JPH03157939A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03157939A
JPH03157939A JP29801589A JP29801589A JPH03157939A JP H03157939 A JPH03157939 A JP H03157939A JP 29801589 A JP29801589 A JP 29801589A JP 29801589 A JP29801589 A JP 29801589A JP H03157939 A JPH03157939 A JP H03157939A
Authority
JP
Japan
Prior art keywords
film
source
drain
electrode
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29801589A
Other languages
Japanese (ja)
Other versions
JP2720553B2 (en
Inventor
Shuichi Oya
大屋 秀市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1298015A priority Critical patent/JP2720553B2/en
Publication of JPH03157939A publication Critical patent/JPH03157939A/en
Application granted granted Critical
Publication of JP2720553B2 publication Critical patent/JP2720553B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To form diffused layers in different depths for miniaturizing the device by a method wherein the conductive material comprising the two kinds of different layers is provided for leading-out the source and drain electrodes of MOS transistors formed on the same substrate. CONSTITUTION:A polycrystal Si gate electrode 3 is formed on a P type single crystal Si substrate 1 using a gate insulating film 2 and an Si oxide film 4 as masks while P is implanted using the film 4 and the electrode 3 as masks to form n<->type impurity regions 5. Another Si oxide film 6 is deposited on the whole surface and then processed to form sidewall 7; a polycrystal Si film 8 is deposited; and after implanting arsemic, an electrode leading-out film 8 is formed using the other Si oxide film 9 as a mask. Next, the film 6 is processed to form another sidewall 10, a W silicide film 11 is deposited; P is implanted in the whole surface to be heat-treated so as to form shallow and deep n<+>type impurity regions 12, 13 respectively in drain and source regions. Finally, an interlayer insulating film 14, contact holes 15, 16 and Al wiring 17 are formed. Through these procedures, diffused layers in different depths can be formed on the same substrate thereby enabling the device to be miniaturized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置に関し、特に改良された構造を有
するMOS型トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a MOS transistor having an improved structure.

〔従来の技術〕[Conventional technology]

MOS型集積回路装置の小型化、高性能化を進めるうえ
で、■ゲート電極とソース、ドレイン拡散層上のコンタ
クト孔との間隔縮小■ソース、ドレイン拡散層の抵抗低
減、が重要な問題である。
In order to advance the miniaturization and performance improvement of MOS type integrated circuit devices, important issues are: - Reducing the distance between the gate electrode and the contact hole on the source and drain diffusion layers; and - Reducing the resistance of the source and drain diffusion layers. .

この問題を解決する方法としてセルファラインコンタク
ト技術[: ” 5elf −Aligned −Co
ntact Techn−ology for Hig
h Density MOS VLSI” 、 Sym
po、on VLSITech、DigesL、 P、
34. (1982))が提案されている。本技術によ
るMOS型トランジスタの断面構造を第4図に示す。ゲ
ート電極に自己整合的に電極ひき出し用の多結晶シリコ
ンが配置され、ソース、ドレイン拡散層全面を覆うよう
に配置されているから■上層のアルミニウム配線とソー
ス、ドレイン間のコンタクト孔は、ゲート電極との間隔
に制限されずに設置できる。■ソース、ドレインに付加
される抵抗は、多結晶シリコンと拡散領域の並列抵抗値
となり、実効的に低下する。
As a way to solve this problem, self-line contact technology [: ” 5elf-Aligned-Co
ntact Technology for High
h Density MOS VLSI”, Sym
po,on VLSITech,DigesL,P,
34. (1982)) have been proposed. FIG. 4 shows a cross-sectional structure of a MOS transistor according to the present technology. Polycrystalline silicon for electrode extraction is placed in self-alignment with the gate electrode, and is placed so as to cover the entire source and drain diffusion layers. ■The contact hole between the upper layer aluminum wiring and the source and drain is connected to the gate electrode. It can be installed without being restricted by the distance between the electrodes. ■The resistance added to the source and drain becomes the parallel resistance value of the polycrystalline silicon and the diffusion region, and is effectively reduced.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来技術による半導体装置には次のような欠点
がある。
The conventional semiconductor device described above has the following drawbacks.

