JPH03155450A - Manufacture of composite sliding member - Google Patents

Manufacture of composite sliding member

Info

Publication number
JPH03155450A
JPH03155450A JP29336889A JP29336889A JPH03155450A JP H03155450 A JPH03155450 A JP H03155450A JP 29336889 A JP29336889 A JP 29336889A JP 29336889 A JP29336889 A JP 29336889A JP H03155450 A JPH03155450 A JP H03155450A
Authority
JP
Japan
Prior art keywords
alloy
base material
composite
composite base
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29336889A
Other languages
Japanese (ja)
Inventor
Minoru Fukazawa
深沢 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP29336889A priority Critical patent/JPH03155450A/en
Publication of JPH03155450A publication Critical patent/JPH03155450A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a composite sliding member having high sliding performance by executing hot press sintering to the specific quantities of SiC whisker, graphite powder and Al alloy powder, preheating the composite base material obtd. by executing hot working forming to the sintered body at the specific temp. and inserting this with the specific temp. of molten Al alloy as internal chill. CONSTITUTION:Mixed material containing 15 - 30vol.% SiC whisker, 2 - 10vol.% graphite powder having <=10mum the max. particle diameter and the balance Al alloy powder having <=50mum the max. particle diameter, is heated under vacuum, and after executing degassing treatment, the hot press sintering is executed. The sintered body is hot-worked to form the prescribed shape of composite base material. This is preheated at 400 - 550 deg.C under non-oxidizing atmosphere and set to the position in a mold corresponding to the sliding posi tion. Successively, the molten Al alloy at 600 - 800 deg.C is cast under pressurizing to insert the composite base material as internal chill. As the Al alloy powder, the material having alloy composition containing <=10wt.% Si component, is used. By this method, the sliding member used under high temp. and severe conditions can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、摺動部分をSiCウィスカー、黒鉛微粉末お
よび、11合金からなる複合基材により構成する複合摺
動部材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a composite sliding member in which the sliding portion is composed of a composite base material consisting of SiC whiskers, fine graphite powder, and 11 alloy.

〔従来の技術〕[Conventional technology]

Al合金にSiCウィスカーを複合化して耐摩耗性に優
れる摺動部材を製造する試みは古くからおこなわれてお
り、これまでに数多くの開発提案がなされている。これ
ら先行技術には複合化したSiCウィスカーによる相手
部材の耐摩現象を軽減あるいは調整するためのものが多
くみられ、相手部材との組合せを特定したもの(特開昭
59−70734号公報、同59−70735号公報)
、固体潤滑材を混合した強化材を用いるもの(特開昭6
3−103033号公報、同64−52032号公報等
)などが提案されている。
Attempts have been made for a long time to manufacture sliding members with excellent wear resistance by combining SiC whiskers with Al alloys, and many development proposals have been made so far. Many of these prior art techniques are aimed at reducing or adjusting the wear resistance phenomenon of the mating member due to composite SiC whiskers, and those that specify the combination with the mating member (JP-A-59-70734, JP-A-59-70734, JP-A-59-70734; -70735 publication)
, those using reinforcing materials mixed with solid lubricants (Japanese Unexamined Patent Publication No. 6
3-103033, 64-52032, etc.) have been proposed.

しかしながら、従来のこの種技術においては、複合化手
段が概ね強化材の成形体にAl系マトリックス金属を高
圧含浸する加圧鋳造法(溶m鍛造法)でおこなわれてい
る。
However, in this type of conventional technology, the composite means is generally carried out by a pressure casting method (molten m-forging method) in which a reinforced material molded body is impregnated with an Al-based matrix metal under high pressure.

