JPH0222164A - Production of oxide superconducting material - Google Patents

Production of oxide superconducting material

Info

Publication number
JPH0222164A
JPH0222164A JP63172133A JP17213388A JPH0222164A JP H0222164 A JPH0222164 A JP H0222164A JP 63172133 A JP63172133 A JP 63172133A JP 17213388 A JP17213388 A JP 17213388A JP H0222164 A JPH0222164 A JP H0222164A
Authority
JP
Japan
Prior art keywords
aqueous solution
added
give
mixture
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63172133A
Other languages
Japanese (ja)
Inventor
Osamu Inoue
修 井上
Seiji Adachi
成司 安達
Shunichiro Kawashima
俊一郎 河島
Hirofumi Hirano
平野 洋文
Yukihiro Takahashi
幸宏 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63172133A priority Critical patent/JPH0222164A/en
Publication of JPH0222164A publication Critical patent/JPH0222164A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an oxide superconducting material having high superconducting transition temperature by adding ammonia to an acidic aqueous solution containing salts of Bi, Sr, Ca and Cu, adding a specific organic solvent to the aqueous solution to give precipitate, drying, molding and calcining. CONSTITUTION:Salts of Bi, Sr, Ca and Cu are blended in the ratio of Bi:Sr:Ca: Cu of about 2:2:3:4 to give a mixture, which is dissolved in an aqueous solution (e.g., aqueous solution of nitric acid) adjusted to pH of acidic side to give a solution. Then ammonia is added to the solution, adjusted to pH 4.5-6.6, an extremely excess amount of acetone, ethanol, propyl alcohol or mixture thereof as an organic solvent is added to the aqueous solution and the formed precipitate is filtered off and dried. Then the prepared powder is calcined, ground, mixed with a small amount of binder, molded and sintered in air at 770-880 deg.C.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高い超伝導転移温度を持つ酸化物超伝導材料
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing oxide superconducting materials with high superconducting transition temperatures.

従来の技術 超伝導材料は、■)電気抵抗がゼロである、2)完全反
磁性である、 3)ジョセフソン効果がある、といった
、他の材料にない特性を持っており、電力輸送、発電器
、核融合プラズマ閉じ込め、磁気浮上列車、磁気シール
ド、高速コンピュータ等の幅広い応用が期待されている
。ところが、従来の金属系超伝導体では、超伝導転移温
度は最も高いものでも23に程度であり、実使用時には
高価な液体ヘリウムと大がかりな断熱装置を使って冷却
しなければならず、工業上大きな問題であった。
Conventional technology Superconducting materials have properties not found in other materials, such as ■) zero electrical resistance, 2) complete diamagnetism, and 3) Josephson effect, and are useful for power transport and power generation. It is expected to have a wide range of applications, including nuclear reactors, fusion plasma confinement, magnetic levitation trains, magnetic shields, and high-speed computers. However, with conventional metallic superconductors, the highest superconducting transition temperature is around 23°C, and in actual use they must be cooled using expensive liquid helium and large-scale insulation equipment, making it difficult for industrial use. It was a big problem.

このため、より高温で超伝導体となる材料の探索が行わ
れていた。
For this reason, research has been underway to find materials that become superconductors at higher temperatures.

1988年1月に、高い超伝導転移温度をもつ、酸化物
系超伝導材料B i−8r−Ca−Cu−0が見いださ
れた。この材料は、超伝導転移温度が110に程度と高
く、冷却には安価な液体窒素(沸点77K)を用いる事
が出来、また冷却装置も小型となるので、応用範囲も広
がるものと期待される。このため現在、この材料の製造
法、物性、応用等に関して多くの研究がなされている。
In January 1988, an oxide-based superconducting material B i-8r-Ca-Cu-0 having a high superconducting transition temperature was discovered. This material has a high superconducting transition temperature of about 110°C, can use inexpensive liquid nitrogen (boiling point 77K) for cooling, and has a compact cooling device, so it is expected that the range of applications will expand. . For this reason, many studies are currently being conducted on the manufacturing method, physical properties, applications, etc. of this material.

