JPH10158764A - Aluminum base composite material excellent in coagulation resistance and strength and its production - Google Patents

Aluminum base composite material excellent in coagulation resistance and strength and its production

Info

Publication number
JPH10158764A
JPH10158764A JP32162696A JP32162696A JPH10158764A JP H10158764 A JPH10158764 A JP H10158764A JP 32162696 A JP32162696 A JP 32162696A JP 32162696 A JP32162696 A JP 32162696A JP H10158764 A JPH10158764 A JP H10158764A
Authority
JP
Japan
Prior art keywords
tic
powder
composite material
particles
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32162696A
Other languages
Japanese (ja)
Inventor
Kazuaki Sato
和明 佐藤
Tetsuya Nukami
哲也 額見
Yukio Okochi
幸男 大河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP32162696A priority Critical patent/JPH10158764A/en
Publication of JPH10158764A publication Critical patent/JPH10158764A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an Al base composite material excellent in coagulation resistance and strength by impregnating molten Al in a porous pellet formed of respective power materials of Ti, graphite and al and heating, and then dipping the impregnated pellets in molten Al to produce a TiC-containing molten metal and impregnating this molten metal in the separately produced Al-Fe base porous body. SOLUTION: The respective powder materials of Ti, graphite and Al are mixed to form the porous pellet. After impregnating the molten Al or a molten Al base alloy in this pellet, this pellet is heated to 1000-1800 deg.C, and TiC fine grains having <=0.5μm grain diameters are developed in the Al matrix. This pellet is dipped into molten Al to produce the molten Al dispersed with TiC fine grains. On the other hand, the porous body composed of Al or Al alloy powder and Fe alloy powder is formed, and the molten metal containing TiC is impregnated in the formed body to obtain an Al base composite material. This composite material contains coarse grain of ceramic, etc., in a content of 25-73vol%, and the TiC fine grains are contained in a content of 0.15-14wt.% to a pore filling part of the porous body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐凝着性と強度に
優れたAl基複合材料およびその製造方法に関する。本
発明は、Al基複合材料で形成した強化部を少なくとも
一部に備えたAl基部材、特にAl基摺動部材等に有用
であり、典型的には内燃機関のピストン、特に摺動条件
の厳しい部位であるピストンリング溝を設けた耐摩環部
に適用すると極めて有利である。
The present invention relates to an Al-based composite material having excellent adhesion resistance and strength and a method for producing the same. INDUSTRIAL APPLICABILITY The present invention is useful for an Al-based member having at least a part of a reinforcing portion formed of an Al-based composite material, particularly an Al-based sliding member, and is typically used for a piston of an internal combustion engine, particularly for sliding conditions. It is extremely advantageous to apply to a wear-resistant ring portion provided with a piston ring groove which is a severe part.

【0002】[0002]

【従来の技術】近年、自動車エンジンは高性能化が進め
られており、これに伴いピストン温度の上昇は不可避で
ある。そのため、耐熱性と軽量性を兼備したピストン用
材料としてAl基複合材料の開発が進められている。特
にピストンの耐摩環部は、そこに設けたピストンリング
溝がピストンリングと係合して高温で繰り返し高速摺動
するため、この部位の高温における耐摩耗性、特に耐凝
着性を高めることが重要である。
2. Description of the Related Art In recent years, the performance of automobile engines has been improved, and accordingly, it is inevitable that the piston temperature rises. For this reason, Al-based composite materials have been developed as piston materials having both heat resistance and light weight. Especially in the wear ring part of the piston, the piston ring groove provided there engages with the piston ring and slides repeatedly at high temperature at high speed, so it is possible to improve the wear resistance at this high temperature, especially the adhesion resistance. is important.

【0003】例えば「鉄と鋼」(日本鉄鋼協会発行、1
989年第9月号376頁)には、ピストン耐摩環部を
Al基複合材料で作製することにより耐凝着性を高める
ことが開示されている。このAl基複合材料は、強化材
としてチタン酸ウィスカ、炭素繊維、アルミナ繊維、ア
ルミナ・シリカ繊維(サフィル)、NiAl3 粒子を用
い、これら強化材の成形体に高圧鋳造によりAl基合金
(JIS AC8A)を含浸させたものである。
For example, “Iron and Steel” (published by the Iron and Steel Institute of Japan,
September 998, p. 376) discloses that the anti-adhesion property is enhanced by forming the piston ring bearing portion from an Al-based composite material. This Al-based composite material uses whisker titanate, carbon fiber, alumina fiber, alumina-silica fiber (saphir), and NiAl 3 particles as a reinforcing material. ) Is impregnated.

【0004】このAl基複合材料から成る耐摩環部は、
それ以前に用いられていたニレジスト鋳鉄製の耐摩環部
に比べると軽量で且つ高い耐凝着性が得られるものであ
った。しかし、エンジンの一層の高性能化に対応するに
は、耐凝着性を更に向上させる必要があった。
[0004] The wear-resistant ring portion made of this Al-based composite material is
It was lighter in weight and higher in anti-adhesion property than the wear-resistant ring portion made of niresist cast iron used before that. However, in order to cope with higher performance of the engine, it was necessary to further improve the adhesion resistance.