例えば特開昭64−52032号公報には、SiCウィ
スカーを含む無りa質短繊維と黒鉛、Mobt、BNの
ような固体潤滑剤粉末を所定形状に成形した繊維質多孔
体に、Al系マトリックス金属の溶湯を加圧下に含浸凝
固させる方法が開示されており、粉末冶金法では製造工
程が煩雑で耐摩耗性と相手材攻撃性の少ない摺動部材は
得られないと記載されている。
For example, in Japanese Patent Application Laid-open No. 64-52032, a fibrous porous body made by molding solid lubricant powder such as graphite, Mobt, or BN into a predetermined shape and non-aluminum short fibers containing SiC whiskers is added to an Al-based matrix. A method is disclosed in which molten metal is impregnated and solidified under pressure, and it is stated that powder metallurgy requires a complicated manufacturing process and cannot produce a sliding member with low wear resistance and low attack on mating materials.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、加圧鋳造法による複合化では往々にして強化材
プリフォームが鋳造時の外力によって損傷する事態を招
き、また摺動部位のみを局部強化するようなケースでは
強化材プリフォームが多孔質低密度である関係でモール
ドの所定位置に固定することに困難性を伴う等の難点が
あるため、操作性の面では寧ろ粉末冶金法の方が実用的
である。
However, when forming composites using the pressure casting method, the reinforcing material preform is often damaged by external forces during casting, and in cases where only sliding parts are locally strengthened, the reinforcing material preform becomes porous and weak. Powder metallurgy is more practical in terms of operability, since it is difficult to fix it in a predetermined position in a mold due to the density.

本発明者は、このような観点からSiCウィスカー、黒
鉛粉末およびAl粉末による3成分系の粉末冶金法を用
いた複合摺動部材の製造方法について研究を重ね、その
最も適切な条件を解明して本発明に至ったものである。
From this perspective, the present inventor has conducted extensive research on a method for manufacturing composite sliding members using a three-component powder metallurgy method using SiC whiskers, graphite powder, and Al powder, and has clarified the most appropriate conditions. This led to the present invention.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明による複合摺動部材の製造方法は、S
iCウィスカー15〜30vol%、最大粒径が10μ
m以下の黒鉛微粉末2〜10vol%、残部が最大粒径
50μ霞以下のAl合金粉末からなる混合物を真空加熱
して脱ガス処理したのち熱圧焼結し、該焼結体を熱間加
工して所定の形状に成形した複合基材を非酸化性雰囲気
下で400〜550℃に予熱して摺動部位に相当するモ
ールド位置にセットし、ついで600〜800″CのA
l合金溶湯を加圧鋳造して前記複合基材を鋳包すること
を構成上の特徴とする。
That is, the method for manufacturing a composite sliding member according to the present invention includes S
iC whisker 15-30vol%, maximum particle size 10μ
A mixture consisting of 2 to 10 vol% of fine graphite powder of 2 to 10 vol. The composite base material molded into a predetermined shape is preheated to 400 to 550°C in a non-oxidizing atmosphere, set at the mold position corresponding to the sliding part, and then heated to a temperature of 600 to 800"C.
A structural feature is that the composite base material is cast by pressure casting the molten L alloy.

強化材となるSiCウィスカーの配合比率を15〜30
volXの範囲に限定した理由は、15volχ未満で
は耐摩耗性が十分に付与されず、また30volχを上
廻る場合には良好組織の焼結体が得られないうえコスト
高となるからである。
The blending ratio of SiC whiskers, which serve as reinforcing materials, is 15 to 30.
The reason for limiting the volX range is that if it is less than 15 volχ, sufficient wear resistance will not be imparted, and if it exceeds 30 volχ, a sintered body with a good structure cannot be obtained and the cost will be high.

黒鉛微粉末は潤滑剤成分となるもので、好ましくは20
00℃を越す高温度域で黒鉛化処理された黒鉛結晶の発
達したものが選定使用される。黒鉛微粉末は可及的に粒
子径が小さいことが好適で、最大粒径が10μ麟を越え
ると均質組織の焼結体が得られなくなる。また、この配
合比率は2〜10volχに設定することが重要であり
、2vo 11未満では潤滑性が付与されず、1ovo
lχを上廻る量となると複合基材の材質強度ならびに耐
摩耗性の減退を引き起こす。
The fine graphite powder is a lubricant component, and preferably has a content of 20
Those with developed graphite crystals that have been graphitized in a high temperature range exceeding 00°C are selected and used. It is preferable that the fine graphite powder has a particle size as small as possible; if the maximum particle size exceeds 10 μm, a sintered body with a homogeneous structure cannot be obtained. In addition, it is important to set this blending ratio to 2 to 10 volχ, and if it is less than 2 vol χ, lubricity will not be imparted, and 1 o vol χ will not provide lubricity.
If the amount exceeds lχ, the material strength and wear resistance of the composite base material will decrease.

