JPH03155103A - Manufacture of oxide superconductive ceramics coil - Google Patents

Manufacture of oxide superconductive ceramics coil

Info

Publication number
JPH03155103A
JPH03155103A JP29398389A JP29398389A JPH03155103A JP H03155103 A JPH03155103 A JP H03155103A JP 29398389 A JP29398389 A JP 29398389A JP 29398389 A JP29398389 A JP 29398389A JP H03155103 A JPH03155103 A JP H03155103A
Authority
JP
Japan
Prior art keywords
coil
magnetic field
mold
cavity
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29398389A
Other languages
Japanese (ja)
Inventor
Naomichi Nakamura
尚道 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP29398389A priority Critical patent/JPH03155103A/en
Publication of JPH03155103A publication Critical patent/JPH03155103A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To acquire an oxide superconductive ceramics coil having remarkably high critical current density by releasing a superconductive ceramics material having a heat plastic body from a mold and by burning it after injection molded to a coil-like cavity with a magnetic field applied in the radial direction. CONSTITUTION:For example, polystyrene is mixed with a fine powder of YBa2 Cu3Ox, an oxide superconductor and kneaded while heating to form a pellet by pressure molding. A mold defines a coil-like cavity 7 using a Permendur-made central rod 9 and nonmagnetic body-made split molds 1, 2. A pellet is injected to an injection molding device, heated to 200 deg.C, and plasticized; an injection pressure is applied to make it attain an end edge part 4 through a starting edge part 5 of a coil-like cavity and cooled. During the time, a current is made to flow to an excitation coil 10 and a magnetic field is applied continuously in the radial direction to a coil-like molded body part by the central rod 9 and a tubular part of Permendur-made ball pieces 11, 12. The acquired coil-like molded body is burned under an oxygen atmosphere. Meanwhile, 13 expresses a nonmagnetic part.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、超電導セラミックスを利用した超電導磁石等
に用いられる高臨界電流密度を有する超電導セラミック
スコイルの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing a superconducting ceramic coil having a high critical current density and used in a superconducting magnet or the like using superconducting ceramics.

〈従来の技術〉 現在、超電導転移温度T、が液体窒素温度77Kを趙え
る物質として、Y−Ba−Cu−0系(Tc””90K
) 、B1−3r−Ca−Cu−0系(T、 〜110
 K)、TI −Ba−Ca−Cu −0系(T、 〜
125 K)といったセラミックス系のものが知られて
おり、77にでの実用化を0指しての研究開発が多くの
機関で精力的に行われている。
<Prior art> Currently, the Y-Ba-Cu-0 system (Tc""90K) is used as a material whose superconducting transition temperature T exceeds the liquid nitrogen temperature of 77K.
), B1-3r-Ca-Cu-0 system (T, ~110
K), TI-Ba-Ca-Cu-0 system (T, ~
Ceramic materials such as 125 K) are known, and many institutions are actively researching and developing them with the aim of putting them into practical use in 1977.

酸化物系超電導セラミックスの実用化への最大のi1!
題の一つは臨界電流密度Jeの向上である。
The biggest i1 for the practical application of oxide-based superconducting ceramics!
One of the issues is to improve the critical current density Je.

多結晶のセラミックスにおける有力なJ、の向上策の一
つは結晶方位の配向化である。
One of the effective ways to improve J in polycrystalline ceramics is to orient the crystal orientation.

ところで上述した酸化物超電導体は、a−b面内のJ、
がC軸方向のJcよりもmm以上大きいことが知られて
おり、例えば7.17.Dingerら著、Phys、
 Rev、 Lett、、 58.2687 (198
7)に示されている。
By the way, the above-mentioned oxide superconductor has J in the a-b plane,
is known to be larger than Jc in the C-axis direction by more than mm, for example, 7.17. Dinger et al., Phys.
Rev. Lett., 58.2687 (198
7).