酸化物超伝導材料のセラミックス的手法による製造法と
しては、一般には固相法と共沈法の2種類の方法が行わ
れている。固相法とは、各成分金属の酸化物または炭酸
塩等の固体原料を機械的に混合し、これを加熱処理する
方法である。一方共沈法は、各成分金属の塩を水に溶解
して均一な水溶液とし、これに蓚酸等の沈澱生成剤を加
えて沈澱を生じさせ、これより回収した粉末を加熱処理
する方法である。焼結体は、このようにして合成した粉
末を、成形・焼成して作製する。
Two types of methods are generally used to produce oxide superconducting materials using ceramic methods: a solid phase method and a coprecipitation method. The solid phase method is a method in which solid raw materials such as oxides or carbonates of each component metal are mechanically mixed and then heat treated. On the other hand, the coprecipitation method is a method in which salts of each component metal are dissolved in water to form a uniform aqueous solution, a precipitate such as oxalic acid is added to this to form a precipitate, and the powder recovered from this is heat-treated. . The sintered body is produced by molding and firing the powder synthesized in this way.

発明が解決しようとする課題 これらの合成法のうち、前者の固相法では、原料が各成
分の固体粉末であるために反応が低温では生じに<<、
かつS r+  Ca等の原料粉末として一般に炭酸塩
が用いられるために、この炭酸塩の分解温度が高く、超
伝導相が生成するためには最低でも800°C以上の温
度での加熱処理が必要であった。また、高い超伝導転移
温度を得るためには、融点直下での長時間の焼成が必要
であった。
Problems to be Solved by the Invention Among these synthesis methods, in the former solid phase method, the raw materials are solid powders of each component, so the reaction does not occur at low temperatures.
In addition, since carbonate is generally used as the raw material powder for S r + Ca etc., the decomposition temperature of this carbonate is high, and heat treatment at a temperature of at least 800°C is required to generate a superconducting phase. Met. In addition, in order to obtain a high superconducting transition temperature, it was necessary to sinter for a long time just below the melting point.

一方後者の共沈法では、沈澱として生成する粉末は微粒
子であるが、蓚酸その他の沈澱剤を用いているので、こ
の沈澱剤が加熱途中で分解し、炭酸塩を生成する。ため
に、加熱処理時における超伝導相の生成温度は固相法に
比べ僅かに低下するに過ぎず、固相法と同様の課題が残
されていた。
On the other hand, in the latter coprecipitation method, the powder produced as a precipitate is fine particles, but since oxalic acid or other precipitant is used, this precipitant decomposes during heating to produce carbonate. Therefore, the temperature at which the superconducting phase is formed during heat treatment is only slightly lower than that in the solid phase method, and the same problems as the solid phase method remain.

課題を解決する為の手段 ビスマス、ストロンチウム、カルシウム、銅の塩をpH
を酸性側に調整した水溶液に均一に溶解し、これにアン
モニアを加えてpHを4.0−6゜5とした後、大過剰
のアセトンまたはエタノールまたはプロピルアルコール
あるいはこれらの混合液を加え、生じた沈澱をろ過乾燥
し、成形した後、770℃以上880℃以下の温度で加
熱処理して酸化物超伝導材料を製造方法する。
Means to solve the problem pH salts of bismuth, strontium, calcium and copper
Dissolve it uniformly in an acidic aqueous solution, add ammonia to adjust the pH to 4.0-6°5, and then add a large excess of acetone, ethanol, propyl alcohol, or a mixture thereof to dissolve the resulting The precipitate is filtered and dried, molded, and then heat-treated at a temperature of 770° C. or higher and 880° C. or lower to produce an oxide superconducting material.

作用 発明者等は、B 1203.  S rcO3+  C
aCO3゜CuOの混合物を加熱した場合の相の生成過
程を検討し、炭酸ストロンチウムおよび炭酸カルシウム
の分解が超伝導相の生成に支配的な影響を持っている事
をつきとめた。本発明の方法では、各金属成分は水酸化
物あるいは酸化物として沈澱するので、超伝導相の生成
に炭酸塩の関与がなく、又、均一液相からの共沈法であ
る為に、生々する粉末の粒径が微細で、均一性も高い。
Effect Inventors B 1203. SrcO3+C
We investigated the phase formation process when a mixture of aCO3°CuO is heated and found that the decomposition of strontium carbonate and calcium carbonate has a dominant influence on the formation of the superconducting phase. In the method of the present invention, each metal component is precipitated as a hydroxide or oxide, so carbonate is not involved in the generation of a superconducting phase, and since the method is a coprecipitation method from a homogeneous liquid phase, The particle size of the powder is fine and highly uniform.

このため固相法の場合と比較して、より低温で超伝導相
が生成する。また、同じ温度で熱処理した場合、より特
性の優れた超伝導セラミックスが得られる。
Therefore, a superconducting phase is generated at a lower temperature than in the solid phase method. Moreover, when heat-treated at the same temperature, superconducting ceramics with even better properties can be obtained.

実施例 以下、実施例で本発明を説明する。Example The present invention will be explained below with reference to Examples.

出発原料として、硝酸ビスマス5水塩、硝酸ストロンチ
ウム、硝酸カルシウム4水塩および硝酸銅3水塩を用い
た。これらの粉末を、Bi:  Sr:Ca: Cu=
2: 2: 3:  4の比率となり、かつ粉末の総重
量が20gとなるようにそれぞれ秤量し、少量の硝酸を
加えた水25m1に溶解して均一溶液とした。この溶液
にアンモニア水をF5t 拌しながら添加し、pHを5
.5に調整し、さらに1時間撹拌を続けた。得られた沈
澱を含む水溶液をエタノール3000mlに加え、さら
に1時間混合した。混合終了後、沈澱物をろ過し乾燥機
中で120℃で乾燥させた。得られた粉末を750°C
で2時間、酸素中で仮焼した後、らいかい機で30分間
粉砕した。さらに仮焼・粉砕を2回繰り返した。得られ
た粉末の組成をICPC光発光分光法析したところ、配
合組成に対し、Caが若干量減少していた。比較のため
、同一組成となるようにB 1203+  S rCC
h+  CaCO3,CuOを秤量し、ボールミルで混
合した粉末(通常の固相法)についても同様の方法で仮
焼Φ粉砕した。これらの粉末に小量のバインダーを加え
て造粒し、その1gをとり、直径12mmの金型で80
0 kg / c m 2の圧力で成形し、750−9
00°Cの各温度で40時間、空気中で焼成し、400
′C/時間で冷却した。得られた焼結体は通常の4端子
法で電気抵抗の温度変化を測定した。測定結果を表1に
示した。
Bismuth nitrate pentahydrate, strontium nitrate, calcium nitrate tetrahydrate, and copper nitrate trihydrate were used as starting materials. These powders were divided into Bi: Sr: Ca: Cu=
Each powder was weighed so that the ratio was 2:2:3:4 and the total weight of the powder was 20g, and dissolved in 25ml of water to which a small amount of nitric acid was added to make a homogeneous solution. Aqueous ammonia was added to this solution while stirring to adjust the pH to 5.
.. 5 and continued stirring for an additional hour. The aqueous solution containing the obtained precipitate was added to 3000 ml of ethanol and further mixed for 1 hour. After the mixing was completed, the precipitate was filtered and dried in a dryer at 120°C. The obtained powder was heated to 750°C.
After calcining in oxygen for 2 hours, the mixture was pulverized for 30 minutes in a grinder. Further, calcination and pulverization were repeated twice. When the composition of the obtained powder was analyzed by ICPC photoemission spectroscopy, it was found that Ca was slightly decreased compared to the blended composition. For comparison, B 1203+ S rCC with the same composition
h+ CaCO3 and CuO were weighed and mixed in a ball mill (normal solid phase method), and the powder was also calcined and pulverized in the same manner. Add a small amount of binder to these powders, granulate them, take 1 g of the powder, and granulate it in a mold with a diameter of 12 mm.
Molded at a pressure of 0 kg/cm2, 750-9
Baked in air for 40 hours at each temperature of 00°C,
'C/hour. The temperature change in electrical resistance of the obtained sintered body was measured using the usual four-terminal method. The measurement results are shown in Table 1.

(以下余白) 表1゜ 超伝導転移温度 は、超伝導転移が77 Kまでで観察されず、また、8
80°Cを越える温度では焼結体が融解してしまうため
である。また、本発明のアンモニアを加えた後のpHを
4.0−6.5とするのは、この範囲以外ではCuが沈
澱しに(いためである。
(Left below) Table 1゜Superconducting transition temperature is that superconducting transition is not observed up to 77 K, and
This is because the sintered body melts at temperatures exceeding 80°C. Further, the reason why the pH after adding ammonia of the present invention is set to 4.0 to 6.5 is because Cu tends to precipitate outside this range.

