JPH0815121B2 - Method for producing low voltage non-linear antibody - Google Patents

Method for producing low voltage non-linear antibody

Info

Publication number
JPH0815121B2
JPH0815121B2 JP61205753A JP20575386A JPH0815121B2 JP H0815121 B2 JPH0815121 B2 JP H0815121B2 JP 61205753 A JP61205753 A JP 61205753A JP 20575386 A JP20575386 A JP 20575386A JP H0815121 B2 JPH0815121 B2 JP H0815121B2
Authority
JP
Japan
Prior art keywords
raw material
voltage non
oxide
mixing
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61205753A
Other languages
Japanese (ja)
Other versions
JPS6362202A (en
Inventor
義弘 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP61205753A priority Critical patent/JPH0815121B2/en
Publication of JPS6362202A publication Critical patent/JPS6362202A/en
Publication of JPH0815121B2 publication Critical patent/JPH0815121B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電圧非直線抵抗体の製造方法に関し、更に詳
しくは、電気特性の良好な電圧非直線抵抗体の製造する
のに適した電圧非直線抵抗体の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a voltage non-linear resistor, and more particularly, to a voltage non-linear resistor suitable for manufacturing a voltage non-linear resistor having good electrical characteristics. The present invention relates to a method for manufacturing a linear resistor.

(従来の技術) 従来、電圧非直線抵抗体の製造する際の混合工程で
は、例えば酸化ビスマス,酸化コバルト,酸化マンガ
ン,酸化アンチモン,酸化クロム,酸化けい素,酸化ニ
ッケル,酸化アルミニウム等の各種金属酸化物およびホ
ウケイ酸ビスマスガラスをそのままあるいは一たん仮焼
した後所定の粒径に粉砕し、これらの粉砕粉を酸化亜鉛
の原料中に添加して単にボールミル、振動ミル、乳化機
(例えばディスパーミル)等により分散混合して原料粉
末を得ていた。
(Prior Art) Conventionally, in a mixing step in manufacturing a voltage nonlinear resistor, for example, various metals such as bismuth oxide, cobalt oxide, manganese oxide, antimony oxide, chromium oxide, silicon oxide, nickel oxide, and aluminum oxide. Oxide and bismuth borosilicate glass are calcinated as they are or after being calcinated to a predetermined particle size, and these pulverized powders are added to the raw material of zinc oxide, and simply ball mill, vibration mill, emulsifier (for example, Disper mill). ) Or the like to disperse and mix to obtain a raw material powder.

(発明が解決しようとする問題点) ところで従来のボールミルの場合には、混合に非常に
長い時間が必要であり、振動ミルや乳化機の場合には、
混合の際の温度管理が十分検討されていないために、原
料粉末中の各成分を均一に分散・混合することができ
ず、従ってこのような原料粉末を造粒、成形、焼成して
製造した電圧非直線抵抗体では電気特性の向上を図るの
が難しく、また、該特性のばらつきが大きい不利があっ
た。
(Problems to be Solved by the Invention) By the way, in the case of a conventional ball mill, a very long time is required for mixing, and in the case of a vibration mill or an emulsifier,
Since the temperature control during mixing has not been sufficiently studied, it was not possible to uniformly disperse and mix each component in the raw material powder, and thus such raw material powder was produced by granulation, molding and firing. It is difficult to improve the electrical characteristics of the voltage non-linear resistor, and there is a disadvantage that the characteristics vary greatly.

本発明の目的は、とくに混合工程において各種金属酸
化物と主原料とを混合する際に生じる上述の如き従来の
問題を解消し、放電耐量等の電気特性が良好でかつ一定
の品質を得るのに有利な電圧非直線抵抗体の製造方法を
提案するところにある。
The object of the present invention is to solve the above-mentioned conventional problems that occur when mixing various metal oxides and main raw materials in the mixing step, and to obtain good electrical characteristics such as discharge withstand capacity and a certain quality. The present invention proposes a method of manufacturing a voltage non-linear resistor which is advantageous to the above.

