JP3417666B2 - Member having Al-based intermetallic compound reinforced composite part and method of manufacturing the same - Google Patents

Member having Al-based intermetallic compound reinforced composite part and method of manufacturing the same

Info

Publication number
JP3417666B2
JP3417666B2 JP15665594A JP15665594A JP3417666B2 JP 3417666 B2 JP3417666 B2 JP 3417666B2 JP 15665594 A JP15665594 A JP 15665594A JP 15665594 A JP15665594 A JP 15665594A JP 3417666 B2 JP3417666 B2 JP 3417666B2
Authority
JP
Japan
Prior art keywords
powder
intermetallic compound
preform
reinforced composite
composite part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15665594A
Other languages
Japanese (ja)
Other versions
JPH083660A (en
Inventor
明浩 黒田
茂則 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP15665594A priority Critical patent/JP3417666B2/en
Publication of JPH083660A publication Critical patent/JPH083660A/en
Application granted granted Critical
Publication of JP3417666B2 publication Critical patent/JP3417666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属間化合物強化アル
ミニウム(Al)合金を複合強化部にもつ部材とその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a member having an intermetallic compound reinforced aluminum (Al) alloy in a composite reinforced portion and a method for manufacturing the member.

【0002】[0002]

【従来の技術】金属間化合物(Inter Metallic Compoun
ds :以下IMCとする)を強化材として利用する方法に
次のようなものがある。すなわち、Al又はAl合金の
溶湯中にIMC粒子あるいはAlと反応してIMCを形
成する金属粒子を投入添加してIMC分散強化合金を得
る方法である。また、セラミックスウィスカーで製作し
たプリフォーム中にIMCを形成する金属粉末を混合し
ておき、これを用いてAl合金の溶湯による加圧鋳込を
おこない、溶湯がプリフォームの空隙に浸透するのと同
時に成形体中の金属粉末とAlとが反応してIMCを形
成し、IMC強化複合材をうる方法である。(特開平1
−230737号公報)
2. Description of the Related Art Intermetallic compounds
There is the following method of using ds: IMC hereinafter) as a reinforcing material. That is, it is a method of obtaining an IMC dispersion strengthened alloy by adding IMC particles or metal particles that react with Al to form IMC into a molten metal of Al or an Al alloy. In addition, a metal powder for forming IMC is mixed in a preform manufactured by a ceramics whisker, and the molten metal of an Al alloy is used for pressure casting to allow the molten metal to permeate into the preform voids. At the same time, the metal powder in the compact reacts with Al to form IMC, thereby obtaining an IMC-reinforced composite material. (JP-A-1
-230737)

【0003】[0003]

【発明が解決しようとする課題】溶湯中にIMC粒子等
を投入添加する前記の方法は、Alと反応してIMCを
形成するため、Alとの化合物となるIMC(たとえば
Al3 Ni,Al3 Fe,Al3 Tiなど)しか利用で
きない。そしてIMC粉末を最初から用いる場合、IM
Cは融点が高く、酸化雰囲気を嫌うため、IMC粉末を
製造するコストが非常に高くなる。またAl溶湯中にI
MC粒子又は金属粒子を添加する方法では部品が必要と
する特定の部分のみを強化することができない。一方、
セラミックスウィスカーによるプリフォームを用いる場
合、金属粉末を混合したプリフォームの製造やAl溶湯
との複合化の作業が複雑であるため、コストアップとな
る。またプリフォームを金属粉末の媒体とするため、I
MCの複合化率を高くとることができず、IMCによる
強化が効果的におこなわれないという問題点がある。本
発明は前記事情に鑑みてなされたもので、前記問題点を
解消したAl基金属間化合物強化複合部をもつ部材とそ
の製造方法を提供することを目的とする。
The above-mentioned method of adding IMC particles and the like to the molten metal reacts with Al to form IMC, so that IMC which forms a compound with Al (for example, Al 3 Ni, Al 3 Only Fe, Al 3 Ti, etc.) can be used. And when IMC powder is used from the beginning, IM
Since C has a high melting point and dislikes the oxidizing atmosphere, the cost of producing IMC powder becomes very high. In addition, I in the molten Al
The method of adding MC particles or metal particles cannot strengthen only a specific portion required by a component. on the other hand,
When a preform made of ceramics whiskers is used, the production of the preform mixed with the metal powder and the work of compounding with the Al molten metal are complicated, resulting in an increase in cost. Further, since the preform is used as a medium of metal powder, I
There is a problem that the composite rate of MC cannot be set high and the strengthening by IMC cannot be effectively performed. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a member having an Al-based intermetallic compound reinforced composite part and a method for manufacturing the same, which solves the above problems.

