical film thickness of the single superlattice in the superlattice of ZnTe and ZnS by combining the superlattices of the same material having smaller and larger lattice constants than that of a substrate. CONSTITUTION:ZnTe and ZnS are alternately laminated on the GaAs substrate to produce a superlattice element. In this case, the superlattice I consisting of ZnTe and ZnS is formed on the substrate so that the average lattice constant is made smaller than the lattice constant of the substrate, the superlattice Il consisting of ZnTe and ZnS is formed on the superlattice I so that the average lattice constant is made larger than the lattice constant of the substrate, and the thicknesses of the superlattices I and II are selected so that the average lattice constant of the entire system consisting of the superlattices I and II is practically equalized with the lattice constant of the substrate to obtain the superlattice element.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、各種の電子素子、発光ダイオードなどのオプ
トエレクトロニクス素子、その他高品質の結晶性を要求
される超格子構造を利用した超格子構造素子に関する。
Detailed Description of the Invention Field of the Invention The present invention relates to various electronic devices, optoelectronic devices such as light emitting diodes, and other superlattice structure devices using a superlattice structure that require high quality crystallinity. .

従来の技術 超格子は自然界には存在しな、い原子、分子配列を持つ
物質を人工的に作製し、在来物質による機能の向上を図
ったり、新たな機能の創造をめざす試みとしてその研究
開発は近年袋々盛んになってきている。特にGaAs/
AlAs系などの■−V族化合物半導体超格子を利用し
たものは既にデバイス化されているものもある。これら
をはじめとして実用化されているペテロ積層構造あるい
は超格子構造においては、基板と超格子、あるいは超格
子を構成している物質同士の結晶格子定数は極めて近い
値を有しており、結晶欠陥を生ずることなく良質のへテ
ロエピタキシャル成長が可能な組合せが比較的容易に得
られている。
Conventional technology Superlattice is a method of artificially creating materials with unusual atomic and molecular arrangements that do not exist in nature, and researching them in an attempt to improve the functions of conventional materials or create new functions. Development has been gaining momentum in recent years. Especially GaAs/
Some devices have already been manufactured using superlattices of ■-V group compound semiconductors such as AlAs. In the Peter stacked structure or superlattice structure that has been put into practical use, including these, the crystal lattice constants of the substrate and the superlattice, or the substances that make up the superlattice, have extremely close values, and crystal defects It is relatively easy to obtain a combination that allows high-quality heteroepitaxial growth without causing.

一方、格子定数に数%あるいはそれ以上の差がある場合
、結晶成長にとっては無視し得ない影響があるが、他の
物質では代用が困難であるなどの理由から、これらの歪
を取り込んだ形でのいわゆる歪超格子も各極状みられて
いる。これは格子が若干の歪を有した杖態で、かつ格子
緩和を起こしてしまわないようエピタキシャル成長させ
ようとするものである。
On the other hand, if there is a difference of several percent or more in lattice constants, this will have a non-negligible effect on crystal growth, but it is difficult to substitute other materials, so it is difficult to create a form that incorporates these strains. So-called strained superlattices are also observed at each pole. This is an attempt to grow epitaxially so that the lattice is in the form of a cane with some distortion and lattice relaxation does not occur.

発明が解決しようとする課題 1種類の物質によるヘテロエピタキシャル成長あるいは
超格子の成長においても格子定数の相違に起因する欠陥
の低減は重要な課題であり、そのために数々の制約が生
じている。基板とその上にエピタキシャル成長させよう
とする膜との間にバッファー層を形成し格子緩和を終了
させてしまった後に必要な膜を形成するという対応策が
あるが、この方法ではバッファー層形成という工程の増
加をともない、また、基板と膜との直接コンタクトをデ
バイス機能上必要とする場合には不適当である。一方、
格子定数の相違を有する場合、成長させる膜厚をその格
子定数の差に依存したある厚さ以下にとどめるならば欠
陥を生じないことが知られているが、この臨界膜厚は必
ずしも理論的に決定できるものではなく、成長条件によ
っても左右されることがわかってきている。したがって
、膜厚をある厚さ以下にとどめる方法は必ずしも有効と
は言えず、様々な機能を追求する超格子の設計にとって
は制約となるなどの問題点があった。
Problems to be Solved by the Invention Reducing defects caused by differences in lattice constants is an important problem even in heteroepitaxial growth or superlattice growth using a single type of material, and this poses a number of constraints. There is a countermeasure that involves forming a buffer layer between the substrate and the film to be epitaxially grown on it and forming the necessary film after lattice relaxation has been completed, but this method requires a process called buffer layer formation. Furthermore, it is inappropriate in cases where direct contact between the substrate and the film is required for device functionality. on the other hand,
When the lattice constants differ, it is known that defects will not occur if the grown film thickness is kept below a certain thickness depending on the difference in lattice constants, but this critical film thickness is not necessarily theoretically determined. It is becoming clear that this is not something that can be determined and is influenced by growth conditions. Therefore, the method of keeping the film thickness below a certain thickness cannot necessarily be said to be effective, and poses problems such as being a constraint on the design of superlattices that pursue various functions.

