JPH03159101A - Manufacture of high voltage zinc oxide varistor - Google Patents

Manufacture of high voltage zinc oxide varistor

Info

Publication number
JPH03159101A
JPH03159101A JP1288942A JP28894289A JPH03159101A JP H03159101 A JPH03159101 A JP H03159101A JP 1288942 A JP1288942 A JP 1288942A JP 28894289 A JP28894289 A JP 28894289A JP H03159101 A JPH03159101 A JP H03159101A
Authority
JP
Japan
Prior art keywords
oxide
bismuth oxide
sintered body
zinc oxide
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1288942A
Other languages
Japanese (ja)
Inventor
Meikan Go
呉 明煥
Keisai Ri
李 經宰
Jinsai Tei
鄭 仁宰
Nanryo Ri
李 南良
Meishoku Kin
明植 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Korea Institute of Science and Technology KIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Korea Institute of Science and Technology KIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Advanced Institute of Science and Technology KAIST, Korea Institute of Science and Technology KIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Priority to JP1288942A priority Critical patent/JPH03159101A/en
Publication of JPH03159101A publication Critical patent/JPH03159101A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE: To remove the excess growth of crystal particles and the development of bismuth oxide, and to manufacture a device with a high operation starting voltage and satisfactory voltage/current characteristics by pressurization forming a composition from which the bismuth oxide is removed, applying metallic oxide applying agent with the bismuth oxide as a main component to a primary sintered body, and operating a secondary heat treatment. CONSTITUTION: The composition of a zinc oxide varistor from which bismuth oxide is removed is pressurization formed, and metallic oxide applying agent with the bismuth oxide as a main component is applied to a sintered body manufactured by operating primary sintering at 1200-1350 deg.C, and a secondary heat treatment is operated at 1000-1200 deg.C temperature. For example, a metallic oxide from which the bismuth oxide is removed in the composition of the general zinc oxide varistor is mixed and crushed, pressurization formed into a disc type with diameter 10mm and thickness 1.2mm by using polyvinylalcohol as bonding agent, and sintered at 1200-1350 deg.C so that the primary sintered body can be formed. Then, lead oxide, bismuth oxide, and coral sand are mixed, the metallic oxide applying agent manufactured by mixing it with butyl carbitol solution including cellulose is applied to the whole opposite faces of the above-mentioned primary sintered body, and the secondary heat treatment is operated at 1000 deg.C.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、焼結体を製造する時に発生する液状焼結に伴
う結晶粒の粗大化を防止することにより、高い動作電圧
を現すと共に、良好な電圧−電流特性を有するようにし
た高電圧用酸化亜鉛バリスタの製造方法に関するもので
ある。
[Detailed Description of the Invention] <Industrial Application Field> The present invention achieves a high operating voltage by preventing coarsening of crystal grains due to liquid sintering that occurs when producing a sintered body, and The present invention relates to a method of manufacturing a high voltage zinc oxide varistor having good voltage-current characteristics.

〈従来の技術並びに発明が解決しようとする課題〉一般
に、非線形抵抗体の一種である酸化亜鉛バリスタは、酸
化亜鉛を主成分とし添加剤として酸化ビスマス及び二酸
化マンガン等を含有した焼結体であって、電圧−電流特
性の非直線性及び良好な過度電圧吸収能力に起因して、
使用電圧に従い各種電気及び電子機器の回路保護用素子
又は落雷に因る電力系統保護のための無空隙式避雷器素
子等に広く使用されている。
<Prior art and problems to be solved by the invention> In general, a zinc oxide varistor, which is a type of nonlinear resistor, is a sintered body containing zinc oxide as a main component and additives such as bismuth oxide and manganese dioxide. Due to the nonlinearity of voltage-current characteristics and good transient voltage absorption ability,
Depending on the voltage used, it is widely used as circuit protection elements for various electrical and electronic equipment, or air-gap arrester elements for protecting power systems from lightning strikes.