(1)第4図に示した構造のトランジスタは、ソース、
ドレイン上に同層の多結晶シリコン膜を配置しているた
めに、ソース電極とドレイン電極の分離間隔はこの多結
晶シリコンの間隔1で決定される。この距離βが使用さ
れる加工技術の最小寸法であるとすると、MOS型トラ
ンジスタのゲート電極の幅(チャネル長)Lはlより。
(1) The transistor with the structure shown in FIG. 4 has a source,
Since the polycrystalline silicon film of the same layer is disposed on the drain, the separation distance between the source electrode and the drain electrode is determined by the distance 1 of the polycrystalline silicon. If this distance β is the minimum dimension of the processing technology used, then the width L of the gate electrode (channel length) of the MOS transistor is from l.

も大きくなりMOS型トランジスタのチャネル長として
最小の加工寸法を使用できないことになり微細化の障害
となる。
This also increases, making it impossible to use the minimum processing dimension as the channel length of a MOS transistor, which becomes an obstacle to miniaturization.

(2)トランジスタを微細にするには、特にチャネル長
を小さくするにはソース、ドレイン拡散層深さを小さく
しなければならない。拡散層深さが浅くなるとソース、
ドレインの接合耐圧の低下が問題になる。これを避ける
には、電源電圧を低下させ接合耐圧よりも十分に低い電
圧範囲で装置を動作させるのが良い。しかし、従来の半
導体装置を複数個使用するシステムでは一種類の電源が
使用されることが多く、従来とは別の低電圧の電源を必
要とする半導体装置は使い難い。この問題を解決する手
段として、半導体装置の外部とのインターフェース部は
従来の電源電圧で動作させ、装置の内部は降圧された内
部電源で動作させる方法がある。このような装置を実現
するためには、内部の集積度の高い領域では拡散層深さ
の小さい微細なトランジスタを用い、外部とのインター
フェース部では拡散層深さが大きく接合耐圧の高いトラ
ンジスタを使用するのが望ましい。第4図に示した装置
ではすべてのトランジスタのソース、ドレイン拡散層を
同一層の多結晶シリコン膜からの同一不純物拡散で形成
しているから2種類の深さの拡散層を作ることが難しい
(2) In order to miniaturize a transistor, especially to reduce the channel length, the depth of the source and drain diffusion layers must be reduced. When the depth of the diffusion layer becomes shallow, the source
A decrease in the drain junction breakdown voltage becomes a problem. To avoid this, it is better to lower the power supply voltage and operate the device in a voltage range sufficiently lower than the junction breakdown voltage. However, conventional systems that use a plurality of semiconductor devices often use one type of power supply, and it is difficult to use semiconductor devices that require a low-voltage power supply different from conventional ones. As a means to solve this problem, there is a method in which the interface section with the outside of the semiconductor device is operated with a conventional power supply voltage, and the inside of the device is operated with a reduced voltage internal power supply. In order to realize such a device, it is necessary to use small transistors with a small diffusion layer depth in the internal highly integrated area, and use transistors with a large diffusion layer depth and high junction breakdown voltage in the interface area with the outside. It is desirable to do so. In the device shown in FIG. 4, the source and drain diffusion layers of all transistors are formed by the same impurity diffusion from the same layer of polycrystalline silicon film, so it is difficult to create diffusion layers of two different depths.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は、一導電型半導体基体上に複数個
のMOS型トランジスタを有し、そのソース、ドレイン
拡散層のうち所望する領域の半導体基体表面全面に接す
るように第1の導電材料を配置し、ソース、ドレイン拡
散層のうち第1の導電材料で覆われていない領域の半導
体基体表面全面に接するように第2の導電材料を配置し
ている。
The semiconductor device of the present invention has a plurality of MOS transistors on a semiconductor substrate of one conductivity type, and a first conductive material is applied so as to be in contact with the entire surface of the semiconductor substrate in desired regions of the source and drain diffusion layers. A second conductive material is disposed so as to be in contact with the entire surface of the semiconductor substrate in regions of the source and drain diffusion layers that are not covered with the first conductive material.