本発明は上記問題点に鑑み、超格子を構成する物質のみ
により基板の格子との整合をとる超格子構造素子を提供
するものである。
In view of the above-mentioned problems, the present invention provides a superlattice structure element that achieves matching with the lattice of a substrate using only the material constituting the superlattice.

課題を解決するための手段 上記の問題点を解決するために、本発明は、基板物質の
格子定数よりも大きな物質及び小さな物質の組合せであ
る■−■族化合物半導体、例えばZnTeとZnSによ
る超格子において、まず平均格子定数が基板のそれより
もわずかに小さくなるように超格子を構成するZnTe
及びZnSの各層厚を定めた超格子IをGaAs基板上
に形成し、次に超格子としての平均格子定数が基板のそ
れよりもわずかに大きくなるように組み合わせた超格子
IIを前記超格子I上に形成した超格子構造素子を提供
する。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides superimposed semiconductors made of ■-■ group compound semiconductors, such as ZnTe and ZnS, which are a combination of a substance with a larger lattice constant and a substance with a smaller lattice constant than that of the substrate material. In the lattice, first, ZnTe is formed into a superlattice so that the average lattice constant is slightly smaller than that of the substrate.
A superlattice I in which each layer thickness of ZnS and ZnS is determined is formed on a GaAs substrate, and then a superlattice II is formed on the GaAs substrate so that the average lattice constant of the superlattice is slightly larger than that of the substrate. A superlattice structure element formed thereon is provided.

作用 このように同一物質系による超格子を基板の格子定数よ
りも小さなものと大きなものとの組合せとして構成する
ことにより、単一構造の超格子では必ずしも基板との格
子整合がとれない薄層の繰り返しによる超格子において
もはるかに整合性良く、単一超格子の臨界膜厚を越えた
厚さまでエピタキシャル成長させることが出来る。
Effect By configuring a superlattice made of the same material system as a combination of lattice constants smaller and larger than the lattice constant of the substrate, it is possible to create a thin layer in which lattice matching with the substrate cannot necessarily be achieved with a superlattice of a single structure. Repeated superlattices have much better consistency and can be epitaxially grown to thicknesses that exceed the critical thickness of a single superlattice.

実施例 ヘテロエピタキシャル成長に用いる基板としては、その
品質、取扱いに関する技術の蓄積などからGaAsが非
常に適している。II−Vl族化合物半導体で格子定数
が基板のそれよりも大きなものと小さなものとの組合せ
として数通りあるが、ここではZnTeとZnSの組合
せを例にとって具体的実施例を述べる。
EXAMPLE GaAs is very suitable as a substrate for use in heteroepitaxial growth due to its quality and accumulated handling techniques. Although there are several combinations of II-Vl group compound semiconductors with lattice constants larger and smaller than that of the substrate, a specific example will be described here using a combination of ZnTe and ZnS as an example.

格子定数の大小のみから単純に考えるならば、Z n 
T eN  Z n Sそれぞれを適当な厚さに定めれ
ばGaAs基板と平均的に格子整合をとることが可能な
ようにみえるが、超格子として量子効果、例えばポテン
シャル井戸のトンネルを利用する場合などは各層厚を非
常に薄くする必要があり、特に各層が数十原子層あるい
はそれ以下を要する場合にはどの様に組み合わせても格
子整合を完全にとることはできない。したがって各層を
薄くする場合には超格子をその平均格子定数が基板のも
のよりも若干小さいものと大きいものの2部分に分け、
全体の平均として格子整合をとる必要がある。
If we consider simply from the size of the lattice constant, Z n
It seems possible to achieve average lattice matching with the GaAs substrate by setting each T eN Z n S to an appropriate thickness, but quantum effects as a superlattice, such as when using potential well tunnels, etc. It is necessary to make each layer extremely thin, and in particular, when each layer requires several tens of atomic layers or less, perfect lattice matching cannot be achieved no matter how they are combined. Therefore, when making each layer thinner, the superlattice is divided into two parts, one whose average lattice constant is slightly smaller than that of the substrate, and the other whose average lattice constant is larger than that of the substrate.
It is necessary to obtain lattice matching as an overall average.

