JPH03153021A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03153021A
JPH03153021A JP29262989A JP29262989A JPH03153021A JP H03153021 A JPH03153021 A JP H03153021A JP 29262989 A JP29262989 A JP 29262989A JP 29262989 A JP29262989 A JP 29262989A JP H03153021 A JPH03153021 A JP H03153021A
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
substrate
single crystal
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29262989A
Other languages
Japanese (ja)
Inventor
Juri Kato
樹理 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP29262989A priority Critical patent/JPH03153021A/en
Publication of JPH03153021A publication Critical patent/JPH03153021A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To make an Si electronic circuit and a compound semiconductor device or a composite device of an integrated circuit highly reliable by a method wherein an Si thin-film layer, a compound semiconductor layer and an Si- substrate surface region are made amorphous and are transformed into a single crystal by executing a heat treatment. CONSTITUTION:An InP layer 2 as a compound-semiconductor layer is deposited on an Si substrate 1; after that, an Si thin-film layer 3 is deposited. Ions 4 are implanted into the Si substrate 1; a surface layer 5 is made amorphous. When a heat treatment is executed, the amorphous layer 5 is transformed into a single crystal. Although secondary defects 5 exist under an amorphous/single- crystal interface at an ion implantation operation, a defectless single crystal is grown on the InP single-crystal layer 2 and the Si thin-film layer 3. After that, an element device of an N-type MISFET is formed in the InP layer and an element device of a P-type MOSFET is formed in the Si layer; interconnection are made.

Description

【発明の詳細な説明】 【産業上の利用分野〕 本発明は半導体装置の製造方法に関する。特に5i1i
子回路及び化合物半導体発光デバイス、電子回路の複合
デバイスの高信頼性化において有効である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device. Especially 5i1i
It is effective in increasing the reliability of child circuits, compound semiconductor light emitting devices, and composite devices of electronic circuits.

[従来の技術] 従来、Si基板上にGaAs、GaPなどの化合物半導
体層を形成する時、MBE法やMOCVD法により化合
物半導体をヘテロエピタキシャル成長していた。しかし
ながら、ヘテロエピタキシャル成長では、格子条数や熱
膨張係数のちがいから、歪が発生する。Si表面は非常
に活性化しており、付着不純物や原子レベルの凹凸が存
在するため、鎖中や過剰な点欠陥、微小欠陥は、Si表
面に集中し、歪が緩和する。このためSi表面上に欠陥
の少ない単結晶化合物半導体薄膜が成長せず、多結晶薄
膜化したり、あるいは、Si基板との密着が得られない
という不具合が生じた。
[Prior Art] Conventionally, when forming a compound semiconductor layer such as GaAs or GaP on a Si substrate, the compound semiconductor was heteroepitaxially grown by MBE or MOCVD. However, in heteroepitaxial growth, distortion occurs due to differences in the number of lattice striations and coefficient of thermal expansion. Since the Si surface is highly activated and has attached impurities and unevenness at the atomic level, the chains, excessive point defects, and minute defects are concentrated on the Si surface, and the strain is relaxed. For this reason, a single-crystal compound semiconductor thin film with few defects is not grown on the Si surface, resulting in a polycrystalline thin film or inability to achieve close contact with the Si substrate.

[発明が解決しようとする課題] 従来技術では、Si基板上に膜といえるほどの十分な広
さを持った化合物半導体層が形成できないため、高信頼
な化合物半導体デバイスがSi基板上に形成できなかっ
た0本発明は、かかる従来の問題を回避し、Si基板上
に無欠陥の化合物半導体層を形成し、5iiI子回路及
び化合物半導体デバイスまたは集積回路の複合デバイス
の高信顛性化を可能にする半導体装置の製造方法の提供
を目的とする。
[Problem to be solved by the invention] With conventional techniques, it is not possible to form a compound semiconductor layer with a sufficient width to be called a film on a Si substrate, so a highly reliable compound semiconductor device cannot be formed on a Si substrate. The present invention avoids such conventional problems, forms a defect-free compound semiconductor layer on a Si substrate, and enables high reliability of a 5III child circuit, a compound semiconductor device, or a composite device of an integrated circuit. The purpose of the present invention is to provide a method for manufacturing a semiconductor device.