そして、このような酸化亜鉛バリスタの使用電圧は、バ
リスタの両電極間に形成される電位場壁の数に比例して
決定される。この場合、単位厚さ当りの電位場壁の数は
結晶粒の大きさと反比例するようになるので、結晶粒の
大きさは使用電圧を決定するに於いて重要な因子として
作用するようになる。
The working voltage of such a zinc oxide varistor is determined in proportion to the number of potential field walls formed between both electrodes of the varistor. In this case, the number of potential field walls per unit thickness is inversely proportional to the size of the crystal grains, so the size of the crystal grains acts as an important factor in determining the voltage to be used.

又、従来のバリスタ製造方法(Jpn、J、App 1
.  Phys、Vo 1.10(6)、 736−7
46、1971.参照)によれば、主成分の酸化亜鉛に
微量の酸化ビスマス(Bizo3)、酸化コバル) (
CQ 30a)、二酸化マンガン(MnOz)、酸化ア
ンチモン(sbzoz)及び酸化クロム(Crt03)
等を混合した後、1200〜1350°cの温度で焼結
してバリスタを製造しており、このような方法で製造し
た酸化亜鉛バリスタは、その製造過程中に酸化ビスマス
が溶融しながら液状焼結を誘発させるので、結晶粒の大
きさが108m以上に成長して300ボルト以上の動作
開始電圧(V1mA/mm)を有するバリスタを製造す
ることが困難である欠点があった。且つ酸化ビスマスの
揮発に因り電圧−電流非直線性及び特性の均一性が低下
する欠点があった。
In addition, the conventional varistor manufacturing method (Jpn, J, App 1
.. Phys, Vo 1.10(6), 736-7
46, 1971. ), the main component zinc oxide contains trace amounts of bismuth oxide (Bizo 3) and cobal oxide (
CQ 30a), manganese dioxide (MnOz), antimony oxide (sbzoz) and chromium oxide (Crt03)
Zinc oxide varistors manufactured by this method are produced by mixing bismuth oxide and sintering it at a temperature of 1,200 to 1,350°C. As a result, it is difficult to manufacture a varistor with a crystal grain size of 108 m or more and a starting voltage (V1 mA/mm) of 300 volts or more. In addition, there was a drawback that voltage-current nonlinearity and uniformity of characteristics deteriorated due to volatilization of bismuth oxide.

そこで、本発明は、このような従来の酸化亜鉛バリスタ
製造方法の欠点である液状焼結に因る結晶粒の過度成長
と酸化ビスマスの揮発とを排除することにより、高い動
作開始電圧及び良好な電圧−電流特性を現す高電圧用酸
化亜鉛バリスタの製造方法を提供することをその目的と
している。
Therefore, the present invention eliminates the drawbacks of the conventional zinc oxide varistor manufacturing method, such as excessive growth of crystal grains and volatilization of bismuth oxide caused by liquid sintering, thereby achieving a high starting voltage and good performance. The object of the present invention is to provide a method for manufacturing a high-voltage zinc oxide varistor exhibiting voltage-current characteristics.

〈課題を解決するための手段及び作用〉このような目的
を達成するため、本発明は、バリスタを製造する時に液
状焼結を誘発させる酸化ビスマスを除外して該酸化ビス
マスの除外された組成物を一般のセラミック製造方法に
より加圧成形して1次焼結体を製造し、該1次焼結体に
酸化ビスマスを主成分とする金属酸化物塗布剤を塗布し
て該塗布剤が酸化亜鉛の結晶粒界に拡散されるように2
次熱処理を行うことにより達成されるもので、このよう
な本発明に係る高電圧用酸化亜鉛バリスタの製造方法を
第1図に示した製造工程図を用いて一層詳しく説明する
と次のようである。
<Means and Effects for Solving the Problems> In order to achieve these objects, the present invention eliminates bismuth oxide that induces liquid sintering when manufacturing a varistor, and creates a composition in which bismuth oxide is excluded. A primary sintered body is manufactured by press-forming using a general ceramic manufacturing method, and a metal oxide coating agent containing bismuth oxide as a main component is applied to the primary sintered body, and the coating agent is zinc oxide. 2 so that it is diffused to the grain boundaries of
This is achieved by performing a second heat treatment, and the method for manufacturing the high voltage zinc oxide varistor according to the present invention will be explained in more detail using the manufacturing process diagram shown in FIG. 1 as follows. .

