JPH0528883B2 - - Google Patents

Info

Publication number
JPH0528883B2
JPH0528883B2 JP61079984A JP7998486A JPH0528883B2 JP H0528883 B2 JPH0528883 B2 JP H0528883B2 JP 61079984 A JP61079984 A JP 61079984A JP 7998486 A JP7998486 A JP 7998486A JP H0528883 B2 JPH0528883 B2 JP H0528883B2
Authority
JP
Japan
Prior art keywords
oxide
additives
nonlinear resistor
manufacturing
voltage nonlinear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61079984A
Other languages
Japanese (ja)
Other versions
JPS62237704A (en
Inventor
Masami Nakada
Osamu Imai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP61079984A priority Critical patent/JPS62237704A/en
Publication of JPS62237704A publication Critical patent/JPS62237704A/en
Publication of JPH0528883B2 publication Critical patent/JPH0528883B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は電圧非直線抵抗体の製造法に関するも
ので、更に詳しくは、電気的特性のバラツキの少
ない避雷素子に適した電圧非直線抵抗体の製造法
に関するものである。 (従来の技術) 従来、電圧非直線抵抗体を製造する場合、酸化
亜鉛に添加混合するBi2O3,Co2O3,MnO2
Sb2O3,Cr2O3,SiO2,NiO、ガラス等の各種添
加物を微粉砕するにあたり、添加物の全体を一度
に混合して粉砕していた。 (発明が解決しようとする問題点) しかしながら、上述したように添加物を微粉砕
するにあたり全体を一度に混合して粉砕すると、
各添加物である原料として供給される金属酸化物
の硬度及び粒度が大きく異なるため、添加物を均
一に粉砕、混合することが極めて難しかつた。そ
の結果、得られた電圧非直線抵抗体の電圧非直線
性、課電寿命、雷サージ耐量等の製品の電気的諸
特性が低下したりバラツキが大きくなる欠点があ
つた。 本発明の目的は上述した不具合を解消して、電
圧非直線性、課電寿命、雷サージ耐量等の電気的
諸特性が良好で一定の品質を得ることができる電
圧非直線抵抗体の製造法を提供しようとするもの
である。 (問題点を解決するための手段) 本発明の電圧非直線抵抗体の製造法は、酸化亜
鉛を主成分とする原料に、酸化ビスマス、酸化コ
バルト、酸化マンガン、酸化アンチモン、酸化ク
ロム、酸化ケイ素、酸化ニツケルの金属酸化物よ
りなる添加物を混合した後、混合物を焼成して焼
結体を得る電圧非直線抵抗体の製造法において、
酸化亜鉛原料への混合に先立つて添加物を微粉砕
するにあたり、添加物のうち平均粒径2μmを超
える添加物を優先的かつ選択的に2μm以下とな
るまで粉砕した後、得られた粉砕物に添加物のう
ち平均粒径2μm以下の添加物を加えて均一混合
してさらに粉砕することにより、添加物を微粉砕
することを特徴とするものである。 (作 用) 上述した構成において、添加物の全体混合に先
立つて粒径の大きい添加物のみを選択的に微粉砕
し、その後細かい粒径の添加物を混合するので、
原料として供給される各添加物の粒径が異なつて
いても各成分とも均一となり組成のバラツキも少
なくなる。その結果、添加物を酸化亜鉛の粒径と
ほぼ同程度にまで均一に微粉砕可能となるととも
に、粒界相を形成する各種添加物の添加量が非常
に少ない場合でもその作用を有効に発揮させるこ
とが可能となるため、各種特性が良好で安定した
性能を有する電圧非直線抵抗体を得ることができ
る。 なお、選択的な微粉砕に際して比重が一番小さ
いSiO2をその中でも一番最初に粉砕すると、さ
らに均一な添加物を得ることができる。また、粉
砕方法としてはボールミル、デイスパーミル等を
使用した湿式粉砕法が好ましい。 酸化亜鉛を主成分とする電圧非直線抵抗体を製
造する方法について説明する。まず、原料として
供給される添加物のうち平均粒径が2μmを超え
るの添加物、例えばBi2O3,Co2O3,MnO2
Sb2O3,SiO2等の所定量を2μm以下の粒径まで粉
砕する。このとき、比重の軽いSiO2を一番最初
に粉砕すると好適である。次に、これらの粉砕物
と添加物のうち平均粒径が2μm以下の添加物、
例えばCr2O3,NiOの所定量を混合してさらに粉
砕する。このとき、本発明の対象である金属酸化
物以外の添加物例えばガラスフリツトは、上述し
た粉砕工程のどの段階で粉砕してもよい。粉砕は
例えばボールミルによる湿式粉砕により所定時間
粉砕することにより添加物泥漿を得る。しかる後
この添加物の泥漿中に通常の有機質バインダー及
び酸化亜鉛を混合し、スプレードライヤで混合物
の造粒物を作り、これを円板状にプレス成形して
成形体を得る。この成形体を昇降温速度60℃/hr
で900℃保持時間2時間の条件で仮焼成して結合
剤を飛散除去する 次に、仮焼成した成形体の側面に絶縁被覆層を
形成する。例えば、Bi2O3,Sb2O3,SiO2等に有
機結合剤としてエチルセルロース、ブチルカルビ
トール、酢酸nブチル等を加えた酸化物ペースト
を100〜200μmの厚さに仮焼体の側面に塗布した
後、これを昇降温速度50℃/hrで1200℃5時間の
条件で本焼成して電圧非直線抵抗体を得る。さら
にガラス粉末に有機結合剤としてエチルセルロー
ス、ブチルカルビトール、酢酸nブチル等を加え
たガラスペーストを前記絶縁被覆層上に100〜
200μmの厚さに塗布し、空気中で昇降温速度150
℃/hr、500℃保持時間1時間の条件で熱処理す
ることによりガラス層を形成すると好ましい。次
いで電圧非直線抵抗体の両端面を平滑に研磨し、
両端面上にアルミニウム電極を溶射により設け
る。 実施例 第1表に示す本発明および本発の範囲外の各種
工程からなる粉砕方法により得た原料粉末から、
上述した方法で直径47mm、厚さ20mmの電圧非直線
抵抗体を作成した。なお、このときの添加物の粉
砕は湿式のボールミルにより行なうとともに、
ZnOと粉砕した添加物の混合はデイスパーミにル
より実施した。また、使用する添加物のうち、
Bi2O3,Co2O3,MnO2,Sb2O3,SiO2は平均粒径
が2μmを超えるものであり、NiO,Cr2O3は平均
粒径が2μm以下であつた。その後、得られた電
圧非直線抵抗体に対して、電圧非直線指数、雷サ
ージ後のΔV1nAおよび漏洩電流の比の各特性のそ
れぞれの平均値および標準偏差を求めた。結果を
第1表に示す。第1表中、電圧非直線指数αは
=KV〓(:電流、V:電圧、K:比例定数)の
式に基きV1nAとV100Aとの値より求めている。ま
た、雷サージ後のΔV1nAは、素子を4×10μsの電
流波形で40KAの電流を10回繰り返し印加したと
きのV1nAの低下率を示している。さらに、漏洩
電流の比は素子を周囲温度130℃、課電率95%で
課電し、課電直後に対する課電100時間後の電流
比 100時間/ 0時間から求めた。
(Industrial Application Field) The present invention relates to a method for manufacturing a voltage nonlinear resistor, and more specifically, to a method for manufacturing a voltage nonlinear resistor suitable for a lightning arrester element with little variation in electrical characteristics. . (Prior art) Conventionally, when manufacturing a voltage nonlinear resistor, Bi 2 O 3 , Co 2 O 3 , MnO 2 ,