【0004】[0004]

【課題を解決するための手段】前記目的に添い、本発明
は強化粒子となる金属間化合物の各構成元素の粉末を化
学量論組成に従って秤量・混合したものにメカニカルア
ロイングを施して前駆複合体を作り、この前駆複合体に
純Al粉末またはAl合金粉末を加えて再度メカニカル
アロイングを施したあと、この粉末で強化複合部のプリ
フォームを作り、脱ガス後、予熱したこのプリフォーム
にAl合金の溶湯を鋳込み、溶湯の熱でプリフォーム中
に分散している前駆複合体を反応させて金属間化合物を
生成させるとともにプリフォームと溶湯との接合面を一
体化させるAl基金属間化合物強化複合部をもつ部材の
製造方法とすることによって前記課題を解消した。また
本発明は請求項1〜請求項3のいずれかの方法で製造し
たAl基金属間化合物強化複合部をもつ部材とすること
によって前記課題を解消した。これにより、鋳造時に複
合強化部のプリフォームに金属間化合物が生成し、同時
にプリフォームと溶湯とが強固に接合する。
In accordance with the above object, the present invention provides a precursor composite by mechanically alloying a powder obtained by weighing and mixing each constituent element of an intermetallic compound to be a reinforcing particle according to a stoichiometric composition. After making a body, adding pure Al powder or Al alloy powder to this precursor composite and performing mechanical alloying again, make a preform of the reinforced composite part with this powder, and after degassing, preheat this preform An Al-based intermetallic compound that casts a molten aluminum alloy and reacts the precursor composite dispersed in the preform with the heat of the molten metal to generate an intermetallic compound and integrates the joint surface between the preform and the molten metal. The above problems have been solved by using a method of manufacturing a member having a reinforced composite portion. Further, the present invention has solved the above-mentioned problems by providing a member having an Al-based intermetallic compound reinforced composite part manufactured by the method according to any one of claims 1 to 3. As a result, an intermetallic compound is generated in the preform of the composite reinforced portion during casting, and at the same time, the preform and the molten metal are firmly joined.

【0005】以下、本発明について図1を参照しながら
詳細に説明する。強化粒子となる金属間化合物の各構成
元素A,B,C・・・(通常2種類以上である。ここで
は、A,B2元素の場合について説明する。)の各粉末
を用意する。次に目標とする金属間化合物の各構成元素
の化学量論組成に従ってA,B2元素の粉末を秤量した
後混合する。ここで、化学量論組成とは、本来構造式で
示される化学組成のことで、例えば、Al3 Tiならば
Al原子とTi原子の構成比が3:1で化合しているこ
と、即ちAl−25at(原子)%TiがAl3 Tiの
化学量論組成ということで、Mg2 SiならばMgとS
iが2:1だからMg−33.3at%Siが化学量論
組成である。
The present invention will be described in detail below with reference to FIG. Each powder of each of the constituent elements A, B, C ... (Normally, two or more kinds. Here, the case of A and B2 elements will be described.) Of the intermetallic compound to be the reinforcing particles is prepared. Next, the powders of the A and B2 elements are weighed according to the target stoichiometric composition of each constituent element of the intermetallic compound, and then mixed. Here, the stoichiometric composition means the chemical composition originally represented by the structural formula, and for example, in the case of Al 3 Ti, the composition ratio of Al atoms and Ti atoms is 3: 1, that is, Al -25 at (atom)% Ti means that the stoichiometric composition of Al 3 Ti means that if Mg 2 Si, Mg and S
Since i is 2: 1, Mg-33.3 at% Si has a stoichiometric composition.