Al合金粉末はマトリックス材料を構成するもので、材
質としての耐摩耗性の面から例えばJIS:AC8A 
 AC9Aのような10wt%以上のSi成分を含有す
る組成のAl合金から選定することが望ましい。また、
必要の応じてCu、MgNi、Mn等の成分が添加され
る。Al合金粉末は最大粒径が50μ麟以下の微粉状態
で使用することが重要で、最大粒径が50μ艶を越える
と焼結体の均質組織化が損なわれる。
The Al alloy powder constitutes the matrix material, and from the viewpoint of wear resistance as a material, it is rated as, for example, JIS: AC8A.
It is desirable to select an Al alloy having a composition containing 10 wt% or more of Si component, such as AC9A. Also,
Components such as Cu, MgNi, and Mn are added as necessary. It is important to use the Al alloy powder in a fine powder state with a maximum particle size of 50 μm or less; if the maximum particle size exceeds 50 μm, the homogeneous structure of the sintered body will be impaired.

これらの原料成分は、水あるいは適宜な有機溶媒中で十
分に攪拌混合したのち、乾燥する。
These raw material components are sufficiently stirred and mixed in water or an appropriate organic solvent, and then dried.

ついで、混合物を真空加熱して脱ガス処理したのち熱圧
焼結する。この際の、脱ガス処理の好適な条件は温度約
500℃1真空度10−’Torr程度であり、焼結条
件は温度約500℃、圧力1〜1.5 ton/cm”
に設定することが好ましい。
Next, the mixture is heated under vacuum to be degassed and then sintered under hot pressure. At this time, the preferred conditions for the degassing treatment are a temperature of about 500°C and a vacuum of about 10 Torr, and the sintering conditions are a temperature of about 500°C and a pressure of 1 to 1.5 ton/cm.
It is preferable to set it to .

焼結工程で得られた焼結体は、引き続き押出、型込など
の熱間加工を施して所定の形状に成形する。この過程で
焼結体は極めて強固な組織に転化する。
The sintered body obtained in the sintering process is subsequently subjected to hot working such as extrusion and molding to form it into a predetermined shape. During this process, the sintered body transforms into an extremely strong structure.

次に、熱間加工後の複合基材は予熱したのち最終形状の
モールド内の摺動位置に相当する位置にセットし、Al
合金の溶湯を加圧鋳造して複合基材を鋳包する。使用さ
れるAffi合金の組成は、複合基材の構成成分となる
Al合金と同一とすることが好ましい。
Next, the composite base material after hot processing is preheated and then set at a position corresponding to the sliding position in the mold of the final shape.
The composite base material is cast by pressure casting the molten alloy. It is preferable that the composition of the Affi alloy used is the same as that of the Al alloy that is a component of the composite base material.

この工程における複合基材の予熱は構成成分の酸化を防
止するためArのような非酸化性雰囲気下でおこなう必
要がある。温度条件は、複合基材の予熱温度を400〜
550℃に、Al合金の溶湯温度を600〜800℃の
範囲に設定する。これらの温度が前記の下限を上廻ると
鋳包材料間の接触不良を起こし、また上限温度を越す場
合には複合基材が溶解する不都合が生じる。
Preheating of the composite substrate in this step must be carried out under a non-oxidizing atmosphere such as Ar in order to prevent oxidation of the constituent components. Temperature conditions include preheating the composite base material to 400~400℃.
The molten metal temperature of the Al alloy is set at 550°C and within the range of 600 to 800°C. If these temperatures exceed the above-mentioned lower limit, poor contact between the casting materials will occur, and if the temperature exceeds the upper limit, the composite base material will melt.