When various additives such as Sb 2 O 3 , Cr 2 O 3 , SiO 2 , NiO, glass, etc. are pulverized, the entire additives are mixed and pulverized at once. (Problems to be Solved by the Invention) However, as described above, when pulverizing additives, if the entire additive is mixed and pulverized at once,
Since the hardness and particle size of the metal oxides supplied as raw materials for each additive vary greatly, it has been extremely difficult to uniformly grind and mix the additives. As a result, the electrical properties of the resulting voltage nonlinear resistor, such as voltage nonlinearity, energized life, and lightning surge resistance, deteriorate or vary widely. The purpose of the present invention is to provide a method for manufacturing a voltage nonlinear resistor that can eliminate the above-mentioned problems and provide a constant quality with good electrical properties such as voltage nonlinearity, energized life, and lightning surge resistance. This is what we are trying to provide. (Means for Solving the Problems) The method for manufacturing a voltage nonlinear resistor of the present invention uses a raw material containing zinc oxide as a main component, bismuth oxide, cobalt oxide, manganese oxide, antimony oxide, chromium oxide, and silicon oxide. , in a method for manufacturing a voltage nonlinear resistor in which a sintered body is obtained by mixing an additive made of a metal oxide of nickel oxide and then firing the mixture,
When finely pulverizing the additives prior to mixing them into the zinc oxide raw material, the pulverized product obtained after preferentially and selectively pulverizing the additives with an average particle size of more than 2 μm to 2 μm or less. It is characterized in that the additives are finely pulverized by adding an additive having an average particle diameter of 2 μm or less to the mixture, uniformly mixing the mixture, and pulverizing the mixture. (Function) In the above-mentioned configuration, only the additives with large particle sizes are selectively pulverized prior to mixing all of the additives, and then the additives with fine particle sizes are mixed.
Even if the particle sizes of the additives supplied as raw materials are different, each component will be uniform and variations in composition will be reduced. As a result, it is possible to uniformly pulverize additives to a particle size almost the same as that of zinc oxide, and the effect is effectively exerted even when the amount of various additives that form grain boundary phases is very small. Therefore, it is possible to obtain a voltage nonlinear resistor that has good various characteristics and stable performance. In addition, when selectively pulverizing SiO 2 having the smallest specific gravity is pulverized first, a more uniform additive can be obtained. Further, as the pulverizing method, a wet pulverizing method using a ball mill, a disper mill, etc. is preferable. A method for manufacturing a voltage nonlinear resistor containing zinc oxide as a main component will be described. First, among the additives supplied as raw materials, those with an average particle size exceeding 2 μm, such as Bi 2 O 3 , Co 2 O 3 , MnO 2 ,
A predetermined amount of Sb 2 O 3 , SiO 2 , etc. is pulverized to a particle size of 2 μm or less. At this time, it is preferable to crush SiO 2 , which has a light specific gravity, first. Next, among these pulverized products and additives, additives with an average particle size of 2 μm or less,
For example, predetermined amounts of Cr 2 O 3 and NiO are mixed and further pulverized. At this time, additives other than metal oxides, which are the object of the present invention, such as glass frit, may be crushed at any stage of the above-mentioned crushing process. The pulverization is performed by wet pulverization using, for example, a ball mill for a predetermined period of time to obtain an additive slurry. Thereafter, a conventional organic binder and zinc oxide are mixed into the additive slurry, a granulated mixture is made using a spray dryer, and the granulated mixture is press-molded into a disk shape to obtain a compact. This molded body is heated and cooled at a rate of 60℃/hr.