先ず、一般の酸化亜鉛組成物中で酸化ビスマスを除外し
た主成分の酸化亜鉛と、添加剤として少量の酸化アンチ
モン、酸化コバルト、酸化マンガン及び酸化クロムとを
それぞれ一定比率で組合して混合及び粉砕を行った後、
これを乾燥させて所定の厚さを有する円板型に加圧成形
し、更に1200〜1350℃の温度で焼結することに
より、1次焼結体を製造する。次いで、酸化鉛、酸化ビ
スマス及び硼砂等からなる金属酸化物に混合→粉砕→乾
燥→篩分けの一連の工程を遂行し、これらの混合粉末に
溶剤を混合して金属酸化物塗布剤を製造し、該金属酸化
物塗布剤を前記1次焼結体の対向する円形表面全体に塗
布した後、1ooo〜1200℃の温度で2次熱処理を
行うことにより、1次焼結体の表面に塗布された金属酸
化物が焼結体内部の結晶粒界に拡散されるようにする。
First, zinc oxide, which is the main component of a general zinc oxide composition excluding bismuth oxide, and small amounts of antimony oxide, cobalt oxide, manganese oxide, and chromium oxide as additives are combined in a fixed ratio, and mixed and pulverized. After doing
A primary sintered body is produced by drying this, press-molding it into a disk shape having a predetermined thickness, and sintering it at a temperature of 1200 to 1350°C. Next, a series of steps of mixing → crushing → drying → sieving are performed on metal oxides made of lead oxide, bismuth oxide, borax, etc., and a solvent is mixed with these mixed powders to produce a metal oxide coating agent. After applying the metal oxide coating agent to the entire opposing circular surfaces of the primary sintered body, the metal oxide coating agent is applied to the surface of the primary sintered body by performing a secondary heat treatment at a temperature of 100 to 1200°C. The metal oxide is diffused into the grain boundaries inside the sintered body.

その後、焼結体の前記対向する円形表面上にそれぞれ電
極を形成して酸化亜鉛バリスタの製造を完了する。
Thereafter, electrodes are formed on the opposing circular surfaces of the sintered body to complete the production of the zinc oxide varistor.

このように製造された本発明に係る高電圧用酸化亜鉛バ
リスタは、その製造時に液状焼結に起因する結晶粒の過
度成長と酸化ビスマスの揮発とが減少すると共に酸化ビ
スマスが酸化亜鉛粒界に拡散されるので、良好な電圧−
電流特性を現すと共に動作開始電圧が500〜900V
/mm程度高く現れることにより高電圧用バリスタ素子
として適用することができる。
The high-voltage zinc oxide varistor of the present invention manufactured in this way reduces excessive growth of crystal grains and volatilization of bismuth oxide caused by liquid sintering during manufacturing, and also reduces bismuth oxide at the zinc oxide grain boundaries. Since it is diffused, a good voltage -
Displaying current characteristics and operating start voltage of 500 to 900V
By appearing as high as about /mm, it can be applied as a high voltage varistor element.

〈実施例〉 以下、本発明に係る高電圧用酸化亜鉛バリスタの製造方
法に対する実施例を説明する。
<Example> Hereinafter, an example of the method for manufacturing a high voltage zinc oxide varistor according to the present invention will be described.