【0005】そこで本出願人は、特願平7−13974
0号に開示したように、Si粒子等を含むAl系粉末粒
子の集合体で形成した粉末成形体の気孔部にAl系溶湯
を高圧鋳造で含浸させたAl基複合材料を開発した。こ
のAl基複合材料は、Al系マトリクスを強化材として
のSi粒子等によって細かく分断することでAl系マト
リクスの連続性を低下させ、Al成分が相手材に移着す
ることを効果的に抑制するもので、これにより耐凝着性
が顕著に向上する。
Accordingly, the present applicant has filed Japanese Patent Application No. 7-13974.
As disclosed in No. 0, an Al-based composite material in which pores of a powder compact formed of an aggregate of Al-based powder particles including Si particles and the like are impregnated with an Al-based molten metal by high-pressure casting has been developed. This Al-based composite material reduces the continuity of the Al-based matrix by finely dividing the Al-based matrix by Si particles or the like as a reinforcing material, and effectively suppresses the transfer of the Al component to the partner material. This significantly improves adhesion resistance.

【0006】しかし、このAl基複合材料は耐凝着性は
向上するが、引張強度の面で更に向上の余地が残されて
いた。
However, although this Al-based composite material has improved adhesion resistance, there is still room for further improvement in tensile strength.

【0007】[0007]

【発明が解決しようとする課題】本発明は、優れた耐凝
着性と強度とを兼備するAl基複合材料およびその製造
方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an Al-based composite material having excellent adhesion resistance and strength, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明のAl基複合材料は、AlまたはAl基合
金から成るマトリクス中に強化相としてTiC以外の材
質から成る粗大粒子が分散した多孔質構造部と、該多孔
質構造部の空孔を充填しAlまたはAl基合金から成る
マトリクス中に強化相としてTiC微細粒子が分散した
空孔充填部とから成るAl基複合材料であって、該粗大
粒子は該TiC微細粒子よりも粒径が大きく該複合材料
に対して25〜73体積%の量で存在し、該TiC微細
粒子は粒径が0.5μm以下であって該空孔充填部に対
して0.15〜14重量%の量で存在することを特徴と
する。
In order to achieve the above object, an Al-based composite material according to the present invention comprises a matrix of Al or an Al-based alloy in which coarse particles made of a material other than TiC are dispersed as a reinforcing phase. An Al-based composite material comprising: a porous structure part formed as described above; and a hole filling part in which pores of the porous structure part are filled and TiC fine particles are dispersed as a reinforcing phase in a matrix made of Al or an Al-based alloy. The coarse particles have a larger particle size than the TiC fine particles and are present in an amount of 25 to 73% by volume with respect to the composite material. The TiC fine particles have a particle size of 0.5 μm or less and have an empty space. It is characterized by being present in an amount of 0.15 to 14% by weight with respect to the hole filling portion.

【0009】ここで、粗大粒子としては、Si粒子、F
e合金粒子、およびセラミックス粒子から成る群から選
択された1種類または複数種類の粒子を含むことができ
る。本発明においては、前記先願のAl基複合材料にお
けるSi粒子等に相当する強化相としての粗大粒子が分
散した多孔質構造部の空孔を充填するAl基マトリクス
をTiC微細粒子の分散により強化することにより、先
願で得られる耐凝着性を確保しながら引張強度を向上さ
せることができる。
Here, coarse particles include Si particles and F particles.
It may include one or more types of particles selected from the group consisting of e-alloy particles and ceramic particles. In the present invention, the Al-based matrix that fills the pores of the porous structure portion in which coarse particles as a reinforcing phase corresponding to Si particles and the like in the Al-based composite material of the prior application are dispersed is reinforced by the dispersion of TiC fine particles. By doing so, it is possible to improve the tensile strength while securing the adhesion resistance obtained in the prior application.

【0010】粗大粒子は、強化相としての強化作用を確
保し且つマトリクス分断効果により高い耐凝着性を確保
するために、複合材料に対して25体積%以上の量で存
在する必要があるが、過剰に存在すると複合材料を脆化
するので73体積%以下とする。TiC微細粒子は、空
孔充填マトリクスを強化して複合材料の引張強度向上作
用を発現させるには空孔充填マトリクスに対して0.1
5重量%以上の量で存在する必要があるが、過剰に存在
すると伸びが低下して引張強度も低下するので14重量
%以下とする。
The coarse particles must be present in an amount of at least 25% by volume based on the composite material in order to secure the strengthening action as the strengthening phase and to secure high adhesion resistance due to the matrix breaking effect. If it is present in excess, the composite material is embrittled. The TiC fine particles are used in an amount of 0.1% with respect to the pore-filled matrix in order to strengthen the pore-filled matrix and exhibit the effect of improving the tensile strength of the composite material.
It must be present in an amount of 5% by weight or more, but if present in excess, the elongation is reduced and the tensile strength is also reduced.