上記の工程によって摺動部分が複合基材で強化された複
合摺動部材が製造される。
Through the above steps, a composite sliding member whose sliding portion is reinforced with a composite base material is manufactured.

〔作 用〕[For production]

本発明によれば、SiCウィスカー、黒鉛微粉末、AI
!、合金粉末からなる複合化成分を適切な粒径および配
合比率で混合し、これを焼結する工程で耐摩耗性、摺動
性、低耐摩性などの性能が付与され、同時に摺動材とし
て好適な強度、硬度、耐熱度、耐食度等の必要特性が加
味される。ついで、焼結体を所定形状に熱間加工する工
程においてへ!合金マトリ、ツクス内へのSiCウィス
カーおよび黒鉛微粉末の分散は一層進行して均1を組織
となり、上記の諸性能はより向上する。
According to the present invention, SiC whiskers, graphite fine powder, AI
! The process of mixing composite components consisting of alloy powder with appropriate particle size and blending ratio and sintering this gives properties such as wear resistance, sliding properties, and low abrasion resistance, and at the same time, it can be used as a sliding material. Necessary properties such as suitable strength, hardness, heat resistance, and corrosion resistance are taken into consideration. Next, in the process of hot working the sintered body into a predetermined shape! The dispersion of the SiC whiskers and fine graphite powder into the alloy matrix and the dust further progresses to form a uniform structure, and the above-mentioned performances are further improved.

また、熱間加工の方法および条件を制御することによっ
て、SiCウィスカーの配向性を適宜に調整することが
できるから、この面から摺動性能の向上を図ることがで
きる。
Furthermore, by controlling the method and conditions of hot working, the orientation of the SiC whiskers can be adjusted as appropriate, so that the sliding performance can be improved from this perspective.

二のような作用を介して粉末冶金技法により摺動部材の
複合基材を形成することが可能となる。
Through the following actions, it becomes possible to form a composite base material of a sliding member by powder metallurgy techniques.

形成された複合基材は、次の特定された条件による加圧
鋳造工程で、11合金に完全に鋳包され、摺動部分が局
部的に強化された一体構造の複合摺動部材として製造さ
れる。
The formed composite base material is completely cast in 11 alloy through a pressure casting process under the following specified conditions, and manufactured as a composite sliding member with an integral structure in which the sliding part is locally reinforced. Ru.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on examples.

実施例1 平均直径0.5μI、平均長さ15μmのSiCウィス
カー、3000℃で黒鉛化処理された平均粒径1μm、
最大粒径2μ剛の黒鉛微粉末、および最大粒径44μm
のへ2合金粉末(JIS AC8A)を、各種の配合比
率によりエタノール中で湿式攪拌混合し、乾燥して均質
な混合物とした。
Example 1 SiC whiskers with an average diameter of 0.5 μI and an average length of 15 μm, an average particle size of 1 μm graphitized at 3000°C,
Fine graphite powder with a maximum particle size of 2 μm and a maximum particle size of 44 μm
Nohe 2 alloy powder (JIS AC8A) was mixed with wet stirring in ethanol at various blending ratios, and dried to form a homogeneous mixture.

この混合物を内径80anの金型に充填して3ton/
c11!の圧力で予備成形をおこなったのち、温度52
0℃1真空度5×10□’Torrの条件で12時間真
空加熱して脱ガス処理し、引き続き雰囲気をArガスに
変えて温度500’C2圧力1.5ton/cm”の熱
圧条件で焼結した。この場合の黒鉛微粉末の各配合比率
におけるSiCウィスカー配合比率と焼結体充填率との
関係を第1図に示した。SiCウィスカーの配合比率が
30vo lχを越えると焼結体充填率が著しく減少し
、この傾向は黒鉛微粉末の配合比率が10volχを上
廻る場合に顕著になって良好な焼結体は得られなかった
This mixture was filled into a mold with an inner diameter of 80 ann to produce 3 tons/
c11! After preforming at a pressure of 52
Degassing was performed by vacuum heating for 12 hours at 0°C, 1 vacuum degree, 5 x 10□' Torr, and then the atmosphere was changed to Ar gas, and the heat and pressure conditions were sintered at a temperature of 500'C, and a pressure of 1.5 ton/cm''. Figure 1 shows the relationship between the SiC whisker blending ratio and the sintered body filling rate at each blending ratio of graphite fine powder in this case.When the SiC whisker blending ratio exceeds 30volχ, the sintered body fills This tendency became remarkable when the blending ratio of fine graphite powder exceeded 10 vol.chi., and a good sintered body could not be obtained.