【0006】混合した粉末をボールミル処理、好ましく
は高エネルギ型のアトライタを用いてメカニカルアロイ
ングを行う。アトライタの一例を図7に示す。アトライ
タ1では、シャフト2の回転によってアジテータ3を回
転させ、これによってボール4を運動させる。このボー
ル4の運動によって原料を混合する。混合操作中、ガス
流入口5からガスを流入させ、混合雰囲気を一定に保
つ。また、水流入口6から冷却水を流入させ温度を一定
に保つ。なお、7はガス排出口、8は水排出口である。
上記ボール4は最大1インチ好ましくは3/8インチの
鋼球であることが好ましい。ボールと投入粉末全重量の
比率は、ボールの全重量と粉末の全重量の比率が15
0:1ないし20:1好ましくは140:1ないし4
0:1である。シャフト2の回転数は好ましくは250
rpmである。混合雰囲気としてはArあるいはHe等
を使用した非酸化雰囲気で行う。アジテータ3の先端の
周速度は、3.5m/秒以内とし、最大でも1インチの
ボールを使用して20時間以内で、10〜15時間で処
理することが好ましい。なお、メカニカルアロイングの
際は、粉の分散性、または潤滑効果も考慮してメタノー
ルまたはエタノールを分散剤として適量添加して行う。
The mixed powders are ball milled, preferably mechanically alloyed using a high energy attritor. An example of the attritor is shown in FIG. In the attritor 1, the rotation of the shaft 2 causes the agitator 3 to rotate, which causes the ball 4 to move. The raw materials are mixed by the movement of the balls 4. During the mixing operation, gas is introduced from the gas inlet 5 to keep the mixed atmosphere constant. Further, cooling water is introduced from the water inlet 6 to keep the temperature constant. In addition, 7 is a gas outlet and 8 is a water outlet.
The ball 4 is preferably a steel ball having a maximum size of 1 inch, preferably 3/8 inch. The ratio of the total weight of the balls to the total weight of the powder is 15
0: 1 to 20: 1, preferably 140: 1 to 4
It is 0: 1. The rotation speed of the shaft 2 is preferably 250
rpm. The mixed atmosphere is a non-oxidizing atmosphere using Ar, He or the like. The peripheral speed of the tip of the agitator 3 is set to 3.5 m / sec or less, and it is preferable to use a ball of 1 inch at the maximum for 20 hours or less and 10 to 15 hours. The mechanical alloying is performed by adding an appropriate amount of methanol or ethanol as a dispersant in consideration of the dispersibility of powder or the lubricating effect.

【0007】このメカニカルアロイングによって得られ
る粉は、A(B)がB(A)に機械的に取り込まれて合
金粉末となったもので、金属間化合物にはなっていな
い。すなわち、金属間化合物の前駆複合体Xとなってい
る。上記前駆複合体Xは、発火性の強いMgを含む成分
組成からなる場合は、容器外に排出せず、これが内蔵さ
れる混合容器内にAl粉末またはAl合金粉末を投入
し、再度メカニカルアロイングを実施する。前駆複合体
Xと、添加するアルミニウム粉末の量は、重量比で次の
通りとする。 1〜3重量%≦X/[X+アルミニウム粉末]≦40重
量% 40重量%以上になると引張強さ,伸び,衝撃値が低下
するので好ましくない。また、1〜3重量%以上加えな
いと添加する効果が小さい。この本工程におけるメカニ
カルアロイングもアトライタを用いてアルコール(メタ
ノール、エタノール等)等の有機溶剤を添加して非酸化
雰囲気で行う。このAl中に取り込まれた前駆複合体の
粒径は10μm以下、好ましくは5μm以下で、これが
微細かつ均一に分散するように処理をする。
The powder obtained by this mechanical alloying is a powder in which A (B) is mechanically taken into B (A) to form an alloy powder, not an intermetallic compound. That is, it is the precursor complex X of the intermetallic compound. When the precursor composite X is composed of a component composition containing Mg, which has a strong ignitability, it is not discharged to the outside of the container, but Al powder or Al alloy powder is put into a mixing container in which this is contained, and mechanical alloying is performed again. Carry out. The amounts of the precursor composite X and the aluminum powder to be added are as follows in weight ratio. 1 to 3% by weight ≤X / [X + aluminum powder] ≤40% by weight 40% by weight or more is not preferable because the tensile strength, elongation and impact value decrease. Also, the effect of addition is small unless 1 to 3% by weight is added. The mechanical alloying in this step is also performed in a non-oxidizing atmosphere by adding an organic solvent such as alcohol (methanol, ethanol, etc.) using an attritor. The particle diameter of the precursor composite taken in Al is 10 μm or less, preferably 5 μm or less, and the precursor composite is treated so as to be finely and uniformly dispersed.