実施例1 −iの酸化亜鉛バリスタの組成中で酸化ビスマスを除外
した金属酸化物を、97.52nO+1.OSbz O
x +0.5 Coz 04 +0.5 Mn0z +
0.5’CrzOzの組成比(モル比)で秤量した後、
ボールミルで混合及び粉砕を行い、ポリビニールアルコ
ールを結合剤に使用して直径10聴、厚さ1.2胴の円
板型に加圧成形し、1200〜1350″Cの温度で1
時間焼結して1次焼結体を作る。一方、金属酸化物塗布
剤は酸化鉛、酸化ビスマス及び硼砂を重量比45 : 
45 : 10で混合した後、更に5.0wt%のセル
ロースを含有したプチルカービトル溶液と混合して40
0poise程度の粘度を有するように製造した。この
ように製造した金属酸化物塗布剤を前記1次焼結体の対
向面全体にシルク印刷により塗布し、1000℃で2時
間の間2淡熱処理を施して金属酸化物を焼結体内部の結
晶粒界に拡散させた後、素子の前記対向する両面にそれ
ぞれ銀電極(素子面積比:80%)を焼付けすることに
より素子を製造した。
The metal oxide excluding bismuth oxide in the composition of the zinc oxide varistor of Example 1-i was 97.52nO+1. OSbz O
x +0.5 Coz 04 +0.5 Mn0z +
After weighing at a composition ratio (molar ratio) of 0.5'CrzOz,
Mixing and pulverizing in a ball mill, using polyvinyl alcohol as a binder, pressure molding into a disc shape with a diameter of 10 cm and a thickness of 1.2 cm, and molding at a temperature of 1200 to 1350"C.
A primary sintered body is produced by sintering for a period of time. On the other hand, the metal oxide coating agent contains lead oxide, bismuth oxide, and borax in a weight ratio of 45:
After mixing at a ratio of 45:10, the mixture was further mixed with a butyl carbitol solution containing 5.0 wt% cellulose, and the mixture was mixed at a ratio of 40:40.
It was manufactured to have a viscosity of about 0 poise. The metal oxide coating agent produced in this way was applied to the entire opposing surface of the primary sintered body by silk printing, and heat treatment was performed at 1000°C for 2 hours to coat the metal oxide inside the sintered body. After diffusing into the grain boundaries, a device was manufactured by baking silver electrodes (device area ratio: 80%) on each of the opposing surfaces of the device.

このような方法で製造した素子の電気的特性を表1に示
した。尚、表中のα1.α2は非直線指数を示す。
Table 1 shows the electrical characteristics of the device manufactured by this method. In addition, α1 in the table. α2 indicates a nonlinear index.

表1 実施例1の電気的特性 (重量比: 98.5 : 1.5)にした。Table 1 Electrical characteristics of Example 1 (Weight ratio: 98.5:1.5).

このような方法で製造した素子の電気的特性を表2に示
した。
Table 2 shows the electrical characteristics of the device manufactured by this method.

表2 実施例2の電気的特性 実施例2 素子製造の全工程を実施例1と同様に行い、金属酸化物
塗布剤の組成物として酸化ビスマスと酸化亜鉛を選び、
その組成は塗布剤の溶融温度を可能な限り低下するため
に、共融点(750℃)付近実施例3 素子製造の全工程を実施例1と同様に行い、金属酸化物
塗布剤の組成物として酸化ビスマスと硼砂(BZ 03
 )を選び、その組成は塗布剤の溶融温度を可能な限り
低くするために、共融点(622”C)付近(重量比:
96:4)にした。
Table 2 Electrical characteristics of Example 2 Example 2 The entire process of manufacturing the device was carried out in the same manner as in Example 1, and bismuth oxide and zinc oxide were selected as the composition of the metal oxide coating agent.
In order to lower the melting temperature of the coating agent as much as possible, its composition is near the eutectic point (750°C). Bismuth oxide and borax (BZ 03
), and its composition is around the eutectic point (622"C) (weight ratio:
96:4).

このような方法で製造した素子の電気的特性を表3に示
した。
Table 3 shows the electrical characteristics of the device manufactured by this method.

表3 実施例3の電気的特性 実施例4 1次焼結温度1350℃,2次熱処理温度時に使用した
塗布剤の組成は実施例1と同様であるが、2次熱処理を
それぞれ1000℃,1100″C,1200℃で1時
間行った。
Table 3 Electrical characteristics of Example 3 Example 4 The composition of the coating agent used at the primary sintering temperature of 1350°C and the secondary heat treatment temperature was the same as in Example 1, but the secondary heat treatment was performed at 1000°C and 1100°C, respectively. "C, 1 hour at 1200°C.

そして、このような方法で製造した素子の電気的特性を
表4に示した。
Table 4 shows the electrical characteristics of the device manufactured by this method.