The binder is scattered and removed by pre-sintering at 900°C for 2 hours. Next, an insulating coating layer is formed on the side surface of the pre-sintered molded body. For example, an oxide paste made of Bi 2 O 3 , Sb 2 O 3 , SiO 2 , etc. and ethyl cellulose, butyl carbitol, n-butyl acetate, etc. added as an organic binder is applied to the side of the calcined body to a thickness of 100 to 200 μm. After coating, this is fired at 1200°C for 5 hours at a temperature increase/decrease rate of 50°C/hr to obtain a voltage nonlinear resistor. Furthermore, a glass paste prepared by adding ethyl cellulose, butyl carbitol, n-butyl acetate, etc. as an organic binder to glass powder is applied to the insulating coating layer at
Coated to a thickness of 200 μm and heated at a rate of 150 μm in air.
It is preferable to form the glass layer by heat treatment under the conditions of 1 hour at 500°C and 1 hour at 500°C. Next, both end faces of the voltage nonlinear resistor were polished smooth.
Aluminum electrodes are provided on both end faces by thermal spraying. Examples From the raw material powder obtained by the pulverization method consisting of various steps outside the scope of the present invention and the present invention shown in Table 1,
A voltage nonlinear resistor with a diameter of 47 mm and a thickness of 20 mm was created using the method described above. At this time, the additives are pulverized using a wet ball mill, and
Mixing of ZnO and ground additives was carried out using a dispersion mill. Also, among the additives used,
Bi 2 O 3 , Co 2 O 3 , MnO 2 , Sb 2 O 3 and SiO 2 had an average particle size of more than 2 μm, and NiO and Cr 2 O 3 had an average particle size of 2 μm or less. Thereafter, for the obtained voltage nonlinear resistor, the average value and standard deviation of each characteristic of the voltage nonlinear index, ΔV 1 nA after lightning surge, and leakage current ratio were determined. The results are shown in Table 1. In Table 1, the voltage nonlinearity index α is determined from the values of V 1nA and V 100A based on the formula =KV〓 (: current, V: voltage, K: proportionality constant). Further, ΔV 1nA after a lightning surge indicates the rate of decrease in V 1nA when a current of 40 KA is repeatedly applied to the device 10 times with a current waveform of 4×10 μs. Furthermore, the leakage current ratio was determined by applying electricity to the device at an ambient temperature of 130° C. and an application rate of 95%, and calculating the current ratio 100 hours/0 hours after 100 hours of application of electricity to that immediately after the application of electricity.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したところから明らかなよう
に、本発明の電圧非直線抵抗体の製造法によれ
ば、添加物の全体混合粉砕に先立つて平均粉径が
2μmを超えるの添加物のみを選択的に微粉砕し、
その後平均粒径が2μm以下の添加物を混合微粉
砕して均一な原料粉末を得ているため、電圧非直
線性、課電寿命、雷サージ耐量の各電気的特性が
良好で安定した品質を有する電圧非直線抵抗体を
得ることができる。
As is clear from the detailed explanation above, according to the method for manufacturing a voltage nonlinear resistor of the present invention, the average powder diameter is
Selectively pulverize only additives larger than 2μm,
Additives with an average particle size of 2μm or less are then mixed and pulverized to obtain a uniform raw material powder, resulting in stable quality with good electrical properties such as voltage nonlinearity, charging life, and lightning surge resistance. It is possible to obtain a voltage nonlinear resistor having the following characteristics.