【0011】本発明のAl基複合材料は、下記のように
多孔質成形体にTiC微細粒子含有溶湯を含浸させて製
造するので、良好な含浸性を確保するためにTiC微細
粒子の粒径は0.5μm以下とする必要がある。また、
分散強化作用を発現する上でも粒径が小さいほど有利に
なる。上記本発明のAl基複合材料を製造する方法は、
下記の工程:Ti粉末、黒鉛粉末およびAl粉末を混合
する工程、得られた混合粉末を成形して多孔質ペレット
とする工程、該多孔質ペレットにAlまたはAl基合金
の溶湯を含浸させる工程、含浸後のペレットを1000
〜1800℃の温度に加熱することにより、Alまたは
Al基合金マトリクス中に粒径0.5μm以下のTiC
微細粒子を生成させる工程、加熱後のペレットをAlま
たはAl基合金の溶湯中に入れることにより、上記Ti
C微細粒子が分散したTiC微細粒子含有溶湯を作成す
る工程、これとは別に、AlまたはAl基合金粉末およ
びFe合金粉末の混合粉末を成形して多孔質成形体を作
成する工程、および該多孔質成形体に上記TiC含有溶
湯を含浸させる工程、を含むことを特徴とする。
Since the Al-based composite material of the present invention is produced by impregnating a molten metal containing TiC fine particles into a porous compact as described below, the particle size of the TiC fine particles is assured to ensure good impregnation. It needs to be 0.5 μm or less. Also,
The smaller the particle size, the more advantageous the dispersion enhancing action is. The method for producing the Al-based composite material of the present invention includes:
The following steps: a step of mixing Ti powder, graphite powder and Al powder, a step of forming the obtained mixed powder into porous pellets, a step of impregnating the porous pellets with a molten metal of Al or an Al-based alloy, 1000 pellets after impregnation
By heating to a temperature of 11800 ° C., TiC having a particle size of 0.5 μm or less
The step of generating fine particles, and placing the pellets after heating in a molten metal of Al or an Al-based alloy,
A step of preparing a molten metal containing TiC fine particles in which C fine particles are dispersed, a step of separately forming a mixed powder of Al or an Al-based alloy powder and an Fe alloy powder to form a porous molded body, and Impregnating the TiC-containing molten metal into the hot compact.

【0012】[0012]

【発明の実施の形態】本発明の方法において、TiC微
細粒子を生成させたペレットの形成方法およびこのペレ
ットをAlまたはAl基合金の溶湯中に入れてTiC微
細粒子含有溶湯を作成する方法は、本出願人による特開
平6−17165号公報において既に開示した方法を用
いる。その際、含浸後のペレットを1000℃〜180
0℃に加熱することにより、AlまたはAl基合金マト
リクス中にTiC微細粒子を生成させる。この加熱温度
が1000℃未満であると実質的にTiCが生成せず、
1800℃より高温であると生成したTiCが粗大化す
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the method of the present invention, a method for forming pellets in which TiC fine particles are generated and a method for preparing a molten metal containing TiC fine particles by placing the pellets in a molten Al or an Al-based alloy are described below. The method already disclosed in JP-A-6-17165 by the present applicant is used. At that time, the pellets after impregnation are heated at 1000 ° C. to 180
Heating to 0 ° C. produces TiC fine particles in the Al or Al-based alloy matrix. When the heating temperature is lower than 1000 ° C., substantially no TiC is generated,
If the temperature is higher than 1800 ° C., the generated TiC becomes coarse.

【0013】加熱によりペレット中に生成させるTiC
微細粒子の粒径を0.5μm以下に制限するのは、前述
したように良好な含浸性を確保するためである。これに
より形成されるTiC微細粒子分散ペレットは、Alま
たはAl基合金の溶湯中に容易に溶解し、TiC微細粒
子が分散した溶湯を得ることができる。TiC微細粒子
は、この溶湯中で非常に安定しており、例えば1時間程
度の保持では粗大化も溶湯との反応も起きないため、多
孔質成形体への含浸用として非常に優れている。
TiC generated in pellets by heating
The reason why the particle size of the fine particles is limited to 0.5 μm or less is to secure good impregnation as described above. The TiC fine particle-dispersed pellets thus formed can be easily dissolved in a molten metal of Al or an Al-based alloy, and a molten metal in which TiC fine particles are dispersed can be obtained. The TiC fine particles are very stable in the molten metal. For example, if the particles are kept for about one hour, neither coarsening nor reaction with the molten metal occurs, so that the TiC fine particles are very excellent for impregnating a porous compact.

【0014】本発明においては、多孔質成形体の気孔部
にTiC微細粒子含有溶湯を含浸させるが、微小な気孔
内へ溶湯を十分に浸透させるために、一般には高圧鋳造
を行う。しかし、高圧鋳造によらず通常の重力鋳造によ
り含浸を行うことができれば、生産性および製造コスト
の面でより有利である。本発明の望ましい態様において
は、上記の多孔質成形体を作成する工程において、Al
またはAl基合金粉末およびFe合金粉末の他に、更に
Ti粉末を加える。これにより得られた成形体中に含ま
れるTiの脱酸作用および脱窒作用により気孔内の酸素
および窒素が除去され、気孔内の内圧が大きく低下し真
空状態に近くなって、溶湯に対する吸引作用が生じる。
その結果、特に高圧鋳造によらず通常の重力鋳造によっ
ても気孔内へ溶湯を十分に浸透させることができる。通
常、含浸を行う際には成形体を例えば100℃程度に予
熱し、例えば800℃程度の溶湯を鋳造するので、それ
による高温下でTiの脱酸反応および脱窒反応が進行す
る。
In the present invention, the pores of the porous molded body are impregnated with the molten metal containing fine TiC particles. In order to sufficiently infiltrate the molten metal into the fine pores, high-pressure casting is generally performed. However, if the impregnation can be performed by ordinary gravity casting instead of high-pressure casting, it is more advantageous in terms of productivity and manufacturing cost. In a desirable mode of the present invention, in the step of producing the porous molded body, Al
Alternatively, in addition to the Al-based alloy powder and the Fe alloy powder, a Ti powder is further added. Oxygen and nitrogen in the pores are removed by the deoxidizing action and denitrifying action of Ti contained in the obtained molded body, the internal pressure in the pores is greatly reduced, and the pressure is close to a vacuum, and the suction action on the molten metal is performed. Occurs.
As a result, the molten metal can sufficiently penetrate into the pores even by ordinary gravity casting, not by high-pressure casting. Usually, when performing impregnation, the compact is preheated to, for example, about 100 ° C., and a molten metal at, for example, about 800 ° C. is cast.