したがって多結晶セラミックスでも、電流が流れる方向
に沿って結晶a−b面を配向させることにより、結晶方
位がランダムな場合よりもJcが格段に向上することが
期待される。ところで、酸化物超電導体は従来の金属系
材料に比べ可塑性に乏しいため、従来の技術ではコイル
作製にあたって、酸化物超電導セラミックスを粉末状に
粉砕し、可塑性あるいは熱可塑性を持つ有機バインダー
中に分散させてコイル状に成型した後焼成する方法(特
開昭63−299209号公報、特開昭64−1740
7号公報など)、あるいは円筒状に焼成されたセラミッ
クスを機械的にコイル状に加工する方法(特開昭64−
64303号公報など)などが用いられていた。
Therefore, even in polycrystalline ceramics, by orienting the crystal a-b plane along the direction of current flow, it is expected that Jc will be significantly improved compared to when the crystal orientation is random. By the way, oxide superconductors have poor plasticity compared to conventional metal-based materials, so conventional technology involves grinding oxide superconducting ceramics into powder and dispersing it in an organic binder that has plasticity or thermoplasticity. A method of forming a coil into a coil shape and then firing it (Japanese Patent Application Laid-Open No. 63-299209, JP-A No. 64-1740)
7, etc.), or a method of mechanically processing ceramics fired into a cylindrical shape into a coil shape (Japanese Unexamined Patent Application Publication No. 1983-1999).
64303, etc.) were used.

しかし、これら従来の方法ではコイルを構成するセラミ
ックスの結晶粒子の方位がランダムとなるため、高い臨
界電流密度が得られないという欠点があった。
However, these conventional methods have the disadvantage that a high critical current density cannot be obtained because the orientation of the ceramic crystal grains constituting the coil is random.

〈発明が解決しようとするi!1題〉 本発明は上述のような従来技術の欠点を克服し、より高
い臨界電流密度を持つ酸化物超電導セラミックスコイル
の製造方法を提供することを目的とするものである。
<The invention tries to solve i! Problem 1> An object of the present invention is to overcome the drawbacks of the prior art as described above and to provide a method for manufacturing an oxide superconducting ceramic coil having a higher critical current density.

く課題を解決するための手段〉 すなわち、本発明は、結晶C軸が外部磁場と平行に配向
する性質を有する酸化勃起を導体微粉末とセラミックス
の焼成温度で消失する熱可塑性樹脂からなる材料を、コ
イル状キャビティを有する金型を用いて射出成型する際
に、該成型体の中心軸に対してラジアルな方向に磁場を
印加して成型し、次いで該成型体を焼成することを特徴
とする酸化物超電導セラミックスコイルの製造方法であ
る。
Means for Solving the Problems> That is, the present invention provides a material made of a thermoplastic resin that has a property in which the crystal C axis is oriented parallel to an external magnetic field and whose oxidation erection disappears at the firing temperature of conductor fine powder and ceramics. , characterized in that when injection molding is performed using a mold having a coiled cavity, a magnetic field is applied in a radial direction to the central axis of the molded body to perform the molding, and then the molded body is fired. This is a method for manufacturing an oxide superconducting ceramic coil.

〈作 用〉 本発明においては、まず酸化物超電導体の微粉末と、合
成樹脂またはその他のバインダとを混合して熱可塑性を
有するセラミックス材料を作製し、コイル状のキャビテ
ィを有する金型中に射出してコイル状セラミックス材料
を成型する。この射出成型工程中、コイルの軸に対して
ラジアル方向に磁場を印加する。しかる後、上述の金型
からコイル状のセラミックス成型体を離型し、所定の温
度雰囲気で焼成することによってセラミックスコイルを
得るものである。
<Function> In the present invention, first, a thermoplastic ceramic material is prepared by mixing fine powder of an oxide superconductor and a synthetic resin or other binder, and then placed in a mold having a coil-shaped cavity. The coiled ceramic material is molded by injection. During this injection molding process, a magnetic field is applied radially to the axis of the coil. Thereafter, the coil-shaped ceramic molded body is released from the mold described above and fired in an atmosphere at a predetermined temperature to obtain a ceramic coil.