表4 実施例4の電気的特性 以上の実施例1〜4を総括して見ると、1200℃〜1
350℃の温度範囲内で1次焼結温度が各々異なる実施
例1〜実施例3の場合では、塗布剤の種類に関係なく1
次焼結温度が高くなる程動作開始電圧が減少することが
認知され、これは1次焼結温度が高くなる程結晶の成長
速度が速くなって粒子の直径自体が大きくなるからであ
る。且つ、1次焼結温度を変化させたものの中では13
00℃で1次焼結を行ったものが、漏洩電流も少なく電
圧−電流特性曲線の非直線性も最大に現れることが分か
る。
Table 4 Electrical characteristics of Example 4 Looking at Examples 1 to 4 as a whole, 1200°C to 1
In the case of Examples 1 to 3 in which the primary sintering temperature is different within the temperature range of 350°C, regardless of the type of coating agent, 1
It is recognized that the higher the primary sintering temperature, the lower the operation start voltage, and this is because the higher the primary sintering temperature, the faster the crystal growth rate and the larger the diameter of the particles. Moreover, among those that changed the primary sintering temperature, 13
It can be seen that the one in which the primary sintering was performed at 00°C has the least leakage current and the nonlinearity of the voltage-current characteristic curve appears to be the greatest.

る。Ru.

そして、1次焼結温度1350“Cにし、2次熱処理温
度をそれぞれ1000’C,1100℃及び1200’
Cに変化させた実施例4に於いては、1000℃で熱処
理を遂行した場合に最も良好な結果が現れ、2次熱処理
の条件に因りバリスタの特性が大いに変化することが分
かる。又、1次焼結体と2次熱処理を行った試片間の電
圧−電流特性の変化を第2図の比較グラフに示した。
The primary sintering temperature was set to 1350'C, and the secondary heat treatment temperatures were set to 1000'C, 1100'C and 1200'C, respectively.
In Example 4 in which the temperature was changed to C, the best results were obtained when the heat treatment was performed at 1000° C., and it can be seen that the characteristics of the varistor vary greatly depending on the conditions of the secondary heat treatment. Further, the comparison graph in FIG. 2 shows the change in voltage-current characteristics between the primary sintered body and the specimen subjected to the secondary heat treatment.

このグラフに於いて、酸化ビスマスを添加しない1次焼
結体では電圧−電流特性が殆ど直線的に現れているのに
反して、酸化ビスマスを主成分とする塗布剤を塗布して
2次熱処理を行うことにより前記酸化ビスマスを酸化亜
鉛の粒界に拡散させた場合には、顕著な電圧−電流特性
曲線の非直線性が現れるのを見ると、酸化ビスマスが酸
化亜鉛の結晶粒界付近に存在する場合にのみ電位基壁が
形成され、この電位基壁が酸化亜鉛バリスタの電圧−電
流特性を調節していることが分かる。
In this graph, the voltage-current characteristics appear almost linearly in the primary sintered body to which bismuth oxide is not added, but on the other hand, the secondary heat treatment after applying a coating agent containing bismuth oxide as the main component When the bismuth oxide is diffused into the grain boundaries of zinc oxide by doing this, significant non-linearity appears in the voltage-current characteristic curve. It can be seen that a potential base wall is formed only when it exists, and this potential base wall adjusts the voltage-current characteristics of the zinc oxide varistor.

〈発明の効果〉 以上説明したように本発明の製造方法によれば、酸化ビ
スマスの液状焼結による結晶粒の粗大化を防止できると
共に酸化ビスマスの連発を防止できるので、高い動作開
始電圧を得ることができ、また、電圧−電流特性におけ
る良好な非直線性を得ることができる。そして、特性の
均一化を図ることができ、性能及び信頼性に優れた高電
圧用バリスタ素子を得ることができる。
<Effects of the Invention> As explained above, according to the manufacturing method of the present invention, it is possible to prevent coarsening of crystal grains due to liquid sintering of bismuth oxide, and to prevent continuous firing of bismuth oxide, thereby obtaining a high operation start voltage. In addition, good nonlinearity in voltage-current characteristics can be obtained. In addition, it is possible to obtain a high-voltage varistor element with uniform characteristics and excellent performance and reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る酸化亜鉛バリスタの製造工程を示
すブロック図、第2図は1次焼結試片と2次熱処理試片
の電圧−電流特性の比較を示すグラフである。
FIG. 1 is a block diagram showing the manufacturing process of a zinc oxide varistor according to the present invention, and FIG. 2 is a graph showing a comparison of the voltage-current characteristics of a primary sintered specimen and a secondary heat-treated specimen.