【0015】[0015]

【実施例】【Example】

〔実施例1〕 [1] 多孔質成形体の作成 Al−38wt%Si合金粉末(アトマイズ粉末、東洋ア
ルミニウム製、平均粒径50μm、初晶Siの平均粒径
10μm)と、Fe−63wt%Cr−7wt%C合金粉末
(破砕粉末、福田金属製、平均粒径60μm)とを混合
して成形し、多孔質成形体を得た。この多孔質成形体の
空孔率は20体積%であった。
[Example 1] [1] Preparation of porous molded body Al-38 wt% Si alloy powder (atomized powder, manufactured by Toyo Aluminum, average particle size 50 µm, average primary crystal Si particle size 10 µm), Fe-63 wt% Cr -7 wt% C alloy powder (crushed powder, manufactured by Fukuda Metals, average particle size 60 μm) was mixed and molded to obtain a porous molded body. The porosity of this porous formed body was 20% by volume.

【0016】[2] TiC微細粉末含有溶湯の作成 Ti粉末(平均粒径50μm)、Al粉末(平均粒径1
00μm)、および黒鉛粉末(平均粒径10μm)を重
量比8:5:2で配合し、V型混合機で1時間混合し
た。得られた混合粉末を成形して円柱状ペレット(30
φ×10mm)を作成した。このペレットを温度100
3Kの純Al溶湯中に30秒間浸漬し、ペレットの空孔
に純Alを含浸させた。含浸後のペレットをAr雰囲気
中で0.083K/秒の昇温速度で1327Kまで加熱
した後、水焼入れした。
[2] Preparation of molten metal containing TiC fine powder Ti powder (average particle diameter 50 μm), Al powder (average particle diameter 1
00 μm) and graphite powder (average particle size 10 μm) in a weight ratio of 8: 5: 2, and mixed with a V-type mixer for 1 hour. The obtained mixed powder was formed into a cylindrical pellet (30
φ × 10 mm). The pellet is heated at a temperature of 100
It was immersed in a 3K pure aluminum melt for 30 seconds to impregnate the pores of the pellet with pure Al. The impregnated pellets were heated to 1327K in an Ar atmosphere at a rate of 0.083K / sec, and then water-quenched.

【0017】この熱処理後に組織を観察するとAlマト
リクス中に平均粒径0.1μm(最大粒径0.5μm以
下)のTiC微細粒子のみが分散していた。加熱中のペ
レット内では下記反応〜が進行したと考えられる。
[ ]内は反応温度を示す。 Ti(s)+Al(s) → Al3Ti(s) .....................[890K] Al(s) → Al(l) ...............................[930K] Ti(s)+Al(l) →Al3Ti(s) .......................[940K] 3Al3Ti(s)+Al4C3(s)→ 3TiC(s)+13Al(s) ........[1150K] Al3Ti(s)+C(s) →TiC(s)+Al(l) .........[1155K〜1260K] 上記のTiC微細粒子を分散させたペレットをアルミニ
ウム基合金(JISAC8A)の溶湯中に添加し、攪拌
を行って、TiC微細粒子含有溶湯を形成した。溶湯へ
の添加量は、TiC添加量として表1に示したように種
々に変化させた。ペレットは溶湯中に容易に溶解した
が、溶湯内でTiC微細粒子が凝集しないように、添加
から下記の鋳造までの約15分間、攪拌棒により溶湯を
攪拌した。なお、JIS AC8Aは化学組成が11〜
13wt%Si、0.8〜1.3wt%Cu、0.7〜1.
3wt%Mgの範囲にあり、時効により析出硬化する。本
実施例で用いた溶湯のSi含有量は12wt%であった。
Observation of the structure after this heat treatment revealed that only TiC fine particles having an average particle size of 0.1 μm (maximum particle size 0.5 μm or less) were dispersed in the Al matrix. It is considered that the following reaction-has progressed in the pellets being heated.
[] Indicates the reaction temperature. Ti (s) + Al (s) → Al 3 Ti (s) ..... [890K] Al (s) → Al (l). .................... [930K] Ti (s) + Al (l) → Al 3 Ti (s). ............ [940K] 3Al 3 Ti (s) + Al 4 C 3 (s) → 3TiC (s) + 13Al (s). ....... [1150K] Al 3 Ti (s) + C (s) → TiC (s) + Al (l) ......... [1155K ~ 1260K] The above TiC fine particles Was added to a molten aluminum-based alloy (JISAC8A), and the mixture was stirred to form a molten metal containing TiC fine particles. The amount of addition to the molten metal was varied as shown in Table 1 as the amount of TiC added. Although the pellets were easily dissolved in the molten metal, the molten metal was stirred with a stirring rod for about 15 minutes from the addition to the following casting so that the TiC fine particles did not agglomerate in the molten metal. In addition, JIS AC8A has a chemical composition of 11 to 11.
13 wt% Si, 0.8-1.3 wt% Cu, 0.7-1.
It is in the range of 3 wt% Mg, and precipitates and hardens by aging. The Si content of the molten metal used in this example was 12% by weight.