ここで熱可塑性を有するセラミックス材料には酸化物超
電導体の微粉末と、熱可塑性樹脂との混合物を用いる。
Here, a mixture of fine powder of an oxide superconductor and a thermoplastic resin is used as the thermoplastic ceramic material.

使用する酸化物超電導体の微粉末としては、例えばRB
azCusO,(R=Y、 Nd、 SIm。
As the fine powder of the oxide superconductor used, for example, RB
azCusO, (R=Y, Nd, SIm.

11゜、x=6.5〜7)などのように、外部■l場に
対して結晶C軸が平行になるように配向する性質を有す
るものを用いる。 JoM、 Ferreiraら著A
ppl。
11°, x=6.5 to 7), which has the property of being oriented so that the crystal C axis is parallel to the external field. JoM, Ferreira et al. A
ppl.

Phys、 A47.105 (1988)には、その
他この種の酸化物超電導体が示されている。
Other oxide superconductors of this type are described in Phys, A47.105 (1988).

本発明は、この性質を利用するものであり、この性質の
ため、射出成型工程をコイルの軸に対してラジアルな磁
場を印加した状態で行うことにより、結晶のa−b面が
コイルの円周方向に沿って配向する。即ち酸化物超電導
体の結晶軸方向のうち、Jcが高いa−b面が実際にコ
イルに電流が流れる方向に沿って配向されるため、従来
の結晶方位がランダムな超電導セラミックスコイルに比
較してJ、が格段に高くなる。なお、使用する酸化物超
電導体機わ)末は、粉末粒子−つ一つが単結晶であるこ
とが望ましい。
The present invention takes advantage of this property, and because of this property, by performing the injection molding process with a radial magnetic field applied to the axis of the coil, the a-b plane of the crystal is aligned with the circle of the coil. Orient along the circumferential direction. In other words, among the crystal axis directions of the oxide superconductor, the a-b plane with high Jc is oriented along the direction in which current actually flows through the coil, so compared to conventional superconducting ceramic coils in which the crystal orientation is random, J becomes significantly higher. It is preferable that each powder particle of the oxide superconductor powder used is a single crystal.

本発明において、熱可塑性樹脂には従来周知のもののう
ち、少なくともセラミックス材料の焼成温度(900’
C以上)で熱分解し、消失する任意のものを用いること
ができる0例えばポリエチレン、ナイロン、ポリスチレ
ンなどが好適である。またラジアル方向の磁場の印加方
法は、従来プラスチックマグネットの作製等に一般に用
いられている任意の方法を応用することができる。また
、印加する磁場は、定常磁場でも断続的なパルス磁場で
も良い、磁場の大きさは強いほど効果的である。
In the present invention, thermoplastic resins include at least the firing temperature of ceramic materials (900'
For example, polyethylene, nylon, polystyrene and the like are suitable. Further, as the method of applying the magnetic field in the radial direction, any method generally used in the conventional production of plastic magnets can be applied. Further, the applied magnetic field may be a steady magnetic field or an intermittent pulsed magnetic field, and the stronger the magnetic field, the more effective it is.

本発明においては、成型法として射出成型を用いるため
、金型の交換によって用途に応じた任意の径、ピンチ、
巻き数のコイルを作製できるという利点がある。また、
焼成後の機械加工が不要なため、ひび、割れが起こりに
くいという利点もある。
In the present invention, injection molding is used as the molding method, so by changing the mold, any diameter, pinch, or
It has the advantage that a coil with a large number of turns can be produced. Also,
It also has the advantage of being less prone to cracking and cracking since no machining is required after firing.

以下実施例によって更に詳細に本発明について説明する
。なお、以下の説明ではこの発明の理解を容易とするた
め、材料、形状、数値的条件を特定のものとしているが
、本発明はこれらの条件に限定されるものではない。
The present invention will be explained in more detail below with reference to Examples. In the following description, materials, shapes, and numerical conditions are specified to facilitate understanding of the present invention, but the present invention is not limited to these conditions.