【0008】次にプリフォームを製作する。冷間等方静
水圧装置(CIP)またはプレス装置を用い、適用する
部品の強化したい部分の形状にあわせて前記メカニカル
アロイング処理を施した粉末(以下、MA処理粉とす
る)を常温において加圧成形する。この加圧成形に際
し、粉末が塑性変形し、緻密なプリフォームとなるよう
に、少なくとも100MPa、好ましくは200MPa
以上の圧力を加え、相対密度が95%以上となるように
処理する。このように処理することにより、型から取り
出す時にも割れや崩壊が起らず、取り扱いが容易とな
る。これはAl中に前駆複合体が固溶した状態となって
いるため、特性的にはAlに準じた挙動を示すためであ
る。次に成形したプリフォームに含まれている水分・ガ
ス等を除去するため真空熱処理炉で400℃以下で加熱
して脱ガスをおこなう。これによって複合化時にふくれ
や割れなどの欠陥が発生するのを防ぐ。
Next, a preform is manufactured. Using a cold isostatic pressure device (CIP) or a press machine, the powder subjected to the mechanical alloying treatment (hereinafter referred to as MA treated powder) is applied at room temperature according to the shape of the part to be strengthened of the applied component. Press forming. At the time of this pressure molding, at least 100 MPa, preferably 200 MPa, so that the powder plastically deforms and becomes a dense preform.
The above pressure is applied and processing is performed so that the relative density becomes 95% or more. By such treatment, cracking or collapse does not occur even when taken out from the mold, and the handling becomes easy. This is because the precursor composite is in a solid solution state in Al, and thus characteristically exhibits a behavior similar to that of Al. Next, in order to remove moisture, gas, etc. contained in the molded preform, degassing is performed by heating at 400 ° C. or lower in a vacuum heat treatment furnace. This prevents defects such as blisters and cracks from occurring during compounding.