また本発明の装置は、第1の導電材料で覆れた拡散層と
、第2の導電材料で覆れた拡散層とを異なる深さに形成
している。
Further, in the device of the present invention, the diffusion layer covered with the first conductive material and the diffusion layer covered with the second conductive material are formed at different depths.

上述した従来の装置に対して、本発明においては (1)第1の導電材料を所望の領域のソース、ドレイン
拡散層表面全面に接するように配置し、それ以外の領域
のソース、ドレイン拡散層表面全面に接するように第2
の導電材料を配置する。
In contrast to the conventional device described above, in the present invention, (1) the first conductive material is arranged so as to be in contact with the entire surface of the source and drain diffusion layers in desired regions, and the first conductive material is placed in contact with the entire surface of the source and drain diffusion layers in other regions. The second layer should be in contact with the entire surface.
conductive material.

すなわち、同一半導体基体上で領域によって、拡散層表
面に配置する導電材料の層を使い分ける。
That is, the layer of conductive material disposed on the surface of the diffusion layer is used differently depending on the region on the same semiconductor substrate.

(2)第1の導電材料下のソース、ドレイン拡散層5− 深さと、第2の導電材料下のソース、ドレイン拡散層深
さとを容易に異なる深さにできる。
(2) The depth of the source/drain diffusion layer 5 under the first conductive material and the depth of the source/drain diffusion layer under the second conductive material can be easily set to different depths.

という特徴を有する。It has the following characteristics.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例の縦断面図である。本実
施例は、本発明を1個のNチャネル型MOS)ランジス
タに適用したものである。P型巣結晶シリコン基体1上
にゲート絶縁膜2.多結晶シリコンのゲート電極3を有
し、ドレイン拡散層は、リンによるn−型不純物領域5
とヒ素による浅いn+型不純物領域12とから成り、ド
レイン拡散層表面全面に接するようにドレイン電極ひき
出し用多結晶シリコン膜8が配置され、ソース拡散層は
、リンによるn−型不純物領域5とリンによる深いn+
型不純物領域13とから成り、ソース拡散層全面に接す
るようにソース電極ひき出し用タングステンシリサイド
膜11が配置されている。上層のアルミニウム配線17
との接続用のソース電極上コンタクト孔16はタングス
テンシ6一 リサイド膜11上に、ドレイン電極上コンタクト孔15
は多結晶シリコン膜8上に設けられている。
FIG. 1 is a longitudinal sectional view of a first embodiment of the invention. In this embodiment, the present invention is applied to one N-channel type MOS transistor. A gate insulating film 2 is formed on a P-type nested crystal silicon substrate 1. The gate electrode 3 is made of polycrystalline silicon, and the drain diffusion layer is an n-type impurity region 5 made of phosphorus.
A polycrystalline silicon film 8 for drawing out the drain electrode is arranged so as to be in contact with the entire surface of the drain diffusion layer. deep n+ by phosphorus
A tungsten silicide film 11 for drawing out the source electrode is arranged so as to be in contact with the entire surface of the source diffusion layer. Upper layer aluminum wiring 17
A contact hole 16 on the source electrode for connection with the tungsten 6-reside film 11 is formed on the contact hole 15 on the drain electrode.
is provided on the polycrystalline silicon film 8.