ついで、各焼結体を450 ”Cの温度で外径60m+
m。
Next, each sintered body was heated to a temperature of 450 ”C with an outer diameter of 60 m +
m.

内径55mmの管状に熱間押出加工して複合基材を作成
した。この際、SiCウィスカーの配合比率が30vo
lχを越え、また黒鉛微粉末の配合比率が20v。
A composite base material was prepared by hot extrusion processing into a tubular shape with an inner diameter of 55 mm. At this time, the blending ratio of SiC whiskers is 30vo
lχ and the blending ratio of fine graphite powder is 20v.

1χを上廻る焼結体では表面がささくれ状態となって複
合組織が劣化した。
In the case of a sintered body with a diameter exceeding 1χ, the surface became a hangnail state and the composite structure deteriorated.

上記の複合基材を長さ20mmに切断して外径70mm
Cut the above composite base material into lengths of 20 mm and have an outer diameter of 70 mm.
.

内径6〇−一の管状治具に取り付け、Arガス雰囲気下
でsoo’cの温度に予熱してモールド内にセットした
のち、700℃のAl合金(JIS AC8A)溶湯を
注入して加圧鋳造し、凝固させた。
It is attached to a tubular jig with an inner diameter of 60-1, preheated to a temperature of soo'c in an Ar gas atmosphere, and set in a mold. After that, molten Al alloy (JIS AC8A) at 700 °C is injected and pressure cast. and allowed to solidify.

得られた各複合摺動部材につき、軸受けill (SU
J2、角材)を相手材として複合基材部分に当接して荷
重100kgf、回転周速1 、0s/sの条件により
摩耗試験をおこなった。その結果として、黒鉛微粉末の
各配合比率におけるSiCウィスカー配合比率と複合摺
動部材の摩耗量との関係を第2図に、また同様にSiC
ウィスカーの配合比率と相手材の摩耗量との関係を第3
図に示した。第2.3図の結果から、SiCウィスカー
の配合比率が15〜30volχで黒鉛微粉末の配合比
率がloVOIX未満(Ovo12を除く)の条件にお
いて複合摺動部材および相手材の摩耗量ともに低下して
おり、良好な摺動性能を示すことが認められた。
For each composite sliding member obtained, bearing ill (SU
A wear test was carried out under the conditions of a load of 100 kgf, a circumferential rotational speed of 1, and 0 s/s using a mating material (J2, square timber) in contact with the composite base material part. As a result, the relationship between the SiC whisker blending ratio and the wear amount of the composite sliding member at each blending ratio of fine graphite powder is shown in Figure 2, and similarly
The relationship between the blending ratio of whiskers and the amount of wear of the mating material is
Shown in the figure. From the results shown in Figure 2.3, the wear amount of both the composite sliding member and the mating material decreased under the conditions that the blending ratio of SiC whiskers was 15 to 30 volχ and the blending ratio of fine graphite powder was less than loVOIX (excluding Ovo12). It was confirmed that the material exhibited good sliding performance.

実施例1 実施例1と同一のSiCウィスカー20vol%、各粒
度の異なる黒鉛微粉末5volχおよびAl合金粉末(
JIS AC8A)15vo12とを配合し、実施例1
と同一条件により複合基材を作成した。引き続き実施例
1と同様に加圧鋳造によるAl合金の鋳包処理をおこな
って複合摺動部材を得た。
Example 1 20 vol% of the same SiC whiskers as in Example 1, 5 vol% of graphite fine powder with different particle sizes, and Al alloy powder (
JIS AC8A) 15vo12 and Example 1
A composite base material was created under the same conditions as described above. Subsequently, in the same manner as in Example 1, an aluminum alloy casting treatment was performed by pressure casting to obtain a composite sliding member.