(問題点を解決するための手段) 本発明は酸化亜鉛を主成分とする原料に、添加物とし
て電圧非直線性を生じさせる各種金属酸化物を添加、混
合する工程において、前記原料と前記金属酸化物よりな
る原料粉末に0.1〜2.0wt%の有機結合剤を加えるととも
に、水分量が30〜35wt%になる泥漿とし、この泥漿を40
℃以下の温度に強制的に冷却しつつ乳化機にて混合する
ことを特徴とする電圧非直線抵抗体の製造方法であり、
上記原料粉末に加える有機結合剤としてはポリビニルア
ルコールあるいはポリビニルピロリドン、エチレンオキ
シド、メチルセルロース、ヒドロキシエチレンセルロー
ス、カルボキシメチルセルロース等を用いる。
(Means for Solving Problems) In the present invention, in the step of adding and mixing various metal oxides that cause voltage nonlinearity as an additive to a raw material containing zinc oxide as a main component, the raw material and the metal Add 0.1 to 2.0 wt% of organic binder to the raw material powder made of oxide, and make the slurry with water content of 30 to 35 wt%.
A method for producing a voltage non-linear resistor characterized by mixing in an emulsifier while forcibly cooling to a temperature of ℃ or less,
As the organic binder added to the raw material powder, polyvinyl alcohol, polyvinylpyrrolidone, ethylene oxide, methyl cellulose, hydroxyethylene cellulose, carboxymethyl cellulose or the like is used.

(作用) 本発明は、上述した構成において酸化亜鉛の主原料に
各種添加物の微粉砕物を添加して電圧非直線抵抗体用の
原料粉末を得る際、これら原料粉末に有機結合剤を加え
るとともに、水分量を所定の範囲に調整して泥漿とし、
これを40℃以下の温度で混合するので酸化亜鉛および添
加物を均一に混合することができるのである。
(Function) The present invention adds an organic binder to these raw material powders when finely pulverized various additives are added to the main raw material of zinc oxide in the above-mentioned constitution to obtain raw material powders for voltage nonlinear resistors. At the same time, adjust the amount of water to a predetermined range to make sludge,
Since this is mixed at a temperature of 40 ° C. or lower, zinc oxide and additives can be mixed uniformly.

なお、泥漿を40℃以下の温度で混合する理由は、40℃
を越えると混合の際に混合物がゲル化し、均一に混合す
ることができないためである。とくにこの温度は20〜30
℃に調整するのがより好ましい。
The reason for mixing sludge at a temperature of 40 ° C or lower is 40 ° C.
This is because if it exceeds the above range, the mixture will gel during mixing and cannot be mixed uniformly. Especially this temperature is 20-30
It is more preferable to adjust the temperature to ° C.

またその含有量が原料粉末の固形分に対して0.1〜2.0
wt%であるのが好ましい理由としては、まずポリビニル
アルコールは水溶性であり、他のバインダより低粘性で
安定しているとともに、ポリビニルアルコールを用いた
造粒粉を成形した場合、内部欠陥の少ない密度の高い成
形体が得られるからである。
Moreover, the content is 0.1 to 2.0 with respect to the solid content of the raw material powder.
The reason why it is preferable to be wt% is that polyvinyl alcohol is water-soluble, has a lower viscosity than other binders and is stable, and when granulated powder using polyvinyl alcohol is molded, it has few internal defects. This is because a molded product having a high density can be obtained.

またその含有量は、0.1wt%未満では効果がなく、一
方2.0wt%を越えると電圧非直線抵抗体の電気的特性が
低下するためである。従って、有機結合剤としては、ポ
リビニールアルコールを加えるのが好ましくその含有量
は0.1〜2.0wt%の範囲内にするのが好ましいのである。
Further, if the content is less than 0.1 wt%, there is no effect, while if it exceeds 2.0 wt%, the electrical characteristics of the voltage nonlinear resistor deteriorate. Therefore, as the organic binder, it is preferable to add polyvinyl alcohol, and the content thereof is preferably within the range of 0.1 to 2.0 wt%.

以下、酸化亜鉛を主成分とする電圧非直線抵抗体を、
本発明の混合方法を適用して製造する場合の一実施例に
つき説明する。
Hereinafter, a voltage nonlinear resistor containing zinc oxide as a main component,
One example in the case of manufacturing by applying the mixing method of the present invention will be described.

まず、所定の粒度に調整した酸化ビスマス,酸化コバ
ルト,酸化マンガン、酸化アンチモン,酸化クロム,酸
化けい素,酸化ニッケル,酸化アルミニウム等よりなる
添加物の混合物を好ましくは700〜850℃で仮焼する。
First, a mixture of additives made of bismuth oxide, cobalt oxide, manganese oxide, antimony oxide, chromium oxide, silicon oxide, nickel oxide, aluminum oxide and the like adjusted to a predetermined particle size is preferably calcined at 700 to 850 ° C. .

次に得られた仮焼物を好ましくは乾式解砕後湿式ボー
ルミルで微粉砕する。仮焼は添加物によっては実施しな
くてもよく、その場合は添加物を直接湿式ボールミルで
微粉砕する。微粉砕は、次工程で混合する酸化亜鉛との
平均粒径差を2μm以下、より好ましくは両者がほぼ同
等の平均粒径となるまで実施する。
Next, the obtained calcined product is preferably dry-crushed and then finely ground by a wet ball mill. The calcination does not have to be carried out depending on the additive, in which case the additive is directly pulverized by a wet ball mill. The fine pulverization is carried out until the difference in average particle diameter with zinc oxide to be mixed in the next step is 2 μm or less, and more preferably both particles have almost the same average particle diameter.

次に、酸化亜鉛の粉末と上記添加物の微粉砕物とを混
合する。
Next, the zinc oxide powder and a finely pulverized product of the above additives are mixed.

混合に際しては、これら酸化亜鉛の粉末と添加物より
なる原料粉末に結合剤としてポリビニルアルコールを該
原料粉末の固形物に対して0.1〜2.0wt%の範囲で加え
る。そして、この混合物の水分量を30〜35wt%の範囲
に、また粘度を好ましくは100cP±50に調整する。混合
操作は、乳化機を用い、泥漿の温度を40℃以下(好まし
くは20〜30℃)に強制的に冷却して調整しつつ約80分間
混合する。ここで温度調整するための手段としては、例
えば乳化機に冷却ジャケットを設け、この中に冷却水を
循環させ、内部温度により冷却水の流量をコントロール
する。
Upon mixing, polyvinyl alcohol as a binder is added to the raw material powder consisting of the zinc oxide powder and the additive in the range of 0.1 to 2.0 wt% with respect to the solid matter of the raw material powder. Then, the water content of this mixture is adjusted to the range of 30 to 35 wt%, and the viscosity is adjusted to 100 cP ± 50. The mixing operation is carried out by using an emulsifier and forcibly cooling the temperature of the slurry to 40 ° C. or lower (preferably 20 to 30 ° C.) and adjusting the temperature for about 80 minutes. Here, as a means for adjusting the temperature, for example, a cooling jacket is provided in the emulsifying machine, cooling water is circulated in this, and the flow rate of the cooling water is controlled by the internal temperature.

次に、得られた混合泥漿を減圧脱気後好ましくはスプ
レードライヤーで微細粒子に造粒した後、造粒物を成形
圧力800〜1000kg/cm2の下で所定の形状に加圧成形す
る。その成形体を昇降温速度50〜70℃/hrで800〜1000
℃、保持時間1〜5時間という条件で仮焼成して結合剤
を飛散除去する。次に、仮焼成した仮焼体の側面に絶縁
被覆層を形成する。
Next, the obtained mixed sludge is degassed under reduced pressure, preferably granulated into fine particles with a spray dryer, and then the granulated product is pressure-molded into a predetermined shape under a molding pressure of 800 to 1000 kg / cm 2 . 800-1000 at the temperature rising / falling speed of 50-70 ℃ / hr
The binder is scattered and removed by calcination under the conditions of a temperature of 1 to 5 hours. Next, an insulating coating layer is formed on the side surface of the calcined body that has been calcined.

この絶縁被覆層は酸化ビスマス,酸化アンチモン,酸
化けい素等に有機結合剤としてエチルセルロース、ブチ
ルカルビトール、酢酸nブチル等を加えた酸化物ペース
トであり、これを30〜100μmの厚さに仮焼体の側面に
塗布する。次にこれを昇降温速度40〜60℃/hr、1000〜1
300℃好ましくは1200℃、3〜7時間という条件で本焼
成する。
This insulating coating layer is an oxide paste obtained by adding ethyl cellulose, butyl carbitol, n-butyl acetate, etc. as organic binders to bismuth oxide, antimony oxide, silicon oxide, etc., and calcining this to a thickness of 30 to 100 μm. Apply to the sides of the body. Next, this is heated / cooled at a rate of 40-60 ° C / hr, 1000-1
The main calcination is performed at 300 ° C., preferably 1200 ° C. for 3 to 7 hours.

なお、ガラス粉末に有機結合剤としてエチルセルロー
ス、ブチルカルビトール、酢酸nブチル等を加えたガラ
スペーストを前記の絶縁被覆層上に100〜200μmの厚さ
に塗布し、空気中で昇降温速度100〜200℃/hr、400〜60
0℃保持時間0.5〜2時間という条件で熱処理することに
よりガラス層を形成すると好ましい。そして最後に電圧
非直線抵抗体の両端面を平滑に研磨し、アルミニウム電
極を溶射により設けて電圧非直線抵抗体を得る。
In addition, a glass paste obtained by adding ethyl cellulose, butyl carbitol, n-butyl acetate, etc. as an organic binder to glass powder is applied on the above-mentioned insulating coating layer to a thickness of 100 to 200 μm, and the temperature rising / falling rate is 100 to 100 in air. 200 ° C / hr, 400-60
The glass layer is preferably formed by heat treatment under the condition of 0 ° C. holding time of 0.5 to 2 hours. Finally, both end surfaces of the voltage non-linear resistor are polished smoothly and aluminum electrodes are provided by thermal spraying to obtain the voltage non-linear resistor.

(実施例) 実施例−1 上述した方法で作製した直径47mm、厚さ20mmの電圧非
直線抵抗体において、本発明の混合方法を適用した試料
No.1〜4と、混合時の温度又は有機結合剤のどちらかが
本発明範囲外の比較例No.5,6を準備し、欠陥発生率、電
圧非直線指数、サージ耐量破壊率(%)および漏洩電流
の比について、比較調査した。
(Example) Example-1 A sample to which the mixing method of the present invention is applied in a voltage nonlinear resistor having a diameter of 47 mm and a thickness of 20 mm manufactured by the method described above.
Nos. 1 to 4 and Comparative Examples Nos. 5 and 6 in which either the temperature at the time of mixing or the organic binder were out of the scope of the present invention were prepared, and the defect occurrence rate, voltage nonlinear index, surge withstand breakdown rate (% ) And leakage current ratio were compared and investigated.

なお欠陥発生率は、得られた試料に対して超音波探傷
測定を実施して直径0.5mm以上の欠陥の数を調べてその
割合を求めたものであり、電圧非直線指数αはI=KVα
(I:電流、V:電圧、K:比例定数)に基づいてV1mAとV100
μAとの比から求めた。
The defect occurrence rate is obtained by performing ultrasonic flaw detection on the obtained sample and checking the number of defects having a diameter of 0.5 mm or more, and obtaining the ratio thereof. The voltage nonlinear index α is I = KV α
V 1 mA and V 100 based on (I: current, V: voltage, K: proportional constant)
It was calculated from the ratio with μA.

また、放電耐量は1000Aおよび1200Aの電流を2msの電
流波形で20回繰り返し印加した後、素子が破壊した数を
サージ耐量破壊率として求め、さらに、漏洩電流の比は
素子を周囲温度130℃課電率95%で課電し、課電直後に
対する課電100時間後の電流比I100時間/I0時間から求
めた。
The discharge withstand capability was obtained by repeatedly applying the current of 1000 A and 1200 A 20 times with a current waveform of 2 ms, and then obtaining the number of device breakdowns as the surge withstand breakdown rate. Electricity was applied at 95%, and it was calculated from the current ratio I 100 hours / I 0 hours 100 hours after the application of electricity immediately after the application.

その結果を表−1に示す。 The results are shown in Table-1.

表−1から明かなように、本発明の混合方法を適用し
て得られた試料No.1〜4は比較例No.5,6に比べて欠陥発
生率が非常に小さく、高い電圧非直線性、及びサージ耐
量、少ない漏洩電流が達成でき、その結果電圧非直線
性、課電寿命、雷サージ耐量の電気的諸特性が良好であ
るとともに電圧非直線指数α、漏洩電流の比、について
は標準偏差値(σ)も小さく、特性の変動が少ないこと
がわかった。
As can be seen from Table-1, the sample Nos. 1 to 4 obtained by applying the mixing method of the present invention have a much smaller defect occurrence rate than the comparative examples Nos. 5 and 6, and have a high voltage nonlinearity. Of the voltage non-linearity α, the leakage current ratio, as well as good electrical characteristics such as voltage non-linearity, voltage life, and lightning surge withstand capability. It was found that the standard deviation value (σ) was also small, and there was little variation in characteristics.

実施例−2 同様に上述した方法で作製した直径47mm、厚さ20mmの
電圧非直線抵抗体において、原料粉末の混合に際して加
えるポリビニルアルコールの含有量(wt%)の電気的特
性に与える影響を調べるため混合工程においてその含有
量を種々変化させた原料粉末より得られた試料No.7〜12
を準備した。
Example 2 Similarly, in a voltage non-linear resistor having a diameter of 47 mm and a thickness of 20 mm produced by the above-described method, the influence of the content (wt%) of polyvinyl alcohol added during the mixing of the raw material powders on the electrical characteristics is examined. Therefore, in the mixing process, sample Nos. 7 to 12 obtained from raw material powders whose contents were variously changed
Prepared.

これら試料No.7〜12に対して、実施例1と同様に欠陥
発生率、電圧非直線指数、サージ耐量破壊率(%)およ
び漏洩電流の比につき調査した。
Similar to Example 1, these sample Nos. 7 to 12 were examined for the ratio of defect occurrence rate, voltage non-linearity index, surge withstand breakdown rate (%) and leakage current.

その結果を表−2に示す。 The results are shown in Table-2.

表−2から明かなように、本発明による混合方法を適
用した原料粉末にて作製した試料No.8〜No.11は何れも
良好な値を示すことが確かめられた。
As is clear from Table-2, it was confirmed that all of the samples No. 8 to No. 11 produced by the raw material powder to which the mixing method according to the present invention was applied show good values.