第2図(a)〜(c)の主要工程縦断面図を用いて、本
実施例の装置の製造方法を説明する。P型巣結晶シリコ
ン基体1上にゲート絶縁膜2.多結晶シリコン膜を順次
成長し、シリコン酸化膜4をマスクに多結晶シリコン膜
をパターニングして、多結晶シリコンのゲート電極3を
形成する。シリコン酸化膜4と多結晶シリコンのゲート
電極3とをマスクにして将来ソース、ドレインとなる領
域にn型不純物であるリンを5 X 10 ”/c♂、
50keVの加速エネルギーでイオン打ち込みしてn型
不純物領域5を形成し、第2図(a)を得る。
The manufacturing method of the device of this example will be explained using the longitudinal sectional views of main steps shown in FIGS. 2(a) to 2(c). A gate insulating film 2 is formed on a P-type nested crystal silicon substrate 1. A polycrystalline silicon film is sequentially grown, and the polycrystalline silicon film is patterned using the silicon oxide film 4 as a mask to form a polycrystalline silicon gate electrode 3. Using the silicon oxide film 4 and the polycrystalline silicon gate electrode 3 as a mask, phosphorus, which is an n-type impurity, is added to the regions that will become the source and drain in the future at 5×10”/c♂.
Ion implantation is performed at an acceleration energy of 50 keV to form an n-type impurity region 5, as shown in FIG. 2(a).

次イで全面に1000人の厚さのCVDシリコン酸化膜
6を成長した後フォトレジ、ストでソース領域を覆い、
異方性のエツチングによりCVDシリコン酸化膜6を1
000人だけエッチバックすると、ドレイン領域のシリ
コン基体表面が露出すると同時にドレイン領域側のゲー
ト電極側壁にCVDシリコン酸化膜のサイドウオール7
が形成される。フォトレジストを除去した後、2000
人の厚さに多結晶シリコン膜8を成長し、全面にn型不
純物であるヒ素をI X 1016/cf、  50 
keVの加速エネルギーでイオン打ち込みする。その後
CVDシリコン酸化膜9をマスクにして、多結晶シリコ
ン膜8を所望の電極形状にパターニングして第2図(b
)を得る。
In the next step, after growing a CVD silicon oxide film 6 with a thickness of 1000 nm over the entire surface, the source region is covered with a photoresist.
CVD silicon oxide film 6 is etched by anisotropic etching.
Etching back by 0.000 mm exposes the surface of the silicon substrate in the drain region, and at the same time forms a CVD silicon oxide film sidewall 7 on the side wall of the gate electrode on the drain region side.
is formed. After removing the photoresist, 2000
A polycrystalline silicon film 8 is grown to a human thickness, and arsenic, which is an n-type impurity, is doped over the entire surface at I x 1016/cf, 50
Ion implantation is performed with keV acceleration energy. Thereafter, using the CVD silicon oxide film 9 as a mask, the polycrystalline silicon film 8 is patterned into a desired electrode shape, as shown in FIG.
).

次いで1000人の厚さのCVDシリコン酸化膜を成長
した後、異方性エツチングにより1000人厚のCVD
シリコン酸化膜とソ、−ス領域上に残されていたシリコ
ン酸化膜6をエッチバックすると、ソース領域のシリコ
ン基体表面が露出すると同時にソース領域側のゲート電
極側壁にCVDシリコン酸化膜のサイドウオール10が
形成される。
Next, after growing a CVD silicon oxide film with a thickness of 1000 nm, a CVD silicon oxide film with a thickness of 1000 nm was grown by anisotropic etching.
When the silicon oxide film 6 left on the silicon oxide film and the source region is etched back, the silicon substrate surface of the source region is exposed and at the same time a side wall 10 of the CVD silicon oxide film is formed on the side wall of the gate electrode on the source region side. is formed.

その後2000人の厚さにタングステンシリサイド膜1
1を成長し、全面にn型不純物であるリンをI X 1
016/c+fl、 50 ke’/の加速エネルギー
でイオン打ち込みする。その後900℃の窒素雰囲気中
で熱処理を行うと、多結晶シリコン膜8からヒ素が、ま
たタングステンシリサイド膜11からリンがシリコン基
体中へ拡散しその拡散係数の違いによりドレイン領域に
ヒ素による浅いn+型不純物領域12.ソース領域にリ
ンによる深いn+不純物領域13が形成される。その後
タングステンシリサイド膜11を所望の電極形状にパタ
ーニングして第2図(c)を得る。
Then tungsten silicide film 1 to 2000 people thick
1 is grown, and phosphorus, which is an n-type impurity, is grown on the entire surface.
Ions are implanted with an acceleration energy of 016/c+fl, 50 ke'/. When heat treatment is then performed in a nitrogen atmosphere at 900°C, arsenic from the polycrystalline silicon film 8 and phosphorus from the tungsten silicide film 11 diffuse into the silicon substrate, and due to the difference in diffusion coefficient, arsenic forms a shallow n+ type in the drain region. Impurity region 12. A deep n+ impurity region 13 made of phosphorus is formed in the source region. Thereafter, the tungsten silicide film 11 is patterned into a desired electrode shape, as shown in FIG. 2(c).