【0018】[3] 含浸 上記溶湯を高圧鋳造により前記[1] で作成した成形体に
含浸させた。高圧鋳造は、高圧鋳造用の金型内に成形体
を配置して500℃×1時間の予熱を行った後に、鋳造
温度800℃、金型温度280℃、加圧条件130MP
a×30秒で行った。鋳造後は直ちに70℃の温水中に
焼入れた。
[3] Impregnation The above-mentioned molten metal was impregnated into the compact prepared in the above [1] by high-pressure casting. In the high-pressure casting, after a compact is placed in a mold for high-pressure casting and preheated at 500 ° C. × 1 hour, a casting temperature of 800 ° C., a mold temperature of 280 ° C., and a pressing condition of 130 MPa
Performed in a × 30 seconds. Immediately after casting, it was quenched in warm water at 70 ° C.

【0019】[4] 試験 得られた鋳造物に220℃×6時間のT6処理を施した
後、試験片を採取し、耐凝着性試験および引張試験を行
った。耐凝着性試験は、図1に示すように、ヒータ10
を内蔵し互いに対向する台11、12から成る試験機に
より行った。試験片W(φ90×厚さ10mm)を台1
1に装着し、相手材としてエンジンのピストンリングを
想定して17wt%Crステンレス鋼窒化リング13を台
12に装着した。この状態で、台12を矢印Y1方向に
往復運動させてリング13を試験片Wの表面に叩きつけ
る。この叩き付けを、温度280℃、面圧0.1MPa
にて、10分間行った。その後、試験片W表面の凝着面
積を測定して、耐凝着性を評価した。
[4] Test After the obtained casting was subjected to T6 treatment at 220 ° C. for 6 hours, a test piece was sampled and subjected to an adhesion resistance test and a tensile test. As shown in FIG.
Was carried out by a test machine having built-in tables 11 and 12 facing each other. Test piece W (φ90 x thickness 10mm)
1 and a 17 wt% Cr stainless steel nitride ring 13 was attached to the base 12 assuming an engine piston ring as a mating material. In this state, the table 12 is reciprocated in the arrow Y1 direction to strike the ring 13 against the surface of the test piece W. This beating is performed at a temperature of 280 ° C. and a surface pressure of 0.1 MPa.
For 10 minutes. Thereafter, the adhesion area on the surface of the test piece W was measured to evaluate the adhesion resistance.

【0020】引張試験はインストロン型試験機を用い、
室温および250℃にて、クロスヘッドスピード1mm
/分で行った。250℃の試験に際しては、予め試験片
に250℃×100時間の熱処理を施した。各試験結果
を表1に示す。同表中で、試料1〜5は上記[2] の溶湯
中へのペレット添加においてTiC添加量を本発明の範
囲内としたものであり、試料C1,C2,C3は比較例
としてそれぞれTiC無添加、TiC添加量が本発明の
範囲未満、TiC添加量が本発明の範囲より多いもので
ある。
The tensile test uses an Instron type testing machine,
1 mm crosshead speed at room temperature and 250 ° C
/ Min. At the time of the test at 250 ° C., the test piece was previously subjected to a heat treatment at 250 ° C. × 100 hours. Table 1 shows the test results. In the same table, Samples 1 to 5 are those in which the amount of TiC added in the pellet addition to the molten metal of the above [2] is within the range of the present invention. The amount of TiC added is less than the range of the present invention, and the amount of TiC added is more than the range of the present invention.

【0021】耐凝着性は、TiC添加の有無および多少
によらず、試験した全試料について良好であった。引張
特性は、TiC無添加の比較試料C1に比べて、本発明
の範囲内でTiCを添加した試料1〜5は室温、250
℃のいずれにおいても、引張強さ、伸びともに大きく向
上していることが分かる。本発明の範囲内においては、
TiCの添加量の増加に伴って室温引張強さは増加し、
伸びは減少する傾向がある。
The adhesion resistance was good for all the samples tested, with and without TiC addition. The tensile properties of Samples 1 to 5 to which TiC was added within the scope of the present invention were lower than those of Comparative Sample C1 to which TiC was not added.
It can be seen that in both of the cases, the tensile strength and the elongation are greatly improved. Within the scope of the present invention,
The room temperature tensile strength increases with an increase in the amount of TiC added,
Elongation tends to decrease.

【0022】本発明においては、TiCの添加量は複合
材料全体に対して高々3体積%であり、比較的少量であ
るにもかかわらず、引張特性に明瞭な向上が認められ
る。その理由は、粉末成形体が構成する多孔質構造部の
空孔(複合材料に対して20体積%)に、TiCがAl
またはAl基合金の溶湯を介して導入されるため、複合
材料の組織中で最も強度が低いこの空孔部を充填するマ
トリクス中にTiCが選択的に分散するので、比較的少
量の添加によっても効果が発揮されるためであると考え
られる。
In the present invention, the addition amount of TiC is at most 3% by volume with respect to the whole composite material, and although it is relatively small, a clear improvement in tensile properties is recognized. The reason is that TiC contains Al in the pores (20% by volume with respect to the composite material) of the porous structure portion of the powder compact.
Alternatively, since TiC is introduced through a molten metal of an Al-based alloy, TiC is selectively dispersed in a matrix filling the pores having the lowest strength in the structure of the composite material. It is considered that the effect is exhibited.

【0023】また、TiCの添加により伸び(延性)が
増加する理由は、Al合金の異質凝固核としても働くT
iCがAl基マトリクスの微細化剤として作用した結果
であると考えられる。なお、TiCを本発明の範囲未満
である0.1wt%添加した比較試料C2では、無添加の
比較試料C1と比較して僅かな効果しか得られていな
い。これは、添加量が通常微細化剤としてTiCを用い
る場合の添加量としても少量であるため、分散強化のみ
ならず微細化効果も実質的に得られないためであると考
えられる。
The reason why the elongation (ductility) is increased by the addition of TiC is that T is also used as a heterogeneous solidification nucleus of an Al alloy.
This is considered to be the result of iC acting as a refiner for the Al-based matrix. It should be noted that the comparative sample C2 to which 0.1 wt% of TiC was added, which is less than the range of the present invention, showed only a small effect compared to the comparative sample C1 to which no TiC was added. It is considered that this is because the addition amount is usually small when TiC is used as a refining agent, so that not only the dispersion strengthening but also the refining effect is not substantially obtained.