この場合の複合基材の引張強さ(押出方向)と摺動試験
における複合摺動部材および相手材の摩経世を測定し、
結果を表1に示した。
In this case, the tensile strength (extrusion direction) of the composite base material and the wear age of the composite sliding member and the mating material in the sliding test were measured,
The results are shown in Table 1.

表  1 表1から、本発明の粒径範囲を外れるRLIN No、
2〜5の例ではいずれもRUN No、lに比べて強度
特性および相対的な摺動性能が減退していることが判明
する。
Table 1 From Table 1, RLIN No. outside the particle size range of the present invention,
It is found that in all Examples 2 to 5, the strength characteristics and relative sliding performance are deteriorated compared to RUN No. 1.

実施例3 実施例2のRUN No、1の複合基材を用い、加圧鋳
造の条件を変えて縫包一体化処理をおこなった。
Example 3 Using the composite base material of RUN No. 1 of Example 2, sewing and packaging integration treatment was performed by changing the pressure casting conditions.

得られた各複合摺動部材の接合界面部分の引っ張強を測
定し、その結果を加圧鋳造の条件と対比させて表2に示
した。
The tensile strength of the joint interface portion of each composite sliding member obtained was measured, and the results are shown in Table 2 in comparison with the pressure casting conditions.

表2 表注:(1)複合基材が溶解 (2)複合基材が変形 表2の例中、本発明の条件を満たす例はRLIN N。Table 2 Table note: (1) Composite base material dissolves (2) Deformation of composite base material Among the examples in Table 2, the example that satisfies the conditions of the present invention is RLIN N.

l、5、要件を外れる例は2,3,4.6である。これ
ら両例を対比して明らかなように、本発明例は複合基材
に損傷変形を生じることなしに強固な一体接合構造を備
えるものであった。
1, 5, examples that deviate from the requirements are 2, 3, and 4.6. As is clear from comparing these two examples, the example of the present invention had a strong integrally joined structure without causing any damage or deformation to the composite base material.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明によればSiCウィスカ、黒鉛微
粉末およびAl合金粉末の適性配合による焼結複合基材
を用い、これを摺動部分に局部的に強化した構造の高摺
動性能を備える複合摺動部材を製造することができる。
As described above, according to the present invention, a sintered composite base material made of an appropriate combination of SiC whiskers, fine graphite powder, and Al alloy powder is used, and the sliding part is locally strengthened to provide high sliding performance. Composite sliding members can be manufactured.

したがって、高温過酷な条件で使用される各種摺動部材
として長期間の安定した性能が保障される。
Therefore, stable performance over a long period of time is guaranteed as various sliding members used under high temperature and harsh conditions.

経世との関係図、そして第3図はSiCウィスカー配合
比率と相手材の摩耗量との関係図である。
FIG. 3 is a diagram showing the relationship between the SiC whisker blending ratio and the wear amount of the mating material.

Claims (1)