発明の効果 本発明の製造方法により得られたセラミックスは、従来
法よりも容易に高い超伝導転移温度を示す。
Effects of the Invention Ceramics obtained by the production method of the present invention easily exhibit a higher superconducting transition temperature than those produced by conventional methods.

Claims (1)

【特許請求の範囲】  ビスマス、ストロンチウム、カルシウム、銅の塩をp
Hを酸性側に調整した水溶液に均一に溶解し、これにア
ンモニアを加えてpHを4.0−6.5とした後、大過
剰のアセトンまたはエタノールまたはプロピルアルコー
ルあるいはこれらの混合液を加え、生じた沈澱をろ過乾
燥し、成形した後、770℃以上880℃以下の温度で
加熱処理する工程を含む、酸化物超伝 導材料の製造方法。
[Claims] Bismuth, strontium, calcium, copper salts are
H is uniformly dissolved in an aqueous solution adjusted to the acidic side, ammonia is added to this to adjust the pH to 4.0-6.5, and a large excess of acetone, ethanol, propyl alcohol, or a mixture thereof is added. A method for producing an oxide superconducting material, which comprises filtering and drying the resulting precipitate, shaping it, and then heat-treating it at a temperature of 770°C or higher and 880°C or lower.
JP63172133A 1988-07-11 1988-07-11 Production of oxide superconducting material Pending JPH0222164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63172133A JPH0222164A (en) 1988-07-11 1988-07-11 Production of oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63172133A JPH0222164A (en) 1988-07-11 1988-07-11 Production of oxide superconducting material

Publications (1)

Publication Number Publication Date
JPH0222164A true JPH0222164A (en) 1990-01-25

Family

ID=15936179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63172133A Pending JPH0222164A (en) 1988-07-11 1988-07-11 Production of oxide superconducting material

Country Status (1)

Country Link
JP (1) JPH0222164A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203179A (en) * 1992-03-04 1993-04-20 Ecoair Corporation Control system for an air conditioning/refrigeration system
JPH08116784A (en) * 1994-10-24 1996-05-14 Nippon Taiiku Shisetsu Kk Playing field structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203179A (en) * 1992-03-04 1993-04-20 Ecoair Corporation Control system for an air conditioning/refrigeration system
JPH08116784A (en) * 1994-10-24 1996-05-14 Nippon Taiiku Shisetsu Kk Playing field structure

Similar Documents

Publication Publication Date Title
JPH0222164A (en) Production of oxide superconducting material
US5210069A (en) Preparation method of high purity 115 K Tl-based superconductor
JPH0251468A (en) Production of yttrium-barium-copper oxide powder and superconducting yttrium-barium-copper oxide sintered body
JPH01313325A (en) Production of oxide superconducting material
JPH02157110A (en) Manufacture of mixed metallic oxide materials and molded product composed of said materials
JPH01313328A (en) Production of oxide superconducting material
JPS63291855A (en) Production of superconducting composition
JPH01108155A (en) Oxide superconducting material and production thereof
JPH01212217A (en) Production of oxide powder and oxide superconducting material
Sale Thermal analysis and the processing of electronic and magnetic ceramics
JP3444930B2 (en) Manufacturing method of oxide superconductor
Vajpei et al. Preparation of Powders
JPS63288912A (en) Production of inorganic oxide superconductor
JPS63310722A (en) Production of ba-y-cu-o type superconducting material
JPS63288911A (en) Production of high temperature superconductor
JPH01224262A (en) Production of oxide superconductor
JPH0360457A (en) Production of y-ba-cu-based oxide superconductor
JPH04139026A (en) Oxide superconducting material and its production
JPH01188458A (en) Production of superconducting ceramic
JPH02258665A (en) Production of superconductive material
JPH0214824A (en) Production of superconducting material composition
JPH01108153A (en) Oxide superconducting material
JPH02204323A (en) Oxide superconductor and its production
JPH0459654A (en) Oxide superconductor
JPH04175260A (en) Oxide superconducting material and its production