【0024】逆に、比較試料C3のようにTiCの添加
量が本発明の範囲より多過ぎると、分散強化もしくは複
合強化が大きくなり過ぎて延性が低下し、結果的に引張
強さも低下する。なお、耐凝着性はAl基マトリクスの
露出表面積が小さいほど向上することが従来から知られ
ており、粉末成形体の多孔質構造部中の強化相である粗
大粒子の量を減少させることなく、多孔質構造部の空孔
へTiC微細粒子を添加することができるので、TiC
の添加量が多いほど耐凝着性は向上すると考えられる。
Conversely, if the amount of TiC added is too large, as in Comparative Sample C3, the dispersion strengthening or composite strengthening becomes too large and ductility decreases, resulting in a decrease in tensile strength. It has been conventionally known that the anti-adhesion property is improved as the exposed surface area of the Al-based matrix is smaller, without reducing the amount of the coarse particles as the reinforcing phase in the porous structure of the powder compact. Since the TiC fine particles can be added to the pores of the porous structure, the TiC
It is considered that the larger the amount of addition, the higher the adhesion resistance.

【0025】[0025]

【表1】 [Table 1]

【0026】〔実施例2〕実施例1で用いたものと同じ
Al−38wt%Si合金粉末およびFe−63wt%Cr
−7wt%C合金粉末の他、更に純Ti粉末(住友シチッ
クス製、−325メッシュ)を、最終的な複合材料中で
の体積率が55%、20%、5%となるように秤量し、
混合・成形して多孔質成形体を得た。すなわち、複合材
料中に対する成形体の体積率は80%、空孔率は実施例
1と同じく20体積%である。
Example 2 The same Al-38 wt% Si alloy powder and Fe-63 wt% Cr as used in Example 1
In addition to the −7 wt% C alloy powder, pure Ti powder (Sumitomo Citix, −325 mesh) was weighed so that the volume ratio in the final composite material was 55%, 20%, and 5%.
It was mixed and molded to obtain a porous molded body. That is, the volume ratio of the molded body in the composite material is 80%, and the porosity is 20% by volume as in Example 1.

【0027】実施例1と同様にして作成したTiC微細
粒子含有溶湯を、通常の重力鋳造により上記成形体に含
浸させた。この重力鋳造は、加圧を行わない以外は実施
例1の高圧鋳造時と同じ予熱および鋳造条件にて行っ
た。得られた鋳造物に実施例1と同じ条件でT6処理を
施した。断面の組織を観察したところ、マイクロポア等
の全く無い良好な組織が認められた。また、耐凝着性試
験および引張試験を行ったところ、実施例1の高圧鋳造
材とほぼ同等の良好な結果が得られた。
The above compact was impregnated with a TiC fine particle-containing molten metal prepared in the same manner as in Example 1 by ordinary gravity casting. This gravity casting was performed under the same preheating and casting conditions as in the high-pressure casting of Example 1 except that no pressure was applied. The obtained casting was subjected to T6 treatment under the same conditions as in Example 1. When the structure of the cross section was observed, a good structure having no micropores or the like was observed. In addition, when an anti-adhesion test and a tensile test were performed, good results almost equivalent to those of the high-pressure cast material of Example 1 were obtained.

【0028】また、鋳造温度が上記は800℃であった
のに対して、750℃および850℃とし、TiC微細
粒子含有溶湯のTiCを除く組成をAl−4wt%Cu−
1.5wt%Mg−0.6wt%Mnとした以外は、上記と
同様の条件で作成した試料についても、同様の結果が得
られた。更に、最終的な複合材料に対する体積率を、F
e−63wt%Cr−7wt%C合金粉末は10%とし、成
形体全体では80%(すなわち空孔率20%)で一定と
し、Ti粉末については0.5〜30%の範囲で種々に
変えた場合、およびFe−63wt%Cr−7wt%C合金
粉末は10%とし、成形体全体で75%(すなわち空孔
率25%)で一定とし、Ti粉末については0.5〜3
0%の範囲で種々に変えた場合についても、他の条件は
上記と同様にして試料を作成した。その結果、Ti粉末
の体積率を0.5%とした場合以外は、組織的にマイク
ロポア等の欠陥が内在しない良好な複合材料が得られ
た。
The casting temperature was set to 750 ° C. and 850 ° C. in contrast to 800 ° C., and the composition excluding TiC of the molten metal containing fine TiC particles was changed to Al-4 wt% Cu—
Similar results were obtained for samples prepared under the same conditions as above, except that 1.5 wt% Mg-0.6 wt% Mn. In addition, the volume fraction for the final composite is
e-63wt% Cr-7wt% C alloy powder is 10%, the whole compact is constant at 80% (that is, porosity is 20%), and the Ti powder is varied in a range of 0.5-30%. And the Fe-63 wt% Cr-7 wt% C alloy powder is 10%, the whole compact is constant at 75% (that is, the porosity is 25%), and the Ti powder is 0.5 to 3%.
Samples were prepared in the same manner as described above under other conditions when various changes were made within the range of 0%. As a result, except for the case where the volume ratio of the Ti powder was set to 0.5%, a good composite material having no defects such as micropores was obtained.