1課題を解決するための手段1 本発明では、単結晶Si基板上に、化合物半導体薄膜を
形成後、5illllが蓄積され、イオン注入により、
該S1薄膜、該化合物半導体膜、及び、該Si単結晶基
板の表面層をアモルファス化する。この後、熱処理によ
り該アモルファス層は単結晶化(固相または液相成長)
する、この時、格子条数や熱膨張係数のちがいによる歪
が発生する。この歪は、該S1単結晶基板のイオン注入
時のアモルファス/単結晶(a−c)界面下で緩和され
るため、単結晶化した化合物半導体層またはS1層は無
欠陥層となる。すなわち、過剰点欠陥や微小欠陥は、該
a−C欠陥でゲッタリングされる。また、AI2+−m
 Ga++ As、Ga+−x I n++A s 、
 G a 1−8I nm AS+−y Pyなとの化
合物半導体における構成元素の蒸気圧の違いからくる熱
処理時のPやAsの蒸発は、表面のS1層が保護膜とな
って問題ない、さらに、化合物半導体膜の構成元素の比
1例えば、化合物半導体成膜時に発生するストイキオメ
トリのずれについては、イオン注入時のイオンの選択と
ドーズの設定で制御できる0例^ば、GaAs半導体層
蓄積時にAsが蒸発しGaリッチになっている場合には
、Asイオン注入によりアモルファス化と同時に、スト
イキオメトリのずれを補正できる0以上説明したように
本発明によれば、Sl基板上には、ストイキオメトリ−
の制御された化合物半導体層とSi薄膜の無欠陥単結晶
層が形成可能になる。該単結晶Si薄膜または該単結晶
化合物半導体層に、素子デバイスを形成、配線接続を行
なえば、高信頼性S1または化合物半導体集積回路が出
来る。
Means for Solving Problem 1 In the present invention, after forming a compound semiconductor thin film on a single crystal Si substrate, 5illll is accumulated, and by ion implantation,
The surface layers of the S1 thin film, the compound semiconductor film, and the Si single crystal substrate are made amorphous. After this, the amorphous layer becomes single crystallized (solid phase or liquid phase growth) by heat treatment.
At this time, distortion occurs due to the difference in the number of grid lines and the coefficient of thermal expansion. This strain is relaxed under the amorphous/single crystal (ac) interface during ion implantation of the S1 single crystal substrate, so the single crystal compound semiconductor layer or S1 layer becomes a defect-free layer. That is, excessive point defects and minute defects are gettered by the a-C defects. Also, AI2+-m
Ga++ As, Ga+-x I n++ As,
G a 1-8I nm AS+-y There is no problem with the evaporation of P and As during heat treatment due to the difference in vapor pressure of the constituent elements in the compound semiconductor such as Py, since the S1 layer on the surface serves as a protective film. The ratio of the constituent elements of a compound semiconductor film is 1. For example, the stoichiometry deviation that occurs during compound semiconductor film formation can be controlled by ion selection and dose setting during ion implantation. When As evaporates and becomes Ga-rich, As ion implantation makes it amorphous and at the same time corrects the deviation in stoichiometry. Ikiometry
This makes it possible to form a compound semiconductor layer with controlled properties and a defect-free single crystal layer of Si thin film. By forming element devices and wiring connections on the single crystal Si thin film or the single crystal compound semiconductor layer, a highly reliable S1 or compound semiconductor integrated circuit can be obtained.