〈実施例〉 まず射出成型用セラミックス材料の調整を次のように行
った。
<Example> First, a ceramic material for injection molding was adjusted as follows.

Y、 Ba、 Cuの酢酸塩をYla:Cu=1:2:
3のモル比となるよう秤量した後蒸留水を加えて約51
%の水溶液とした。これを径70pffiの2流体ノズ
ルを用いて150°Cの熱風中に噴霧して乾燥粉末を得
た。この粉末を大気中で900’CX12時間仮焼した
後、気流粉砕器によって平均粒径5 ptsのY Ba
zCLls Ow微粉末を得た。なお偏光顕微鏡観察に
よって粉末粒子が単結晶であることが6゛α認された。
Y, Ba, Cu acetate Yla:Cu=1:2:
After weighing so that the molar ratio is 3, add distilled water to make about 51.
% aqueous solution. This was sprayed into hot air at 150° C. using a two-fluid nozzle with a diameter of 70 pffi to obtain a dry powder. After calcining this powder in the air at 900'CX for 12 hours, it was milled into YBa powder with an average particle size of 5 pts using an air flow mill.
A fine powder of zCLlsOw was obtained. It was confirmed by observation using a polarizing microscope that the powder particles were single crystals.

続いて上記微粉末に対しポリスチレンを5wt%混合し
、混練機によって加熱しながら混練し、この混線物を加
圧成型して約3φX5f(ij)のペレントを作製し、
射出成型用の熱可塑性セラミックス材料を得た。
Next, 5 wt% of polystyrene was mixed with the above fine powder, kneaded while heating with a kneader, and this mixed material was pressure molded to produce a pellet of about 3φ x 5f (ij),
A thermoplastic ceramic material for injection molding was obtained.

次にこの材料を用いて射出成形を行った。成型には第1
図に示した金型を用いた。中心棒9はパーメンジュール
製で、割型1,2は非磁性体で作製されており、コイル
状キャビティ7が画成されている。この金型を第11f
flのような突き合わせ状態で磁場発生装置に第2図の
ように装着した。この装置はパーメンジュールで作られ
たポールピース11.12と励磁用コイル10とから成
る。非磁性部13はコイル状成型体部分の磁場のラジア
ル性を向上させるために設けられている。
Next, injection molding was performed using this material. First for molding
The mold shown in the figure was used. The center rod 9 is made of permendur, the split molds 1 and 2 are made of a non-magnetic material, and a coiled cavity 7 is defined. This mold was placed in the 11th
It was attached to the magnetic field generator as shown in FIG. 2 in abutting state like fl. The device consists of a pole piece 11, 12 made of permendur and an excitation coil 10. The non-magnetic portion 13 is provided to improve the radial properties of the magnetic field in the coiled molded body portion.

次に前述の熱可塑性セラミックス材料が射出成型工程中
にキャビティ7中で固化するのを防ぐため、ヒーター加
熱により金型部分を200°Cに加熱した。しかる後、
上述の状態を保ちつつ当該装置に配置されたノズルタッ
チ8と、図示されていない射出成型機のノズルとを連結
した。一方、射出成型機には前述したベレット状のセラ
ミックス材料を投入し、当該成型機に備えられた加熱機
構により、このセラミックス材料を200℃に加熱して
可塑化した0次に、上述した可塑化セラミックス材料の
粘度、硬度及びその他設計に応じた所定の射出圧力を加
え、当該セラミックス材料が第1図中の矢印Pで示す向
きに、コイル状キャビティの始端部5を経て、終端部4
に到達するまで射出成型機を動作させた。
Next, in order to prevent the above-mentioned thermoplastic ceramic material from solidifying in the cavity 7 during the injection molding process, the mold portion was heated to 200° C. using a heater. After that,
While maintaining the above-mentioned state, the nozzle touch 8 disposed in the apparatus was connected to a nozzle of an injection molding machine (not shown). On the other hand, the above-mentioned pellet-shaped ceramic material is put into the injection molding machine, and the heating mechanism installed in the molding machine heats the ceramic material to 200°C to plasticize it. A predetermined injection pressure is applied depending on the viscosity, hardness, and other design of the ceramic material, and the ceramic material passes through the starting end 5 of the coiled cavity and into the terminal end 4 in the direction shown by arrow P in FIG.
The injection molding machine was operated until .