【0029】また、上記と同様にし形成した多孔質成形
体を、金型予熱温度約300℃、鋳造温度850℃とし
た以外は実施例1と同じ溶湯組成および条件で、重力鋳
造により成形体中への含浸を行った。この場合にも、マ
イクロポア等の全く無い良好な組織を有するAl基複合
材料が得られた。本実施例の結果から、複合材料全体に
対して体積率1〜30%の範囲に相当する配合比率でT
i粉末を添加した多孔質成形体とすることにより、必ず
しも実施例1のように高圧鋳造によらなくとも、通常の
重力鋳造によって良好なAl基複合材料が製造できるこ
とが分かる。
The porous compact formed in the same manner as described above was subjected to gravity casting under the same molten metal composition and conditions as in Example 1 except that the mold preheating temperature was about 300 ° C. and the casting temperature was 850 ° C. Was impregnated. Also in this case, an Al-based composite material having a good structure without any micropores was obtained. From the results of this example, it was found that T
It can be seen that by using a porous compact to which i-powder is added, a good Al-based composite material can be produced by ordinary gravity casting without necessarily using high-pressure casting as in Example 1.

【0030】なお、実施例1および2において、多孔質
成形体の空孔率が20%および25%の場合について説
明したが、多孔質成形体中へのTiC微細粒子含有溶湯
の含浸性の確保、多孔質成形体の構造維持、および複合
材料の耐凝着性の確保の観点から、この程度の空孔率が
最も適しているからである。ただし、空孔率は特に限定
する必要はなく、上記観点から許容できる範囲であれば
良い。一つの目安としては、空孔率を10%〜40%の
範囲内とすることが推奨される。すなわち、空孔率が1
0%より小さくなると、含浸に対する抵抗力が大きくな
り、多孔質成形体へのTiC微細粒子含有溶湯の含浸が
困難になることがある。逆に、空孔率が40%より大き
くなると、成形体の構造自体を維持して作成することが
困難になることがあり、また複合材料中で空孔充填部を
成すAl部が必然的に多くなるため耐凝着性が低下する
ことがある。
In the examples 1 and 2, the case where the porosity of the porous compact was 20% and 25% was explained, but the impregnation of the molten metal containing TiC fine particles into the porous compact was ensured. This is because such a porosity is most suitable from the viewpoint of maintaining the structure of the porous molded body and securing the adhesion resistance of the composite material. However, the porosity need not be particularly limited, and may be any range as long as it is acceptable from the above viewpoint. As a guide, it is recommended that the porosity be in the range of 10% to 40%. That is, the porosity is 1
If it is less than 0%, the resistance to impregnation increases, and it may be difficult to impregnate the porous compact with the molten metal containing TiC fine particles. Conversely, if the porosity is greater than 40%, it may be difficult to maintain the structure of the molded body itself, and the Al portion forming the vacancy filling portion in the composite material is necessarily inevitable. Due to the increase, the adhesion resistance may decrease.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
優れた耐凝着性と強度とを兼備するAl基複合材料およ
びその製造方法が提供される。
As described above, according to the present invention,
An Al-based composite material having both excellent adhesion resistance and strength and a method for producing the same are provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、耐凝着性試験機を模式的に示す断面図
である。
FIG. 1 is a sectional view schematically showing an adhesion resistance tester.

【符号の説明】[Explanation of symbols]