〔実 施 例1 以下、実施例を用いて説明する。第1〜3図は1本発明
による半導体装置の製造方法の工程断面図である。第1
図において、Si基叛l上には、化合物半導体層InP
層2をMOCVD法で〜O,lum蓄積後、CVDまた
はスパッタによりSi薄膜層3を〜0.1um蓄積して
いる。ここでは、InPを取り上げているが、GaAs
、ALGaAs、ZnSなど、  Il、 III、I
V、V、VI属の元素からなるいずれの化合物半導体で
も良い、特に融点が1000℃以上で、Siの融点に近
く、格子条数もSiに近い、ALGaAs、GaAs、
GaP、InP、ZnSなどの化合物半導体層において
有効である。第2図において、Si基板lには、イオン
4を注入し1表面層5をアモルファス化している0例え
ばリン180keV、 5x 1011Icm−”、及
び、Si、60keV、5x 10”cm−”注入を行
なえば、〜0.23μmのアモルファス層5が形成でき
る。このイオン注入条件は1表面からSi基板領域まで
連続的にアモルファスが形成されるように設定する。
[Example 1] Hereinafter, an explanation will be given using an example. 1 to 3 are process cross-sectional views of a method of manufacturing a semiconductor device according to the present invention. 1st
In the figure, a compound semiconductor layer InP is formed on the Si-based layer.
After layer 2 has been accumulated to a thickness of ~0.1 um by MOCVD, a Si thin film layer 3 has been accumulated to a thickness of ~0.1 um by CVD or sputtering. InP is taken up here, but GaAs
, ALGaAs, ZnS, etc., Il, III, I
Any compound semiconductor consisting of V, V, and VI group elements may be used, especially ALGaAs, GaAs, which has a melting point of 1000° C. or higher, close to the melting point of Si, and has a lattice number close to that of Si.
It is effective in compound semiconductor layers such as GaP, InP, and ZnS. In FIG. 2, ions 4 are implanted into the Si substrate 1 to make the surface layer 5 amorphous. For example, an amorphous layer 5 of ~0.23 μm can be formed.The ion implantation conditions are set so that an amorphous layer 5 is formed continuously from one surface to the Si substrate region.

また、イオン種は、化合物半導体層の成分元素(例えば
、GaAsの場合にはGa、Asイオン)またはSiを
用いる。第3図において、熱処理を行なうと、アモルフ
ァス層5は再結晶化する。イオン注入時のアモルファス
/単結晶界面下には2次欠陥6が存在するが、InP単
結晶層2及びSi薄膜層3は無欠陥単結晶が成長する。
Further, as the ion species, a component element of the compound semiconductor layer (for example, Ga or As ion in the case of GaAs) or Si is used. In FIG. 3, the amorphous layer 5 is recrystallized by heat treatment. Although secondary defects 6 exist under the amorphous/single crystal interface during ion implantation, defect-free single crystals grow in the InP single crystal layer 2 and the Si thin film layer 3.

この後、例えばInP層にはN型MISFET、Si層
にはP型MOS F ETの素子デバイスを形成、配線
接続を行なうことにより、高信頼性化された、高速集積
回路からなる半導体装置が完成する。
After this, element devices such as an N-type MISFET in the InP layer and a P-type MOSFET in the Si layer are formed and wiring connections are made, thereby completing a highly reliable semiconductor device consisting of a high-speed integrated circuit. do.

〔発明の効果] 以上説明したように、本発明の半導体装置の製造方法に
よれば、Si基板上に無欠陥の化合物半導体層形成が可
能となり、半絶縁化合物半導体上のSi電子回路または
化合物半導体デバイスを同−Si基板上に形成でき、高
信頼性複合デバイスから成る半導体装置を提供する。
[Effects of the Invention] As explained above, according to the method for manufacturing a semiconductor device of the present invention, it is possible to form a defect-free compound semiconductor layer on a Si substrate, and it is possible to form a defect-free compound semiconductor layer on a semi-insulating compound semiconductor or Si electronic circuit on a semi-insulating compound semiconductor. To provide a semiconductor device comprising a highly reliable composite device in which devices can be formed on the same Si substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明による半導体装置の製遣方法の
工程断面図。 l・・・S1基板 2・・・化合物半導体層 3・・・S1層 4・・・注入イオン 5・・・アモルファス層 6・・・2次欠陥層
1 to 3 are process cross-sectional views of a method for manufacturing a semiconductor device according to the present invention. l... S1 substrate 2... Compound semiconductor layer 3... S1 layer 4... Implanted ion 5... Amorphous layer 6... Secondary defect layer