このようにしてキャビティ7に充填され、コイル形状に
保持されているセラミックス材料を取り出すため、上述
の加熱されて可塑化した当該材料が硬化する温度まで中
心棒9を嵌合した状態で金型部分を放冷した。
In order to take out the ceramic material filled in the cavity 7 and held in the coil shape, the mold part is heated to a temperature at which the heated and plasticized material hardens with the center rod 9 fitted. was left to cool.

上述の一連成型工程において、励磁用コイル10に電流
を流し、中心棒9とポールピース12の円筒部とによっ
て、コイル状成型体部にラジアル方向に約1.57の磁
場が断続的に印加されるようにした。
In the series of molding steps described above, a current is passed through the excitation coil 10, and a magnetic field of about 1.57 is intermittently applied in the radial direction to the coiled molded body by the center rod 9 and the cylindrical portion of the pole piece 12. It was to so.

上述の成型工程を経て得られたコイル状成型体を第3図
に示したヒートパターンで酸素雰囲気下で焼成して超電
導セラミックスコイルを作製した。
The coil-shaped molded body obtained through the above-described molding process was fired in an oxygen atmosphere using the heat pattern shown in FIG. 3 to produce a superconducting ceramic coil.

次に同じ熱可塑性セラミックス材料を用いて、成型工程
で全く磁場を印加しないで、比較例としてのコイル状成
型体も同時に焼成した。
Next, a coil-shaped molded body as a comparative example was simultaneously fired using the same thermoplastic ceramic material without applying any magnetic field during the molding process.

両者の77にでのJcの測定結果を第1表に示した。第
1表から本発明によってJ、の数倍の向上が実現するこ
とがわかる。
The measurement results of Jc at 77 for both are shown in Table 1. From Table 1, it can be seen that the present invention achieves several times improvement in J.

第1表 〈発明の効果〉 本発明によれば、熱可塑体を持つ超電導セラミックス材
料をコイル状キャビティを持つ金型に、ラジアル方向の
磁場を印加した状態で射出成型し、しかる後、このコイ
ル状成型体を金型から離型し焼成することによって、J
cが高い結晶のa−b面が円周方向に配向した超電導コ
イルが得られる。
Table 1 <Effects of the Invention> According to the present invention, a superconducting ceramic material containing a thermoplastic is injection molded into a mold having a coiled cavity while a magnetic field in the radial direction is applied, and then the coil is By releasing the shaped body from the mold and firing it, J
A superconducting coil in which the a-b planes of crystals with high c are oriented in the circumferential direction can be obtained.

そのため、従来の技術で作製された結晶方位が、ランダ
ムな酸化物超電導セラミックスコイルに比べ、格段に臨
界電流密度が高い酸化物超電導セラミックスコイルが得
られる。
Therefore, an oxide superconducting ceramic coil with a significantly higher critical current density can be obtained than an oxide superconducting ceramic coil with random crystal orientation produced by conventional techniques.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例において使用したコイル成型用金型の概
略図、第2図はラジアルな磁場中での射小成型装置の概
略図、第3図は実施例においてコイル状成型体の焼成に
用いたヒートパターンである。 1・・・第1の割型、 2・・・第2の割型、 3・・・空気抜用開孔部、 4・・・終端部、 5・・・螺旋状キャビティ、 6・・・金型(非磁性体)、 7・・・始端部、 8・・・ノズルタッチ、 9・・・中心棒(強磁性体)、 lO・・・励磁用コイル、 11・・・第1のポールピース、 12・・・第2のポールピース、 13・・・非磁性体。
Fig. 1 is a schematic diagram of the coil molding mold used in the example, Fig. 2 is a schematic diagram of the small injection molding device in a radial magnetic field, and Fig. 3 is a schematic diagram of the coil molding mold used in the example. This is the heat pattern used. DESCRIPTION OF SYMBOLS 1... First split mold, 2... Second split mold, 3... Air vent hole, 4... Termination part, 5... Spiral cavity, 6... Mold (non-magnetic material), 7... Starting end, 8... Nozzle touch, 9... Center rod (ferromagnetic material), lO... Excitation coil, 11... First pole Piece, 12...Second pole piece, 13...Nonmagnetic material.

Claims (1)

【特許請求の範囲】[Claims]  結晶C軸が外部磁場と平行に配向する性質を有する酸
化物超電導体微粉末とセラミックスの焼成温度で消失す
る熱可塑性樹脂からなる材料を、コイル状キャビティを
有する金型を用いて射出成型する際に、該成型体の中心
軸に対してラジアルな方向に磁場を印加して成型し、次
いで該成型体を焼成することを特徴とする酸化物超電導
セラミックスコイルの製造方法。
When injection molding a material consisting of an oxide superconductor fine powder whose crystal C axis is oriented parallel to an external magnetic field and a thermoplastic resin that disappears at the firing temperature of ceramics using a mold with a coiled cavity. A method for producing an oxide superconducting ceramic coil, comprising: applying a magnetic field in a radial direction to the central axis of the molded body to mold the body; and then firing the molded body.
JP29398389A 1989-11-14 1989-11-14 Manufacture of oxide superconductive ceramics coil Pending JPH03155103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29398389A JPH03155103A (en) 1989-11-14 1989-11-14 Manufacture of oxide superconductive ceramics coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29398389A JPH03155103A (en) 1989-11-14 1989-11-14 Manufacture of oxide superconductive ceramics coil

Publications (1)

Publication Number Publication Date
JPH03155103A true JPH03155103A (en) 1991-07-03

Family

ID=17801730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29398389A Pending JPH03155103A (en) 1989-11-14 1989-11-14 Manufacture of oxide superconductive ceramics coil

Country Status (1)

Country Link
JP (1) JPH03155103A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8354907B2 (en) 2008-08-06 2013-01-15 Ihi Corporation Superconducting coil assembly and magnetic field generating equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8354907B2 (en) 2008-08-06 2013-01-15 Ihi Corporation Superconducting coil assembly and magnetic field generating equipment

Similar Documents

Publication Publication Date Title
JPH02164760A (en) Production of thread or band like ceramics high
JPH03155103A (en) Manufacture of oxide superconductive ceramics coil
CN106087034A (en) A kind of method utilizing corrosion seed crystal induced growth REBCO high-temperature superconducting block
JP3155333B2 (en) Method for producing oxide superconductor having high critical current density
JPH07509686A (en) Superconducting oxides by coprecipitation at constant pH
JPH07192545A (en) Member consisting of high-temperature superconducting material
KR0174385B1 (en) Process for preparing the higg temperature superconductor having anisotropy
JP2685951B2 (en) Method for manufacturing bismuth-based superconductor
JPH0360497A (en) Production of superconducting pseudo single crystal
JPH01103406A (en) Manufacture of superconducting material
KR0166708B1 (en) Fabricating method of high tc superconducting thick film
JPH03153504A (en) Production of oxide superconducting film
JPH0222164A (en) Production of oxide superconducting material
JPH01160861A (en) Anisotropic growth of superconducting ceramic
JPS63299209A (en) Manufacture of oxide superconducting coil
Lanagan et al. SUPERCONDUCTING MATERIALS
JPH0369553A (en) Production of oxide superconductor
JPH02271959A (en) Production of oxide-based superconductive ceramics
JPS63277551A (en) Production of superconductive material having high critical temperature
JPS59136909A (en) Manufacture of resin-bonded permanent magnet
JPH0333053A (en) Method for sintering ceramic superconducting formed body
JPH04202046A (en) Production of superconducting ceramic sintered body
JPH01138120A (en) Production of mixed powder for superconducting material
JPH01188458A (en) Production of superconducting ceramic
JPH01274320A (en) Manufacture of ceramics superconductive wire