【特許請求の範囲】 1、SiCウイスカー15〜30vol%、最大粒径が
10μm以下の黒鉛微粉末2〜10vol%、残部が最
大粒径50μm以下のAl合金粉末からなる混合物を真
空加熱して脱ガス処理したのち熱圧焼結し、該焼結体を
熱間加工して所定の形状に成形した複合基材を非酸化性
雰囲気下で400〜550℃に予熱して摺動部位に相当
するモールド位置にセットし、ついで600〜800℃
のAl合金溶湯を加圧鋳造して前記複合基材を鋳包する
ことを特徴とする複合摺動部材の製造方法。 2、Al合金粉末として、10wt%以上のSi成分を
含有する合金組成のものを用いる請求項1記載の複合摺
動部材の製造方法。
[Claims] 1. A mixture consisting of 15 to 30 vol% of SiC whiskers, 2 to 10 vol% of fine graphite powder with a maximum particle size of 10 μm or less, and the balance of Al alloy powder with a maximum particle size of 50 μm or less is vacuum heated to remove the mixture. After gas treatment, heat-pressure sintering is performed, and the sintered body is hot-processed to form a predetermined shape. A composite base material is preheated to 400 to 550°C in a non-oxidizing atmosphere to form a sliding part. Set it in the mold position, then heat it to 600-800℃
A method for manufacturing a composite sliding member, characterized in that the composite base material is cast by pressure casting a molten Al alloy. 2. The method for manufacturing a composite sliding member according to claim 1, wherein the Al alloy powder has an alloy composition containing 10 wt% or more of Si component.
JP29336889A 1989-11-09 1989-11-09 Manufacture of composite sliding member Pending JPH03155450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29336889A JPH03155450A (en) 1989-11-09 1989-11-09 Manufacture of composite sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29336889A JPH03155450A (en) 1989-11-09 1989-11-09 Manufacture of composite sliding member

Publications (1)

Publication Number Publication Date
JPH03155450A true JPH03155450A (en) 1991-07-03

Family

ID=17793878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29336889A Pending JPH03155450A (en) 1989-11-09 1989-11-09 Manufacture of composite sliding member

Country Status (1)

Country Link
JP (1) JPH03155450A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0979697A1 (en) * 1998-08-11 2000-02-16 Fata Aluminium Division of Fata Group S.p.A. A process and system for manufacturing cast articles provided with inserts
JP2009248164A (en) * 2008-04-09 2009-10-29 Denki Kagaku Kogyo Kk Aluminum-graphite-silicon carbide composite and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0979697A1 (en) * 1998-08-11 2000-02-16 Fata Aluminium Division of Fata Group S.p.A. A process and system for manufacturing cast articles provided with inserts
JP2009248164A (en) * 2008-04-09 2009-10-29 Denki Kagaku Kogyo Kk Aluminum-graphite-silicon carbide composite and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5545487A (en) Wear-resistant sintered aluminum alloy and method for producing the same
JPH0120215B2 (en)
JPH03155450A (en) Manufacture of composite sliding member
JP2000119791A (en) Aluminum alloy for plain bearing and its production
JP2921030B2 (en) Vane pump vane material and manufacturing method thereof
JP3618106B2 (en) Composite material and method for producing the same
JP2009007433A (en) Copper-based oil-containing sintered sliding member and method for producing the same
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
JPH029099B2 (en)
JPH09165632A (en) Sintered titanium-graphite composite material having improved abrasion resistance and low frictional property and its production
JP3417666B2 (en) Member having Al-based intermetallic compound reinforced composite part and method of manufacturing the same
JP3146529B2 (en) Manufacturing method of high precision aluminum alloy sliding parts
JPH06264170A (en) Aluminum alloy having high strength and wear resistance
JPH0539507A (en) Rotor for oil pump made of aluminum alloy and production thereof
KR101136570B1 (en) Method for preparing Metal-ceramic composite improvement agent at semi-solid temperature of Sn-Cu alloy and metal material which mechanical property is improved using the same
KR100452450B1 (en) Method for manufacturing material of cylinder liner for engine
JPH03257128A (en) Production of composite sliding member
JPH1150183A (en) Composite sintered alloy for molten nonferrous metal, and its production
JP2001335900A (en) Fiber reinforced aluminum alloy material
JP2906277B2 (en) Method for producing high-strength Al lower 3 Ti-based alloy
JPH0665734B2 (en) Metal-based composite material with excellent friction and wear characteristics
JPH10158764A (en) Aluminum base composite material excellent in coagulation resistance and strength and its production
JP2554066B2 (en) Intermetallic compound particle dispersion-reinforced die-cast composite material and method for producing the same
JP2605866B2 (en) Manufacturing method of composite compound dispersion type Cu-Zn-A (1) sintered alloy with excellent wear resistance
JPS63293102A (en) Production of fe-base sintered alloy member having high strength and high toughness