【0009】次に複合化処理をおこなう。そのため、こ
のプリフォームを部品鋳造用の特定の金型内にセット
し、これに部品本体の素材であるAl合金の溶湯を注湯
し、プリフォームを鋳包む。なお、鋳込みに先立ってプ
リフォームの溶湯との温度差による変形・損傷を防ぐた
め、200℃〜400℃の温度でプリフォームを予熱し
ておく。なお、溶湯の温度は700〜760℃である。
金型内のプリフォームは溶湯との接触によって、その接
触した界面でプリフォームの基地のAlが溶融し、溶湯
のAlと強固に結合する。同時に、Al溶湯の熱量によ
り、プリフォーム中に分散している前駆複合体が反応し
て、金属間化合物が形成され、これがAlマトリックス
中に微細に分散した組織となる。なお、この複合化の際
の鋳造方法については、プリフォームの相対密度は95
%以上であるため、プリフォームの空隙にAl溶湯を浸
透させる必要がなく、従って低圧鋳造,ハイプレッシャ
ーダイカスト,溶湯鍛造など全ての鋳造法が適用でき
る。このようにして部品の特定個処にIMCによる複合
強化部が形成される。
Next, a compounding process is performed. Therefore, this preform is set in a specific mold for casting a component, and a molten metal of an Al alloy, which is a material of the component body, is poured into the mold to cast and encase the preform. Prior to casting, the preform is preheated at a temperature of 200 ° C to 400 ° C in order to prevent deformation and damage due to a temperature difference between the preform and the molten metal. The temperature of the molten metal is 700 to 760 ° C.
When the preform in the mold comes into contact with the molten metal, the Al of the base of the preform is melted at the contacted interface, and the preform is firmly bonded to the Al of the molten metal. At the same time, the calorific value of the molten Al reacts with the precursor complex dispersed in the preform to form an intermetallic compound, which becomes a finely dispersed structure in the Al matrix. In addition, regarding the casting method at the time of this compounding, the relative density of the preform was 95
%, It is not necessary to infiltrate the molten Al into the preform voids, and therefore all casting methods such as low pressure casting, high pressure die casting, and molten metal forging can be applied. In this way, the IMC composite strengthening portion is formed at a specific portion of the component.

【0010】次に必要な熱処理をおこなう。複合強化部
は前駆複合体から金属間化合物への形成が終了している
ため、熱処理による熱影響は受けにくく、従って通常の
熱処理が施せる。また、未反応の前駆複合体が残留して
いた場合にも、この熱処理時に反応が生じ金属間化合物
が形成される。最後に機械加工を施して仕上げ、製品と
する。仕上げ段階におこなう機械加工においては、複合
強化部には硬いが微細な金属間化合物が均一に分散して
いるため、セラミックス繊維強化材を用いたものに比較
して加工性が良好で、通常の加工ラインがそのまま流用
できる。
Next, a necessary heat treatment is performed. Since the formation of the intermetallic compound from the precursor composite has been completed in the composite strengthened portion, it is not easily affected by heat due to the heat treatment, and thus the normal heat treatment can be performed. Further, even when the unreacted precursor complex remains, a reaction occurs during this heat treatment to form an intermetallic compound. Finally, it is machined and finished to make a product. In the machining process performed in the finishing stage, the hardened but fine intermetallic compound is uniformly dispersed in the composite reinforced part, so the workability is better than that using the ceramic fiber reinforced material, and The processing line can be used as it is.

【0011】以上のように本発明によればピストン,シ
リンダーヘッドなどの軽量性,耐熱性,高温強度を必要
とする部材の特定の部位を複合強化することができる。
図2に2サイクル内燃機関用シリンダーヘッドをIMC
で強化した例を示す。この例ではプリフォーム用の強化
粒子としてMgとSiの化合物であるMg2 Siをえら
び、重力鋳造により、このプリフォームをAC4C材で
鋳包み、複合化を図ったものである。図の散在する点で
示すIMCの部分(燃焼室)が、30wt%のMg2
iが均一に分散した強化複合部である。また、図4に、
このプリフォームの基地であるAlとAC4C材がその
接合界面で強固に結合している状態の金属組織を拡大し
て示す。なお、このプリフォームの複合化の後と前のX
線回析の結果を図5及び図6に示す。複合化前では図6
に示すようにAl,Si,Mgの各元素の単独のピーク
が現われているのに対し、複合後の図5のものにはS
i,Mgのピークが消滅し、新たに金属間化合物のMg
2 Siの明瞭なピークが出現している。これは母材であ
るAC4C溶湯の熱量により前駆複合体が反応して金属
間化合物のMg2 Siを形成したことを示している。図
3は前記強化複合部から削り出された試験片による高温
硬さ試験の結果を示す。これによれば強化複合部の硬さ
はシリンダーヘッド母材であるAC4C−T6に対して
各温度で大きく上まわっており、良好な耐熱性を有して
いることが認められた。
As described above, according to the present invention, it is possible to compound and strengthen specific parts of a member, such as a piston and a cylinder head, which require light weight, heat resistance and high temperature strength.
Figure 2 shows the IMC cylinder head for a 2-cycle internal combustion engine.
Here is an example reinforced by. In this example, Mg 2 Si, which is a compound of Mg and Si, is selected as the reinforcing particles for the preform, and the preform is cast and wrapped by the AC4C material by gravity casting to form a composite. IMC parts (combustion chambers) shown by scattered points in the figure are 30 wt% of Mg 2 S.
It is a reinforced composite part in which i is uniformly dispersed. In addition, in FIG.
The metal structure of Al and AC4C material, which is the base of this preform, is shown in an enlarged manner in a state of being strongly bonded at its bonding interface. In addition, X before and after compounding this preform
The results of line diffraction are shown in FIGS. 5 and 6. Figure 6 before compounding
As shown in Fig. 5, a single peak of each element of Al, Si, and Mg appears, whereas S in the composite of Fig. 5 is S.
The i and Mg peaks have disappeared, and the new intermetallic compound Mg
A clear peak of 2 Si appears. This indicates that the precursor composite reacted with the calorific value of the AC4C molten metal as the base material to form the intermetallic compound Mg 2 Si. FIG. 3 shows the result of a high temperature hardness test using a test piece cut out from the reinforced composite portion. According to this, it was confirmed that the hardness of the reinforced composite portion was significantly higher than that of the cylinder head base material AC4C-T6 at each temperature, and that it had good heat resistance.