次いで層間絶縁膜14を成長し、ドレイン電極上のコン
タクト孔15.ソース電極上のコンタクト孔16を開孔
し、アルミニウム配線17を形成して第1図の装置を完
成させる。
Next, an interlayer insulating film 14 is grown to form a contact hole 15 on the drain electrode. A contact hole 16 above the source electrode is opened and an aluminum wiring 17 is formed to complete the device shown in FIG.

本実施例の装置においては、ソース電極上のコンタクト
孔16をゲート電極3上にオーバーラツプして開孔する
ことができる。したがって、通常のPR技術に必要な目
合せ余裕が不要となり高集積化に適する。また、ソース
電極ひき出し用のタングステンシリサイド膜11とドレ
イン電極ひき出し用多結晶シリコン膜8は独立した層で
あり、相互にシリコン酸化膜で絶縁されているから互い
の配置関係に制限はない。したがってゲート電極3の幅
(チャネル長)は、ソース、ドレイン上の9− 導電層の存在によって制限されることはない。
In the device of this embodiment, the contact hole 16 on the source electrode can be formed to overlap the gate electrode 3. Therefore, there is no need for alignment margin required in normal PR technology, making it suitable for high integration. Further, since the tungsten silicide film 11 for leading out the source electrode and the polycrystalline silicon film 8 for leading out the drain electrode are independent layers and are insulated from each other by a silicon oxide film, there are no restrictions on their mutual arrangement. Therefore, the width (channel length) of the gate electrode 3 is not limited by the presence of the 9- conductive layer on the source and drain.

本実施例においては、ソース、ドレイン電極ひき出し用
の第1および第2の導電層として多結晶シリコン膜とタ
ングステンシリサイド膜を用いたがこの導電層としては
場合に応じて任意の選択が可能である。n+拡散層を形
成するための不純物として、ヒ素とリンを用いたが、ヒ
素のみあるいはリンのみでも実現できる。また、本実施
例ではNチャネル型のMOS)ランジスタについて記し
たが、Pチャネル型、0MOS型の装置に関しても本発
明は適用され得る。
In this example, a polycrystalline silicon film and a tungsten silicide film were used as the first and second conductive layers for leading out the source and drain electrodes, but the conductive layers can be arbitrarily selected depending on the case. be. Although arsenic and phosphorus were used as impurities for forming the n+ diffusion layer, it can also be realized using only arsenic or only phosphorus. Furthermore, although this embodiment describes an N-channel type MOS transistor, the present invention can also be applied to P-channel type and OMOS type devices.

第3図は本発明の第2の実施例の縦断面図である。FIG. 3 is a longitudinal sectional view of a second embodiment of the invention.

本実施例は、ソース、ドレインに深いn+型不純物領域
を有するNチャネル型MOS)ランジスタQ1と第1の
実施例で説明したNチャネル型MOSトランジスタQ2
を同一基体上に作製したものである。製造方法および各
部名称の詳細は第1の実施例において第1図、第2図で
説明したものと同じであるから省略する。
This embodiment consists of an N-channel MOS transistor Q1 having deep n+ type impurity regions in the source and drain, and an N-channel MOS transistor Q2 described in the first embodiment.
were fabricated on the same substrate. The details of the manufacturing method and the names of each part are the same as those explained in FIGS. 1 and 2 in the first embodiment, and therefore will be omitted.

10− MOS)ランジスタQ1はソース、ドレイン拡散層表面
全面に接するようにタングステンシリサイド膜11と深
いn+型不純物領域13を有する。
10-MOS) The transistor Q1 has a tungsten silicide film 11 and a deep n+ type impurity region 13 in contact with the entire surface of the source and drain diffusion layers.