この様子を模式的に第1図に示す。超格子Iの平均格子
定数d sIs  超格子■の平均格子定数dsn、及
び基板の格子定数d GaAsの大小関係はds+<d
amns<dsxx である。ZnTe及びZnSを交互に積層しただけの単
一構造の超格子に比べ、ds+及びds二をdGsll
sに近い値とすることはZnTe及びZnS各層が薄く
なっても可能であるから、超格子工と超格子■とによる
全体としての格子定数ははるかに基板のそれに近いもの
とすることが出来る。
This situation is schematically shown in FIG. Average lattice constant of superlattice I d sIs Average lattice constant of superlattice ■ dsn and lattice constant of substrate d The size relationship of GaAs is ds+<d
amns<dsxx. Compared to a superlattice with a single structure consisting of alternating layers of ZnTe and ZnS, ds+ and ds2 are dGsll.
Since it is possible to obtain a value close to s even if the ZnTe and ZnS layers become thinner, the overall lattice constant of the superlattice and superlattice can be made much closer to that of the substrate.

ZnTe−ZnS系超格子結晶成長は、超高真空下での
高純度、非平衡状態での低温成長、分子線のシャッター
操作による瞬時の切り替えによる急峻な界面などの利点
を考え、分子線エピタキシー法(MBE法)を用いる。
ZnTe-ZnS superlattice crystal growth has been developed using the molecular beam epitaxy method, considering the advantages of high purity under ultra-high vacuum, low-temperature growth in non-equilibrium conditions, and steep interfaces due to instantaneous switching by shutter operation of the molecular beam. (MBE method) is used.

第2図にMBE装置の概略構成図を示す。成長室部分の
みを示し、ロードロック室、基板移動機構などは省略し
である。
FIG. 2 shows a schematic configuration diagram of the MBE device. Only the growth chamber is shown, and the load-lock chamber, substrate movement mechanism, etc. are omitted.

基板ホルダー5にセットされたGaAs基板4は加熱機
構3によって必要な温度に加熱される。成長室1内の真
空度は電離真空計7で、また残留ガスは四重種型質量分
析装置6によってモニターされる。薄膜結晶成長中の様
子は反射高速電子線回折(RHEED)9によって観察
し、そのパターンはスクリーン8に映し出される。
The GaAs substrate 4 set on the substrate holder 5 is heated to a required temperature by the heating mechanism 3. The degree of vacuum in the growth chamber 1 is monitored by an ionization vacuum gauge 7, and the residual gas is monitored by a quadruple seed mass spectrometer 6. The state during thin film crystal growth is observed by reflection high-speed electron diffraction (RHEED) 9, and the pattern is projected on a screen 8.

排気系2で成長室1内を10”Torr台まで排気し、
また、原料の入ったセル11 a sl l b 、l
 1 cをそれぞれ所定の分子線強度が得られる温度に
し安定した後、GaAs基板4の温度を600℃に上げ
表面酸化膜を離脱させる。このときRHEEDパターン
のシャープなストリークを観察することによりこのサー
マルエツチングが完了したことを確認する。次に基板温
度を目的に応じておよそ250〜350℃に下げ、超格
子形成を開始する。堆積する物質の切り替えはシ+yタ
ー10a、10b、10cの開閉により行う。すなわち
、znS堆積中にはZnS原料の入ったセルllcのシ
ャッター100をあけ、他のものは閉じておき、一定時
間の後にZnSのシャッター10cを閉じZn及びTe
原料の入ったセルlla及びflbのシャッター10a
と10bを開ける。この操作を繰り返し、ZnSとZn
Teとを交互に積層する。各層の厚さは各々のシャッタ
ーの開閉時間により制御し、分子線強度は一定に保持し
ておく。
The growth chamber 1 is evacuated to a level of 10” Torr using the exhaust system 2.
In addition, cells 11 a sl l b , l containing raw materials
1c is stabilized at a temperature at which a predetermined molecular beam intensity is obtained, and then the temperature of the GaAs substrate 4 is raised to 600° C. to remove the surface oxide film. At this time, by observing sharp streaks in the RHEED pattern, it is confirmed that this thermal etching has been completed. Next, the substrate temperature is lowered to approximately 250 to 350° C. depending on the purpose, and superlattice formation is started. The substances to be deposited are switched by opening and closing the shutters 10a, 10b, and 10c. That is, during ZnS deposition, the shutter 100 of the cell llc containing the ZnS raw material is opened and the others are closed, and after a certain period of time, the ZnS shutter 10c is closed and the Zn and Te
Shutter 10a of cells lla and flb containing raw materials
and open 10b. Repeat this operation to remove ZnS and Zn
Te and Te are laminated alternately. The thickness of each layer is controlled by the opening/closing time of each shutter, and the molecular beam intensity is kept constant.

MBE法は1原子層の精度で成膜を制御できるので、極
めて薄い層からなる超格子の作製が可能である。第1図
における超格子工としてZnTeが1分子層、ZnSが
3分子層からなるものの形成に、zns、Zn+  T
eそれぞれの分子線強度が2X1G−’、  5X10
−’、  IXIG−”Torr(電離真空計によるフ
ラックスモニター値)の条件においてZnT e、  
Z n S各々の堆積時間は3秒及び3.5秒であった
。同様に超格子■七してZnTeが2分子層、ZnSが
3分子層からなるものの形成にそれぞれの堆積時間は7
秒及び3.5秒であった。これらの組合せにより超格子
工を100サイクル、超格子IIを264サイクル堆積
させた場合、歪の高さが極めて小さいと仮定して平均の
格子定数は5.8531人であり、GaAs基板の5.
1i533Aに対し0.0025%というわずかのミス
マツチングであり、膜厚がミクロンオーダーに達した場
合でも格子緩和の影響は回避できる。
Since the MBE method can control film formation with an accuracy of one atomic layer, it is possible to create a superlattice made of extremely thin layers. In the formation of the superlattice structure in Fig. 1, which consists of one molecular layer of ZnTe and three molecular layers of ZnS, zns, Zn+T
eEach molecular beam intensity is 2X1G-', 5X10
-', IXIG-'' under the conditions of Torr (flux monitor value using an ionization vacuum gauge), ZnTe,
Deposition times for Z n S were 3 seconds and 3.5 seconds, respectively. Similarly, to form a superlattice consisting of two molecular layers of ZnTe and three molecular layers of ZnS, the deposition time for each is 7.
seconds and 3.5 seconds. When superlattice material is deposited for 100 cycles and superlattice II is deposited for 264 cycles using these combinations, the average lattice constant is 5.8531, assuming that the height of strain is extremely small, which is 5.8531% for the GaAs substrate.
There is a slight mismatch of 0.0025% with respect to 1i533A, and even if the film thickness reaches the micron order, the influence of lattice relaxation can be avoided.

発明の効果 本発明による超格子構造を用いるならば、単一構造の超
格子では実現不可能な格子整合を図りながら短周期の超
格子を形成することが可能となり、格子歪に起因する結
晶欠陥の発生をなくシ、基板上に直接必要とする物質に
よる超格子を作製し、かつ、単一超格子での臨界膜厚を
越えた厚さにまで成長させることが出来る。これにより
超格子構造設計の自由度が増すため、素子作製などにと
って特に有効である。
Effects of the Invention If the superlattice structure according to the present invention is used, it becomes possible to form a short-period superlattice while achieving lattice matching that cannot be achieved with a single-structure superlattice, thereby eliminating crystal defects caused by lattice distortion. It is possible to eliminate the generation of superlattices, create a superlattice of the necessary material directly on the substrate, and grow it to a thickness that exceeds the critical film thickness for a single superlattice. This increases the degree of freedom in superlattice structure design, making it particularly effective for device fabrication.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に関わる超格子構造を説明するための概
念図、第2図は実施例における超格子構造素子作製に用
いる分子線エピタキシー装置の概略構成図である。 4・・・・基板、10a+10b、10c・・・・シャ
ッター 11 asl l b+11 c・・・・原料
の入ったセルO 代理人の氏名 弁理士 粟野重孝 はか1名第 図 第 図
FIG. 1 is a conceptual diagram for explaining a superlattice structure related to the present invention, and FIG. 2 is a schematic diagram of a molecular beam epitaxy apparatus used for producing a superlattice structure element in an example. 4...Substrate, 10a+10b, 10c...Shutter 11 asl l b+11c...Cell O containing raw materials Name of agent Patent attorney Shigetaka Awano 1 person Figure Figure

Claims (3)

【特許請求の範囲】[Claims] (1)GaAsよりなる基板上にZnTe及びZnSを
交互に積層して作製する超格子構造素子において、前記
基板上に、平均格子定数が前記基板の格子定数よりも小
さくなるようにして ZnTe及びZnSよりなる超格子 I を形成し、前記
超格子 I 上に、平均格子定数が前記基板の格子定数よ
りも大きくなるようにしてZnTe及びZnSよりなる
超格子IIを形成し、前記超格子 I 及び前記超格子IIよ
りなる系全体の平均格子定数が前記基板の格子定数にほ
ぼ等しくなるように前記超格子 I 及び前記超格子IIそ
れぞれの厚さを選定した超格子構造素子。
(1) In a superlattice structure element manufactured by alternately layering ZnTe and ZnS on a substrate made of GaAs, ZnTe and ZnS are layered on the substrate so that the average lattice constant is smaller than the lattice constant of the substrate. A superlattice I consisting of ZnTe and ZnS is formed on the superlattice I, and a superlattice II consisting of ZnTe and ZnS is formed on the superlattice I such that the average lattice constant is larger than the lattice constant of the substrate. A superlattice structure element, wherein the thickness of each of the superlattice I and the superlattice II is selected so that the average lattice constant of the entire system consisting of the superlattice II is approximately equal to the lattice constant of the substrate.
(2)ZnTeに代えてCdSを用いた請求項1に記載
の超格子構造素子。
(2) The superlattice structure element according to claim 1, wherein CdS is used in place of ZnTe.
(3)ZnTeに代えてCdSeを用いた請求項1に記
載の超格子構造素子。
(3) The superlattice structure element according to claim 1, wherein CdSe is used in place of ZnTe.
JP8446489A 1989-04-03 1989-04-03 Superlattice element Pending JPH02263798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8446489A JPH02263798A (en) 1989-04-03 1989-04-03 Superlattice element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8446489A JPH02263798A (en) 1989-04-03 1989-04-03 Superlattice element

Publications (1)

Publication Number Publication Date
JPH02263798A true JPH02263798A (en) 1990-10-26

Family

ID=13831349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8446489A Pending JPH02263798A (en) 1989-04-03 1989-04-03 Superlattice element

Country Status (1)

Country Link
JP (1) JPH02263798A (en)

Similar Documents

Publication Publication Date Title
Daudin et al. Stranski-Krastanov growth mode during the molecular beam epitaxy of highly strained GaN
EP0532104A1 (en) II-VI Compound semiconductor epitaxial layers having low defects, method for producing and devices utilizing same
JP4705079B2 (en) III-V / II-VI Semiconductor Interface Manufacturing Method
JPH0249007B2 (en)
JP2017028318A (en) Epitaxial solid semiconductor hetero structure and method for manufacturing the same
US5091335A (en) MBE growth technology for high quality strained III-V layers
JPH02263798A (en) Superlattice element
JPH02289499A (en) Superlattice structural element
JPH02285630A (en) Superlattice structural element
JP2563530B2 (en) Superlattice structure element
JP2006253414A (en) Method for forming semiconductor thin film on si substrate and its structure
JP2870061B2 (en) Super lattice structure element
JP3169057B2 (en) Method for growing compound semiconductor layer
JP2002255698A (en) Ferromagnetic group ii-vi compound and controlling method for the ferromagnetic property thereof
JPH03159990A (en) Element having superlattice structure
JP2682511B2 (en) Group 2-6 compound semiconductor thin film and method of manufacturing the same
JP3364696B2 (en) Method for producing group III-V compound thin film
JP2792423B2 (en) Crystal growth method and apparatus
JPH0787179B2 (en) Method for manufacturing superlattice semiconductor device
JPS62132312A (en) Manufacture of semiconductor thin film
Itagaki et al. Sputter epitaxy through “inverse” SK mode for a new class of excitonic devices
JPH01125818A (en) Heterointerface formation
JP2719868B2 (en) Semiconductor substrate and method of manufacturing the same
JPH0752737B2 (en) Method for producing compound semiconductor crystal
JPH05201792A (en) Device for producing thin film crystal