【0012】[0012]

【発明の効果】本発明によれば、次のような効果がえら
れる。 高価な金属間化合物粉末を直接使用せず、メカニカ
ルアロイングにより前駆複合体を作り、鋳造時に反応さ
せるため安価に金属間化合物強化部を有する部材をうる
ことができる。 前駆複合体を有する粉末からプリフォームを作り、
このプリフォームを用いて直接Al溶湯と反応させるた
め工程が単純化される。 プリフォームを用いて複合化するため、部材の特定
の部位を効果的に強化することができる。 プリフォームの基地はAlであるため、Al溶湯と
反応して結合するため接合強度が高く、かつ複合化が容
易である。 メカニカルアロイングにより金属間化合物を形成す
る前駆複合体を分散させるため、Al系以外の金属間化
合物を強化粒子として使用することも可能である。
According to the present invention, the following effects can be obtained. Since a precursor composite is formed by mechanical alloying without using an expensive intermetallic compound powder directly and reacts at the time of casting, a member having an intermetallic compound strengthening portion can be obtained at low cost. Make a preform from the powder with the precursor complex,
Since this preform is used to directly react with the molten Al, the process is simplified. Since it is compounded by using the preform, it is possible to effectively strengthen a specific part of the member. Since the base of the preform is Al, it reacts with the molten Al to bond with it, so that the bonding strength is high and the compounding is easy. In order to disperse the precursor composite which forms an intermetallic compound by mechanical alloying, it is also possible to use an intermetallic compound other than the Al-based compound as the reinforcing particles.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る製造方法の工程を説明する図であ
る。
FIG. 1 is a diagram illustrating a process of a manufacturing method according to the present invention.

【図2】本発明によって製造したシリンダーヘッドの説
明図である。
FIG. 2 is an explanatory diagram of a cylinder head manufactured according to the present invention.

【図3】図2に示すシリンダーヘッドの強化複合部とシ
リンダーヘッド母材との高温硬さを比較して示すグラフ
である。
FIG. 3 is a graph showing a comparison between high temperature hardness of a reinforced composite portion of the cylinder head shown in FIG. 2 and a cylinder head base material.

【図4】図2に示すシリンダーヘッドの接合界面の金属
組織を、拡大して示す図面に代る写真である。
FIG. 4 is an enlarged photograph showing a metallographic structure of a bonding interface of the cylinder head shown in FIG.

【図5】本発明で用いるプリフォームの複合後のX線回
析チャート図である。
FIG. 5 is an X-ray diffraction chart of a preform used in the present invention after being compounded.

【図6】同複合前のX線回析チャート図である。FIG. 6 is an X-ray diffraction chart before the composite.