MOS)ランジスタQ1はソース側に表面全面に接する
ようにタングステンシリサイド膜11と深いn+不純物
領域13を有し、ドレイン側に表面全面に接するように
多結晶シリコン膜8と浅いn+型不純物領域12を有す
る。
MOS) transistor Q1 has a tungsten silicide film 11 and a deep n+ impurity region 13 on the source side so as to be in contact with the entire surface, and a polycrystalline silicon film 8 and a shallow n+ type impurity region 12 on the drain side so as to be in contact with the entire surface. have

本実施例によれば、大規模集積回路において、外部との
インターフェース等の高い接合耐圧を必要とする部分を
MOS)ランジスタQ1で構成し、LSI内部の高集積
化が必要な部分をドレイン耐圧は低いが微細化に適した
MOS)ランジスタQ2で構成することができる。MO
S)ランジスタQ2は直接外部電源で駆動され、MOS
)ランジスタQ1は降圧された内部低電圧で駆動される
According to this embodiment, in a large-scale integrated circuit, parts that require a high junction breakdown voltage, such as an interface with the outside, are constructed with a MOS transistor Q1, and parts that require high integration inside the LSI are constructed with a drain breakdown voltage. It can be constructed with a transistor Q2 (MOS transistor) which is low in cost but suitable for miniaturization. M.O.
S) Transistor Q2 is directly driven by an external power supply and is a MOS
) The transistor Q1 is driven by a stepped down internal low voltage.

ソース、ドレイン拡散層表面に接するように配置する導
電層とn+不純物領域の深さの組み合せ方は、本実施例
に限定されるものでなく目的に応じていく通りも考えら
れる。そのような組合せに関しては本発明の骨子を逸脱
しない範囲で適宜選択できる。
The combination of the depths of the conductive layer and the n+ impurity region arranged so as to be in contact with the surfaces of the source and drain diffusion layers is not limited to this embodiment, and may be determined depending on the purpose. Such combinations can be selected as appropriate without departing from the gist of the present invention.

〔発明の効果〕 以上説明したように本発明は、同−基体上に形成された
複数個のMOS型トランジスタのソース、ドレイン電極
ひき出し用に2種類の別層の導電材料を用いることによ
って、−層のみの導電材料をひき出し電極として用いる
場合に比較して(1)同一層のひき出し電極相互の間隔
が微細加工の制限となって装置の小型化を防げる不都合
がない。すなわち従来よりも小型の半導体装置を実現で
きる。
[Effects of the Invention] As explained above, the present invention uses two different layers of conductive materials for drawing out the source and drain electrodes of a plurality of MOS transistors formed on the same substrate. - Compared to the case where a layer-only conductive material is used as an extraction electrode, (1) there is no inconvenience that the interval between extraction electrodes of the same layer becomes a restriction on microfabrication, which prevents miniaturization of the device; In other words, it is possible to realize a semiconductor device that is smaller than the conventional one.

(2)2種類の導電層からの不純物拡散によってソース
、ドレイン拡散層の形成を行うことができ、同−基体上
に容易に深さの異なる拡散層を実現できる。
(2) Source and drain diffusion layers can be formed by impurity diffusion from two types of conductive layers, and diffusion layers with different depths can be easily realized on the same substrate.

という効果がある。There is an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明筒1の実施例の縦断面図、第2図(a)
〜(c)は第1の実施例の装置の製造方法を説明するた
めの主要工程断面図、第3図は本発明筒2の実施例の縦
断面図、第4図は従来装置の縦断面図である。
FIG. 1 is a vertical sectional view of an embodiment of the cylinder 1 of the present invention, and FIG. 2(a)
~(c) are main process sectional views for explaining the manufacturing method of the device of the first embodiment, FIG. 3 is a longitudinal sectional view of the embodiment of the tube 2 of the present invention, and FIG. 4 is a longitudinal sectional view of the conventional device. It is a diagram.