Claims (1)

【特許請求の範囲】 1 酸化亜鉛を主成分とする原料に、酸化ビスマ
ス、酸化コバルト、酸化マンガン、酸化アンチモ
ン、酸化クロム、酸化ケイ素、酸化ニツケルの金
属酸化物よりなる添加物を混合した後、混合物を
焼成して焼結体を得る電圧非直線抵抗体の製造法
において、酸化亜鉛原料への混合に先立つて添加
物を微粉砕するにあたり、添加物のうち平均粒径
2μmを超える添加物を優先的かつ選択的に2μm
以下となるまで粉砕した後、得られた粉砕物に添
加物のうち平均粒径2μm以下の添加物を加えて
均一混合してさらに粉砕することにより、添加物
を微粉砕することを特徴とする電圧非直線抵抗体
の製造法。 2 前記選択粉砕した後均一混合する添加物が、
酸化ビスマス、酸化コバルト、酸化マンガン、酸
化アンチモン、酸化ケイ素である特許請求の範囲
第1項記載の電圧非直線抵抗体の製造法。 3 前記添加物のうち酸化ケケイ素を一番最初に
選択粉砕する特許請求の範囲第2項記載の電圧非
直線抵抗体の製造法。 4 前記選択粉砕を実施せず均一混合する添加物
が、酸化クロム、酸化ニツケルである特許請求の
範囲第1項記載の電圧非直線抵抗体の製造法。 5 前記微粉砕が湿式で行われる特許請求の範囲
第1項記載の電圧非直線抵抗体の製造法。
[Claims] 1. After mixing additives consisting of metal oxides such as bismuth oxide, cobalt oxide, manganese oxide, antimony oxide, chromium oxide, silicon oxide, and nickel oxide into a raw material containing zinc oxide as a main component, In the manufacturing method of a voltage nonlinear resistor in which a sintered body is obtained by firing a mixture, the average particle size of the additive is
Preferentially and selectively reduce additives larger than 2μm to 2μm
After pulverizing the resulting pulverized material, additives with an average particle size of 2 μm or less are added to the resulting pulverized material, mixed uniformly, and further pulverized to finely pulverize the additives. A method of manufacturing a voltage nonlinear resistor. 2 The additives to be uniformly mixed after the selective pulverization are
The method for manufacturing a voltage nonlinear resistor according to claim 1, wherein the material is bismuth oxide, cobalt oxide, manganese oxide, antimony oxide, or silicon oxide. 3. The method for manufacturing a voltage nonlinear resistor according to claim 2, wherein silicon oxide among the additives is selectively crushed first. 4. The method for manufacturing a voltage nonlinear resistor according to claim 1, wherein the additives that are uniformly mixed without performing selective pulverization are chromium oxide or nickel oxide. 5. The method for manufacturing a voltage nonlinear resistor according to claim 1, wherein the pulverization is performed wet.
JP61079984A 1986-04-09 1986-04-09 Manufacture of voltage nonlinear resistance element Granted JPS62237704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61079984A JPS62237704A (en) 1986-04-09 1986-04-09 Manufacture of voltage nonlinear resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61079984A JPS62237704A (en) 1986-04-09 1986-04-09 Manufacture of voltage nonlinear resistance element

Publications (2)

Publication Number Publication Date
JPS62237704A JPS62237704A (en) 1987-10-17
JPH0528883B2 true JPH0528883B2 (en) 1993-04-27

Family

ID=13705580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61079984A Granted JPS62237704A (en) 1986-04-09 1986-04-09 Manufacture of voltage nonlinear resistance element

Country Status (1)

Country Link
JP (1) JPS62237704A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2836893B2 (en) * 1990-03-08 1998-12-14 日本碍子 株式会社 Method of manufacturing voltage non-linear resistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105602A (en) * 1980-01-29 1981-08-22 Tokyo Shibaura Electric Co Method of manufacturing nonliner resistor
JPS605062A (en) * 1983-06-22 1985-01-11 三菱電機株式会社 Manufacture of zinc oxide varistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105602A (en) * 1980-01-29 1981-08-22 Tokyo Shibaura Electric Co Method of manufacturing nonliner resistor
JPS605062A (en) * 1983-06-22 1985-01-11 三菱電機株式会社 Manufacture of zinc oxide varistor

Also Published As

Publication number Publication date
JPS62237704A (en) 1987-10-17

Similar Documents

Publication Publication Date Title
JPH0528883B2 (en)
CN101154487A (en) Method for manufacturing zinc oxide nonlinear resistance slice used for lightning arrester
JP2692210B2 (en) Zinc oxide varistor
JPH0253922B2 (en)
JPH0321083B2 (en)
JPH0379850B2 (en)
KR920005155B1 (en) Zno-varistor making method
JP3353015B2 (en) Method of manufacturing voltage non-linear resistor
JP3728881B2 (en) Method for manufacturing non-linear resistor
JPS6249961B2 (en)
JPH02114603A (en) Manufacture of glaze varistor
JPH0516641B2 (en)
JP2549756B2 (en) Manufacturing method of voltage non-linear resistor for arrester with gap
JPH05258914A (en) Manufacture of voltage non-linear resistor
JPH02238603A (en) Manufacture of voltage-dependent nonlinear resistor
JPS62237708A (en) Manufacture of voltage nonlinear resistance element
JPH08213209A (en) Manufacture of voltage nonlinear-type resistor
JPH0476482B2 (en)
JPH0815121B2 (en) Method for producing low voltage non-linear antibody
JP2003297611A (en) Manufacturing method of voltage-nonlinear resistance
JPH03112101A (en) Manufacture of varistor
JPS625321B2 (en)
JPS6214922B2 (en)
JPH03161902A (en) Manufacture of varistor
JPH02297901A (en) Manufacture of nonlinear resistor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term