【図7】本発明で用いるアトライタの説明図である。FIG. 7 is an explanatory diagram of an attritor used in the present invention.

【符号の説明】[Explanation of symbols]

1 アトライタ 3 アジテータ 4 ボール 5 ガス流入口 6 水流入口 7 ガス排出口 1 Attritor 3 agitator Four balls 5 gas inlet 6 water inlet 7 gas outlet

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 1/00 B22D 19/00 B22F 1/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) C22C 1/00 B22D 19/00 B22F 1/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 強化粒子となる金属間化合物の各構成元
素の粉末を化学量論組成に従って秤量・混合したものに
メカニカルアロイングを施して、前記各構成元素が互い
に機械的に取り込まれて合金となったが金属間化合物に
はなっていない前駆複合体の粉末を作り、この前駆複合
の粉末に純Al粉末またはAl合金粉末を加えて再度
メカニカルアロイングを施し、前記純Al粉末またはA
l合金粉末のAl中に前記前駆複合体が微細かつ均一に
分散するように取り込んだMA処理粉末を作り、この
A処理粉末を加圧成形することにより、前記Al中に前
記前駆複合体を固溶させた強化複合部のプリフォームを
作り、脱ガス後、予熱したこのプリフォームを金型内に
配置した後にAl合金の溶湯を鋳込み、溶湯の熱でプ
リフォーム中に分散している前駆複合体を反応させて金
属間化合物を生成させることにより、前記強化複合部の
Alマトリックス中に該金属間化合物を微細に分散させ
とともにプリフォームの基地のAlと溶湯のAlが強
固に接合することにより前記強化複合部と前記溶湯が形
成する部品本体の素材との接合面を一体化させることを
特徴とするAl基金属間化合物強化複合部をもつ部材の
製造方法。
1. Mechanical alloying is performed on a powder obtained by weighing and mixing each constituent element of an intermetallic compound to be a strengthening particle according to a stoichiometric composition, so that the constituent elements are separated from each other.
Was mechanically incorporated into the alloy and became an intermetallic compound.
A powder of a precursor composite which is not formed is prepared , pure Al powder or Al alloy powder is added to the powder of the precursor composite, and mechanical alloying is performed again to obtain the pure Al powder or A
The precursor composite is finely and uniformly distributed in Al of Al alloy powder.
Create a MA processing powder taken to distribute, this M
By press-molding the A-treated powder into the Al,
Make a preform for the reinforced composite part in which the precursor composite is dissolved, and after degassing, preheat this preform in the mold.
Casting a melt of Al alloy after placement, by reacting thermally dispersed in preform to have progenitor complexes of the molten metal by generating an intermetallic compound, of the reinforced composite part
Finely disperse the intermetallic compound in the Al matrix
The strength base of Al and molten metal of Al of the preform with that
The solid composite forms the reinforced composite part and the molten metal.
A method for manufacturing a member having an Al-based intermetallic compound reinforced composite part, characterized in that the joint surface of the component body to be formed is integrated with the material.
【請求項2】 前記前駆複合体粉末をX、前記純Al粉
末またはAl合金粉末をYとした時、その混合比が3重
量%≦X/(X+Y)≦40重量%であることを特徴と
する請求項1に記載のAl基金属間化合物強化複合部を
もつ部材の製造方法。
Wherein said precursor complex Powder X, the pure Al powder
End or when the Al alloy powder was Y, the mixing ratio of that is triple
The method for producing a member having an Al-based intermetallic compound reinforced composite part according to claim 1, wherein the amount% ≤ X / (X + Y) ≤ 40% by weight.
【請求項3】 前記プリフォームの相対密度が95%以
上となるように、常温において圧力100MPa以上
加圧成形することを特徴とする請求項1に記載のAl基
金属間化合物強化複合部をもつ部材の製造方法。
3. The relative density of the preform is 95% or less.
The method for producing a member having an Al-based intermetallic compound-reinforced composite part according to claim 1, wherein the pressure-forming is performed at a pressure of 100 MPa or more at room temperature so as to be as described above.
【請求項4】 請求項1〜請求項3のいずれかの方法で
製造したAl基金属間化合物強化複合部をもつ部材。
4. A member having an Al-based intermetallic compound reinforced composite part produced by the method according to any one of claims 1 to 3.
JP15665594A 1994-06-15 1994-06-15 Member having Al-based intermetallic compound reinforced composite part and method of manufacturing the same Expired - Fee Related JP3417666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15665594A JP3417666B2 (en) 1994-06-15 1994-06-15 Member having Al-based intermetallic compound reinforced composite part and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15665594A JP3417666B2 (en) 1994-06-15 1994-06-15 Member having Al-based intermetallic compound reinforced composite part and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH083660A JPH083660A (en) 1996-01-09
JP3417666B2 true JP3417666B2 (en) 2003-06-16