Claims (1)

【特許請求の範囲】[Claims] 単結晶Si基板上には、化合物半導体薄膜を形成後、S
i薄膜を積層後、Siイオンまたは化合物半導体構成原
子のイオン注入を行ない、該Si薄膜層、該化合物半導
体層、及び該Si基板表面領域をアモルファス化した後
、熱処理を行ないSi/化合物半導体/Si基板の単結
晶化(固相または液相成長)を行なった後、該単結晶S
i薄膜または該単結晶化合物半導体層には、素子デバイ
スが形成、接続されることを特徴とする半導体装置の製
造方法。
After forming a compound semiconductor thin film on a single crystal Si substrate, S
After laminating the i thin film, ion implantation of Si ions or atoms constituting the compound semiconductor is performed to make the Si thin film layer, the compound semiconductor layer, and the surface area of the Si substrate amorphous, and then heat treatment is performed to form the Si/compound semiconductor/Si After performing single crystallization (solid phase or liquid phase growth) of the substrate, the single crystal S
i. A method for manufacturing a semiconductor device, characterized in that element devices are formed and connected to the thin film or the single crystal compound semiconductor layer.
JP29262989A 1989-11-10 1989-11-10 Manufacture of semiconductor device Pending JPH03153021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29262989A JPH03153021A (en) 1989-11-10 1989-11-10 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29262989A JPH03153021A (en) 1989-11-10 1989-11-10 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03153021A true JPH03153021A (en) 1991-07-01

Family

ID=17784274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29262989A Pending JPH03153021A (en) 1989-11-10 1989-11-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03153021A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107910402A (en) * 2017-06-28 2018-04-13 超晶科技(北京)有限公司 A kind of indium-gallium-arsenide infrared detector material preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107910402A (en) * 2017-06-28 2018-04-13 超晶科技(北京)有限公司 A kind of indium-gallium-arsenide infrared detector material preparation method
CN107910402B (en) * 2017-06-28 2020-07-17 超晶科技(北京)有限公司 Preparation method of indium gallium arsenic infrared detector material

Similar Documents

Publication Publication Date Title
McClelland et al. A technique for producing epitaxial films on reuseable substrates
JP2691721B2 (en) Semiconductor thin film manufacturing method
JPS6012724A (en) Growing method of compound semiconductor
Ohmachi et al. The heteroepitaxy of Ge on Si (100) by vacuum evaporation
JP2570646B2 (en) Si-based semiconductor crystal substrate and method of manufacturing the same
JPH03284834A (en) Semiconductor device
JPS61188927A (en) Compound semiconductor device
JPH03153021A (en) Manufacture of semiconductor device
US5183776A (en) Heteroepitaxy by growth of thermally strained homojunction superlattice buffer layers
KR101216367B1 (en) Stiffening layers for the relaxation of strained layers
JPH04206932A (en) Semiconductor device and manufacture thereof
RU2063094C1 (en) Method for producing heteroepitaxial structures insb/gaas
JPS63184320A (en) Semiconductor device
JPH01120011A (en) Inp semiconductor thin film
JP2727564B2 (en) Heteroepitaxial growth method
JPS63311718A (en) Manufacture of hetero-structured single crystal semiconductor thin film
JPS6066813A (en) Compound semiconductor device
JPH0239441A (en) Manufacture of compound semiconductor crystal
JP2771635B2 (en) Ca lower 1-lower x Sr lower x F lower 2
JPS63182812A (en) Compound semiconductor substrate
JP2001332500A (en) Method of growing gallium nitride compound semiconductor of amorphous and polycrystalline structure
JPH01291420A (en) Manufacture of semiconductor substrate
JPS63137412A (en) Manufacture of semiconductor substrate
JPH0633224B2 (en) Method for epitaxial growth of compound semiconductor on heterogeneous substrate
JP2503255B2 (en) Method for manufacturing compound semiconductor substrate