(発明の効果) 本発明によれば、とくに混合工程において酸化亜鉛を
主成分とする原料と各種の添加物とよりなる原料粉末を
短時間で均一に混合することができるので、その結果、
欠陥発生が少なくサージ耐量、課電寿命特性等の良好な
電圧非直線抵抗体の製造が工業的に実現できる。
(Effect of the invention) According to the present invention, it is possible to uniformly mix a raw material powder mainly composed of zinc oxide and various additives in a mixing step in a short time.
It is possible to industrially manufacture a voltage non-linear resistor having few defects and having good surge withstand capability and electric life characteristic.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】酸化亜鉛を主成分とする原料に、添加物と
して電圧非直線性を生じさせる各種金属酸化物を添加、
混合する工程において、 前記原料と前記金属酸化物よりなる原料粉末に0.1〜2.0
wt%の有機結合剤を加えるとともに、水分量が30〜35wt
%になる泥漿とし、この泥漿を40℃以下の温度に強制的
に冷却しつつ乳化機にて混合することを特徴とする電圧
非直線抵抗体の製造方法。
1. A metal oxide containing, as an additive, various metal oxides that cause voltage non-linearity.
In the mixing step, 0.1 to 2.0 is added to the raw material powder consisting of the raw material and the metal oxide.
Adds wt% organic binder and water content is 30 ~ 35wt
%, And a method for producing a voltage non-linear resistor, characterized in that the slurry is forcibly cooled to a temperature of 40 ° C. or lower and mixed by an emulsifying machine.
【請求項2】有機結合剤がポリビニルアルコールであ
る、特許請求の範囲第1項記載の電圧非直線抵抗体の製
造方法。
2. The method for producing a voltage nonlinear resistor according to claim 1, wherein the organic binder is polyvinyl alcohol.
JP61205753A 1986-09-03 1986-09-03 Method for producing low voltage non-linear antibody Expired - Lifetime JPH0815121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61205753A JPH0815121B2 (en) 1986-09-03 1986-09-03 Method for producing low voltage non-linear antibody

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61205753A JPH0815121B2 (en) 1986-09-03 1986-09-03 Method for producing low voltage non-linear antibody

Publications (2)

Publication Number Publication Date
JPS6362202A JPS6362202A (en) 1988-03-18
JPH0815121B2 true JPH0815121B2 (en) 1996-02-14

Family

ID=16512088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61205753A Expired - Lifetime JPH0815121B2 (en) 1986-09-03 1986-09-03 Method for producing low voltage non-linear antibody

Country Status (1)

Country Link
JP (1) JPH0815121B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094061A (en) * 1975-11-12 1978-06-13 Westinghouse Electric Corp. Method of producing homogeneous sintered ZnO non-linear resistors
JPS5654005A (en) * 1979-10-11 1981-05-13 Tokyo Shibaura Electric Co Method of manufacturing nonlinear resistor
JPS6182401A (en) * 1984-09-29 1986-04-26 株式会社東芝 Voltage non-linearity resistor and manufacture thereof

Also Published As

Publication number Publication date
JPS6362202A (en) 1988-03-18

Similar Documents

Publication Publication Date Title
US4094061A (en) Method of producing homogeneous sintered ZnO non-linear resistors
US4297250A (en) Method of producing homogeneous ZnO non-linear powder compositions
JP2001516142A (en) Nanocrystallite powder based varistor formed by mechanical grinding
JPH0815121B2 (en) Method for producing low voltage non-linear antibody
JP2836893B2 (en) Method of manufacturing voltage non-linear resistor
JP2692210B2 (en) Zinc oxide varistor
JPH0253924B2 (en)
JPH07109804B2 (en) Method for manufacturing voltage non-linear resistor
JPH0379850B2 (en)
JPH0516641B2 (en)
JP2003297612A (en) Voltage nonlinear resistor and its manufacturing method
JPS62237707A (en) Manufacture of voltage nonlinear resistance element
JPH0253922B2 (en)
JPH0528883B2 (en)
JPH11150001A (en) Ceramic resistor and manufacture of the same
JP2549756B2 (en) Manufacturing method of voltage non-linear resistor for arrester with gap
JPH0779041B2 (en) Method for manufacturing voltage non-linear resistor
CN117497267A (en) Zinc oxide high-gradient nonlinear resistor and preparation method thereof
JP2533597B2 (en) Method of manufacturing voltage non-linear resistor
JP2560502B2 (en) Method of manufacturing voltage non-linear resistor
JP3633762B2 (en) Method for manufacturing voltage nonlinear resistor
JPS62237709A (en) Manufacture of voltage nonlinear resistance element
JPH0773082B2 (en) Method for producing zinc oxide varistor
JPH05258914A (en) Manufacture of voltage non-linear resistor
JPH05258915A (en) Manufacture of voltage non-linear resistor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term