W…試験片(円板) 13…相手材(リング) W: test piece (disk) 13: partner material (ring)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 AlまたはAl基合金から成るマトリク
ス中に強化相としてTiC以外の材質から成る粗大粒子
が分散した多孔質構造部と、該多孔質構造部の空孔を充
填しAlまたはAl基合金から成るマトリクス中に強化
相としてTiC微細粒子が分散した空孔充填部とから成
るAl基複合材料であって、該粗大粒子は該TiC微細
粒子よりも粒径が大きく該複合材料に対して25〜73
体積%の量で存在し、該TiC微細粒子は粒径が0.5
μm以下であって該空孔充填部に対して0.15〜14
重量%の量で存在することを特徴とする耐凝着性と強度
に優れたAl基複合材料。
1. A porous structure in which coarse particles made of a material other than TiC are dispersed as a reinforcing phase in a matrix made of Al or an Al-based alloy; And a pore-filled part in which TiC fine particles are dispersed as a reinforcing phase in a matrix made of an alloy, wherein the coarse particles have a particle size larger than the TiC fine particles and are larger than the TiC fine particles. 25-73
% By volume, and the TiC fine particles have a particle size of 0.5
μm or less and 0.15 to 14
An Al-based composite material having excellent adhesion resistance and strength, characterized by being present in an amount of% by weight.
【請求項2】 該粗大粒子は、Si粒子、Fe合金粒
子、およびセラミックス粒子から成る群から選択された
1種以上の粒子であることを特徴とする請求項1記載の
耐凝着性と強度に優れたAl基複合材料。
2. The adhesion resistance and strength according to claim 1, wherein the coarse particles are one or more particles selected from the group consisting of Si particles, Fe alloy particles, and ceramic particles. Excellent Al-based composite material.
【請求項3】 下記の工程:Ti粉末、黒鉛粉末および
Al粉末を混合する工程、 得られた混合粉末を成形して多孔質ペレットとする工
程、 該多孔質ペレットにAlまたはAl基合金の溶湯を含浸
させる工程、 含浸後のペレットを1000〜1800℃の温度に加熱
することにより、AlまたはAl基合金マトリクス中に
粒径0.5μm以下のTiC微細粒子を生成させる工
程、 加熱後のペレットをAlまたはAl基合金の溶湯中に入
れることにより、上記TiC微細粒子が分散したTiC
微細粒子含有溶湯を作成する工程、 これとは別に、AlまたはAl基合金粉末およびFe合
金粉末の混合粉末を成形して多孔質成形体を作成する工
程、および該多孔質成形体に上記TiC含有溶湯を含浸
させる工程を含むことを特徴とする耐凝着性と強度に優
れたAl基複合材料の製造方法。
3. The following steps: a step of mixing Ti powder, graphite powder and Al powder; a step of forming the obtained mixed powder into porous pellets; and a step of melting Al or an Al-based alloy into the porous pellets. By heating the impregnated pellets to a temperature of 1000 to 1800 ° C. to generate TiC fine particles having a particle size of 0.5 μm or less in the Al or Al-based alloy matrix. The TiC fine particles are dispersed in TiC by placing it in a molten Al or Al-based alloy.
A step of forming a fine particle-containing molten metal; separately, a step of forming a mixed powder of Al or an Al-based alloy powder and an Fe alloy powder to form a porous formed body; A method for producing an Al-based composite material having excellent adhesion resistance and strength, comprising a step of impregnating a molten metal.
【請求項4】 前記多孔質成形体を作成する工程におい
て、AlまたはAl基合金粉末、Fe合金粉末、および
Ti粉末の混合粉末を成形することを特徴とする請求項
3記載の方法。
4. The method according to claim 3, wherein in the step of forming the porous compact, a mixed powder of Al or an Al-based alloy powder, a Fe alloy powder, and a Ti powder is formed.
JP32162696A 1996-12-02 1996-12-02 Aluminum base composite material excellent in coagulation resistance and strength and its production Pending JPH10158764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32162696A JPH10158764A (en) 1996-12-02 1996-12-02 Aluminum base composite material excellent in coagulation resistance and strength and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32162696A JPH10158764A (en) 1996-12-02 1996-12-02 Aluminum base composite material excellent in coagulation resistance and strength and its production

Publications (1)

Publication Number Publication Date
JPH10158764A true JPH10158764A (en) 1998-06-16

Family

ID=18134615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32162696A Pending JPH10158764A (en) 1996-12-02 1996-12-02 Aluminum base composite material excellent in coagulation resistance and strength and its production

Country Status (1)

Country Link
JP (1) JPH10158764A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128506A2 (en) * 2011-03-18 2012-09-27 한국기계연구원 Method for producing aluminum matrix composites, and aluminum matrix composites produced by the method
KR101228024B1 (en) * 2011-03-18 2013-01-30 한국기계연구원 Fabrication method of aluminum matrix composites and aluminum matrix composite by the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128506A2 (en) * 2011-03-18 2012-09-27 한국기계연구원 Method for producing aluminum matrix composites, and aluminum matrix composites produced by the method
WO2012128506A3 (en) * 2011-03-18 2012-11-15 한국기계연구원 Method for producing aluminum matrix composites, and aluminum matrix composites produced by the method
KR101228024B1 (en) * 2011-03-18 2013-01-30 한국기계연구원 Fabrication method of aluminum matrix composites and aluminum matrix composite by the same
US9670568B2 (en) 2011-03-18 2017-06-06 Korea Institute Of Machinery & Materials Method of preparing aluminum matrix composites and aluminum matrix composites prepared by using the same

Similar Documents

Publication Publication Date Title
US6387149B1 (en) Metal porous bodies, method for preparation thereof and metallic composite materials using the same
AU2003247334B2 (en) High strength aluminum alloy for high temperature applications
Ejiofor et al. Developments in the processing and properties of particulate Al-Si composites
TWI259849B (en) Porous metal, metallic composite using it and method for manufacturing the same
CA2094369C (en) Aluminum-base metal matrix composite
US5385195A (en) Nickel coated carbon preforms
CA2738936C (en) Aluminum alloy powder metal bulk chemistry formulation
US6592687B1 (en) Aluminum alloy and article cast therefrom
US5972523A (en) Aluminum metal matrix composite materials reinforced by intermetallic compounds and alumina whiskers
JP3314141B2 (en) Preformed body for compounding, composite aluminum-based metal part obtained by compounding the preformed body, and method for producing the same
JP5951636B2 (en) Improved aluminum alloy powder metal with transition elements
US20050019540A1 (en) Aluminum based composite material and process for manufacturing the same
JPH10158764A (en) Aluminum base composite material excellent in coagulation resistance and strength and its production
Lim et al. The production and evaluation of metal-matrix composite castings produced by a pressure-assisted investment casting process
JP2000345254A (en) Aluminum base composite material and its production
US6024806A (en) A1-base alloy having excellent high-temperature strength
JPH0645833B2 (en) Method for manufacturing aluminum alloy-based composite material
JP2001335900A (en) Fiber reinforced aluminum alloy material
JP3577748B2 (en) Metal-based composite and method for producing the same
JP2971380B2 (en) Method for producing aluminum alloy having high wear resistance
JP2000271728A (en) Production of composite stock with non-pressurize impregnating permeation method
JPH1143727A (en) Gravity casting process
JPH06287664A (en) Aluminum system metal matrix composite material
JPH03155450A (en) Manufacture of composite sliding member
JPH09165636A (en) Aluminum matrix composite excellent in adhesion resistance and its production