Claims (1)

【特許請求の範囲】[Claims]  酸化ビスマスを除外した酸化亜鉛バリスタの組成物を
加圧成形し1200〜1350℃で1次焼結を行って製
造した焼結体に、酸化ビスマスを主成分とする金属酸化
物塗布剤を塗布した後、1000〜1200℃の温度で
2次熱処理を行うことを特徴とする高電圧用酸化亜鉛バ
リスタの製造方法。
A metal oxide coating agent containing bismuth oxide as a main component was applied to a sintered body produced by pressure molding a zinc oxide varistor composition excluding bismuth oxide and performing primary sintering at 1200 to 1350°C. A method for producing a high-voltage zinc oxide varistor, which is then subjected to a secondary heat treatment at a temperature of 1000 to 1200°C.
JP1288942A 1989-11-08 1989-11-08 Manufacture of high voltage zinc oxide varistor Pending JPH03159101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1288942A JPH03159101A (en) 1989-11-08 1989-11-08 Manufacture of high voltage zinc oxide varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1288942A JPH03159101A (en) 1989-11-08 1989-11-08 Manufacture of high voltage zinc oxide varistor

Publications (1)

Publication Number Publication Date
JPH03159101A true JPH03159101A (en) 1991-07-09

Family

ID=17736805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1288942A Pending JPH03159101A (en) 1989-11-08 1989-11-08 Manufacture of high voltage zinc oxide varistor

Country Status (1)

Country Link
JP (1) JPH03159101A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342702A (en) * 1993-06-01 1994-12-13 Tdk Corp Voltage dependent nonlinear resistor element and its manufacture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266981A (en) * 1976-12-01 1977-06-02 Matsushita Electric Ind Co Ltd Manufacturing of symmetrical type voltage non-linear resistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266981A (en) * 1976-12-01 1977-06-02 Matsushita Electric Ind Co Ltd Manufacturing of symmetrical type voltage non-linear resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342702A (en) * 1993-06-01 1994-12-13 Tdk Corp Voltage dependent nonlinear resistor element and its manufacture

Similar Documents

Publication Publication Date Title
US4041436A (en) Cermet varistors
JPS5928962B2 (en) Manufacturing method of thick film varistor
US5004573A (en) Fabrication method for high voltage zinc oxide varistor
JPH03159101A (en) Manufacture of high voltage zinc oxide varistor
KR920005155B1 (en) Zno-varistor making method
KR910001109B1 (en) Making process for varistor
JPH0555010A (en) Manufacture of voltage-dependent nonlinear element
JPS5965406A (en) Voltage nonlinear resistor
JPS6092692A (en) Composite circuit with varistor and method of producing same
JP2625178B2 (en) Varistor manufacturing method
JP2005097070A (en) Zinc oxide-based sintered compact and zinc oxide varistor
JP2540048B2 (en) Voltage nonlinear resistor porcelain composition
JPH038765A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JPS6115303A (en) Method of producing oxide voltage nonlinear resistor
JPS63132401A (en) Manufacture of voltage nonlinear resistor
JPH05258914A (en) Manufacture of voltage non-linear resistor
JPS63132402A (en) Manufacture of voltage nonlinear resistor
JPH0580802B2 (en)
JPS59218703A (en) Voltage nonlinear resistor
JPS5831721B2 (en) Voltage nonlinear resistance element and its manufacturing method
JPS61258403A (en) Manufacture of non-linear resistor
JPH0528883B2 (en)
JPH03261101A (en) Manufacture of voltage nonlinear resistor of zinc oxide
JPS62190803A (en) Manufacture of voltage nonlinear device
JP2000091108A (en) Varistor and its manufacture