Claims (1)

【特許請求の範囲】[Claims] (1)一導電型半導体基体上に複数個のMOS型トラン
ジスタを有し、該MOS型トランジスタのソース、ドレ
イン拡散層のうち所望する領域の半導体基体表面全面に
接するように第1の導電材料を配置し、前記ソース、ド
レイン拡散層のうち前記第1の導電材料で覆われていな
い領域の半導体基体表面全面に接するように第2の導電
材料を配置することを特徴とする半導体装置(2)請求
項1記載の装置であって、第1の導電材料で覆われた拡
散層の深さと、第2の導電材料で覆われた拡散層の深さ
が異なることを特徴とする半導体装置
(1) A plurality of MOS transistors are provided on a semiconductor substrate of one conductivity type, and a first conductive material is applied so as to be in contact with the entire surface of the semiconductor substrate in desired regions of the source and drain diffusion layers of the MOS transistors. and a second conductive material is disposed so as to be in contact with the entire surface of the semiconductor substrate in regions of the source and drain diffusion layers that are not covered with the first conductive material (2). 2. The semiconductor device according to claim 1, wherein the depth of the diffusion layer covered with the first conductive material is different from the depth of the diffusion layer covered with the second conductive material.
JP1298015A 1989-11-15 1989-11-15 Semiconductor device Expired - Lifetime JP2720553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1298015A JP2720553B2 (en) 1989-11-15 1989-11-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1298015A JP2720553B2 (en) 1989-11-15 1989-11-15 Semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP623497A Division JPH09205206A (en) 1997-01-17 1997-01-17 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPH03157939A true JPH03157939A (en) 1991-07-05
JP2720553B2 JP2720553B2 (en) 1998-03-04

Family

ID=17854019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1298015A Expired - Lifetime JP2720553B2 (en) 1989-11-15 1989-11-15 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2720553B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180169A (en) * 1984-02-27 1985-09-13 Nec Corp Insulated gate type field-effect semiconductor device
JPS62224077A (en) * 1986-03-26 1987-10-02 Hitachi Micro Comput Eng Ltd Semiconductor integrated circuit device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180169A (en) * 1984-02-27 1985-09-13 Nec Corp Insulated gate type field-effect semiconductor device
JPS62224077A (en) * 1986-03-26 1987-10-02 Hitachi Micro Comput Eng Ltd Semiconductor integrated circuit device

Also Published As

Publication number Publication date
JP2720553B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
US20030119229A1 (en) Method for fabricating a high-voltage high-power integrated circuit device
US20060065928A1 (en) Semiconductor device
US5837602A (en) Method of manufacturing doped interconnect
US5612240A (en) Method for making electrical connections to self-aligned contacts that extends beyond the photo-lithographic resolution limit
US6861372B2 (en) Semiconductor device manufacturing method
JP2587444B2 (en) Bipolar transistor using CMOS technology and method of manufacturing the same
US5352617A (en) Method for manufacturing Bi-CMOS transistor devices
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
KR930005508B1 (en) Semiconductor device and manufacturing method of the same
JPS6251216A (en) Manufacture of semiconductor device
JPH10163338A (en) Semiconductor device and its manufacturing method
JPH07176639A (en) Semiconductor integrated circuit device and fabrication thereof
JP2549657B2 (en) Semiconductor device and manufacturing method thereof
JPS62262462A (en) Semiconductor device
JPH03157939A (en) Semiconductor device
JPH09205064A (en) Fabrication of semiconductor device
US5850360A (en) High-voltage N-channel MOS transistor and associated manufacturing process
JP2544438B2 (en) Semiconductor device and manufacturing method thereof
KR930008022B1 (en) Semiconductor device
JP3314341B2 (en) Method of forming C-MOS gate array and base contact
KR100674647B1 (en) Method of fabricating high voltage semiconductor device
JP3043791B2 (en) Method for manufacturing semiconductor device
JPS5856450A (en) Complementary mos semiconductor device
JP2830089B2 (en) Method for manufacturing semiconductor integrated circuit
RU2295800C1 (en) Method for producing congruent bipolar cmos device