Family

ID=15632409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15665594A Expired - Fee Related JP3417666B2 (en) 1994-06-15 1994-06-15 Member having Al-based intermetallic compound reinforced composite part and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3417666B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016269A1 (en) 2008-08-08 2010-02-11 学校法人日本大学 Pure-aluminum structural material with high specific strength solidified and molded by giant-strain processing method
WO2014063492A1 (en) * 2012-10-25 2014-05-01 北京航空航天大学 Intermetallic compound ultrafine particle reinforced metal-based composite material and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10161346A (en) * 1996-10-04 1998-06-19 Hitachi Koki Co Ltd Toner for recording electrostatic image, electrostatic recording method and recorder using same
CA2443257A1 (en) 2001-04-11 2002-10-24 Sekisui Chemical Co., Ltd. Resin composition for toner and toner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016269A1 (en) 2008-08-08 2010-02-11 学校法人日本大学 Pure-aluminum structural material with high specific strength solidified and molded by giant-strain processing method
WO2014063492A1 (en) * 2012-10-25 2014-05-01 北京航空航天大学 Intermetallic compound ultrafine particle reinforced metal-based composite material and preparation method thereof

Also Published As

Publication number Publication date
JPH083660A (en) 1996-01-09

Similar Documents

Publication Publication Date Title
US4946500A (en) Aluminum based metal matrix composites
US4915908A (en) Metal-second phase composites by direct addition
JPH0583624B2 (en)
CN1281053A (en) Process for preparing ceramic-phase diffusion enhanced alloy and particle enhanced metal-base composition
EP0533950B1 (en) Rotor made of aluminum alloy for oil pump and method of manufacturing said rotor
US4797155A (en) Method for making metal matrix composites
EP0577436B1 (en) Nitrogen-combined aluminum sintered alloys and method of producing the same
US5045278A (en) Dual processing of aluminum base metal matrix composites
JP3417666B2 (en) Member having Al-based intermetallic compound reinforced composite part and method of manufacturing the same
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
JP2509052B2 (en) Nitrogen compound aluminum sintered alloy and method for producing the same
JP3128041B2 (en) Cylinder block and its manufacturing method
JPH0578708A (en) Production of aluminum-based grain composite alloy
JPH0539507A (en) Rotor for oil pump made of aluminum alloy and production thereof
JPH0320453B2 (en)
JP2906277B2 (en) Method for producing high-strength Al lower 3 Ti-based alloy
JPH07331356A (en) 3aluminum-iron dispersed reinforced aluminum alloy and powder and production thereof
JPH01201450A (en) Method for working wear-resistant aluminum alloy
JPH08193236A (en) Aluminum alloy with high toughness and wear resistance and its production
JPH0533013A (en) Production of highly accurate aluminum alloy sliding parts
JP4126742B2 (en) Method for producing SiC particles
JPH0776701A (en) Intermetallic compound dispersion-reinforced aluminum ally (powder) and its production
JPH05214477A (en) Composite material and its manufacture
JPH07207302A (en) Production of aln dispersion type aluminum alloy composite material
JPH05263165A (en) Manufacture of ti-al alloy sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees