JPH03151613A - Laminar ceramic capacitor - Google Patents

Laminar ceramic capacitor

Info

Publication number
JPH03151613A
JPH03151613A JP29020289A JP29020289A JPH03151613A JP H03151613 A JPH03151613 A JP H03151613A JP 29020289 A JP29020289 A JP 29020289A JP 29020289 A JP29020289 A JP 29020289A JP H03151613 A JPH03151613 A JP H03151613A
Authority
JP
Japan
Prior art keywords
ceramic dielectric
copper powder
layers
low temperature
baking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29020289A
Other languages
Japanese (ja)
Other versions
JP2775916B2 (en
Inventor
Toshiharu Hoshi
星 敏春
Yoshio Watanabe
由雄 渡辺
Soji Tsuchiya
土屋 宗次
Susumu Yoshimura
吉村 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29020289A priority Critical patent/JP2775916B2/en
Publication of JPH03151613A publication Critical patent/JPH03151613A/en
Application granted granted Critical
Publication of JP2775916B2 publication Critical patent/JP2775916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To enable low temperature baking while keeping sufficient characteristics, use base metal and dielectric oxide as inner electrode material, and realize remarkable cost reduction, by containing metal copper powder as baking promoter in a ceramic dielectric layer. CONSTITUTION:Ceramic dielectric layers 1 and inner electrode layers 2 are laminated and baked. The ceramic dielectric layers 1 contain metal copper powder of 0.1-5.0wt.% as baking promoter and are baked. That is, metal copper powder is added to ceramic dielectric material, the metal copper particles of low melting temperature (melting point 1086 deg.C) enter between particles of the dielectric material at the time of baking, and cause temporary flux action, so that a part of the ceramic dielectric material is melted and sufficiently sintered at a low temperature. Hence low temperature sintering at about 1100 deg.C is sufficiently enabled, the interface condition between the inner electrode layers 2 and the ceramic dielectric layers 1 is excellent, bonding between the inner electrode layers 2 and the ceramic dielectric layers 1 is strong in spite of low temperature sintering, and cost can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、電子機器の回路部品等に使える積層セラミ
ックコンデンサに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a multilayer ceramic capacitor that can be used as circuit components of electronic equipment.

従来の技術 この積層セラミックコンデンサは、セラミック誘電体層
と内部電極層が交互に積層され焼結された多層構造をと
る容量素子であり、セラミック誘電体層としては、普通
、ペロプスカイト系結晶構造有するもの(例えば、Ba
Ti0.)が使われる。焼結は、空気雰囲気中、130
0〜1350’C程度の高温焼成によりなされる。
Prior Art This multilayer ceramic capacitor is a capacitive element that has a multilayer structure in which ceramic dielectric layers and internal electrode layers are alternately laminated and sintered, and the ceramic dielectric layer usually has a perovskite crystal structure. things (e.g. Ba
Ti0. ) is used. Sintering is carried out in an air atmosphere at 130
This is done by firing at a high temperature of about 0 to 1350'C.

発明が解決しようとする課題 しかしながら、このような高温での焼成が必要な場合、
Ni、Cu等の安価な金属材料は、酸化してしまうので
内部電極用材料に使うことができず、高価なPdを使う
ことになる。このように、高価なPdを使うので、従来
の積層セラミックコンデンサは、どうしても高価なもの
になる。
Problems to be Solved by the Invention However, when firing at such high temperatures is required,
Inexpensive metal materials such as Ni and Cu cannot be used as internal electrode materials because they oxidize, and expensive Pd must be used. Since expensive Pd is used in this way, conventional multilayer ceramic capacitors are inevitably expensive.

積層セラミックコンデンサのコストダウンを図るため、
セラミック誘電体層に鉛系セラミック誘電体を使い低温
焼成化を図ることも検討されている。しかしながら、こ
の場合には、誘電体にPbOが存在することから、セラ
ミック誘電体層が脆く欠は易くて十分な機械的強度がな
く、しかも、誘電体層と内部電極層の界面におけるイオ
ンの相互拡散の幅が広くて損失が大きくなるなどコンデ
ンサ特性も十分でないという問題がある。
In order to reduce the cost of multilayer ceramic capacitors,
It is also being considered to use a lead-based ceramic dielectric in the ceramic dielectric layer to achieve lower firing temperatures. However, in this case, due to the presence of PbO in the dielectric, the ceramic dielectric layer is brittle and easily cracked, and does not have sufficient mechanical strength.Moreover, ions interact at the interface between the dielectric layer and the internal electrode layer. There is a problem that the capacitor characteristics are not sufficient, such as wide diffusion width and large loss.

この発明は、上記事情に鑑み、1100°C程度の低温
で十分に焼結が可能で内部電極層とセラミック誘電体層
間の界面状態が良好であって、しかも、低温焼結であっ
ても内部電極層とセラミック誘電体層の接合は強固であ
り、かつ、コストダウンが可能な積層セラミックコンデ
ンサを提供することを課題とする。
In view of the above circumstances, the present invention has been developed to enable sufficient sintering at a low temperature of about 1100°C, to provide a good interface state between the internal electrode layer and the ceramic dielectric layer, and to provide an internal structure even during low-temperature sintering. An object of the present invention is to provide a multilayer ceramic capacitor in which the bonding between an electrode layer and a ceramic dielectric layer is strong and the cost can be reduced.

課題を解決するための手段 上記課題を解決するため、この発明の積層セラミックコ
ンデンサは、セラミック誘電体層と内部電極層が積層焼
結されてなり、前記セラミック誘電体層が焼結助剤とし
て金属銅粉末を0.1〜5.0−t%含んで焼結されて
なる構成となっている。
Means for Solving the Problems In order to solve the above problems, the multilayer ceramic capacitor of the present invention has a ceramic dielectric layer and an internal electrode layer laminated and sintered, and the ceramic dielectric layer contains a metal as a sintering aid. It has a sintered structure containing 0.1 to 5.0-t% of copper powder.

作用 この発明のコンデンサでは、セラミック誘電体原料に金
属銅粉末が添加されていて、焼成の際、溶融温度の低い
(融点1086°C)金属銅粒子が誘電体原料の粒子間
に入り一時的なフラックス作用を起こすため、セラミッ
ク誘電体原料の一部が溶融し低温で十分に焼・結するよ
うになる。金属銅粒子は焼成により酸化物となるため、
誘電体の絶縁性を劣化させる心配はない。
Function: In the capacitor of this invention, metallic copper powder is added to the ceramic dielectric raw material, and during firing, the metallic copper particles with a low melting temperature (melting point 1086°C) enter between the particles of the dielectric raw material and cause temporary damage. Due to the flux action, a portion of the ceramic dielectric material melts and is sufficiently sintered and sintered at low temperatures. Metallic copper particles become oxides by firing, so
There is no need to worry about deteriorating the insulation properties of the dielectric.

低い温度で焼成するため、セラミック誘電体層と内部電
極層の間の界面における拡散層の幅が狭く、低損失特性
のコンデンサになる。
Because it is fired at a low temperature, the width of the diffusion layer at the interface between the ceramic dielectric layer and the internal electrode layer is narrow, resulting in a capacitor with low loss characteristics.

セラミック誘電体層がBaTiOsを主成分とする場合
には、誘電体層自体の機械的強度が十分であり、製造時
の歩留まりも良い。
When the ceramic dielectric layer has BaTiOs as its main component, the dielectric layer itself has sufficient mechanical strength and the manufacturing yield is good.

実施例 以下に本発明の実施例を図面を用いて詳細に説明する。Example Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図に本発明の一実施例における積層セラミックコン
デンサの層構成を示す。
FIG. 1 shows the layer structure of a multilayer ceramic capacitor in one embodiment of the present invention.

コンデンサはセラミック誘電体N1と内部電極層2が交
互に積層され両層が共焼結されてなる積層体を備えると
ともに、同積層体の側面に設けられた接続電極3.3を
備えている。各内部電極2・・・は、第1図にみるよう
に、下から1番目、3番目が右側の接続電極3へ、2番
目、4番目が左側の接続電極3へそれぞれ接続されてい
て、隣り合う内部電極層2の間に容量を持たせる構成に
なっている。
The capacitor includes a laminate in which ceramic dielectrics N1 and internal electrode layers 2 are alternately laminated and both layers are co-sintered, as well as connection electrodes 3.3 provided on the sides of the laminate. As shown in FIG. 1, each internal electrode 2... is connected to the connection electrode 3 on the right side from the first and third one from the bottom, and the connection electrode 3 on the left side from the second to fourth from the bottom. The structure is such that a capacitance is provided between adjacent internal electrode layers 2.

この発明のコンデンサのセラミック誘電体層1としては
、B a T i Oa等のようにペロプスカイト結晶
構造を有するセラミック誘電体が用いられまた、この発
明のコンデンサの内部電極層2としては、卑金属、誘電
性酸化物など安価な材料が使用可能である。
As the ceramic dielectric layer 1 of the capacitor of the present invention, a ceramic dielectric having a perovskite crystal structure such as B a T i Oa is used, and as the internal electrode layer 2 of the capacitor of the present invention, a base metal, Cheap materials such as dielectric oxides can be used.

焼結助剤としての金属銅粉末の使用量は、誘電体層用セ
ラミック原料100ivt%に対して、0.1〜5.0
wt%の範囲である。0.1wt%未満では金属銅粉末
の添加効果が十分にあられれない。5..0wt%を上
回ると誘電体の誘電率が小さくなるという悪影響が顕著
となる。
The amount of metallic copper powder used as a sintering aid is 0.1 to 5.0 ivt% with respect to 100 ivt% of the ceramic raw material for the dielectric layer.
The range is wt%. If the amount is less than 0.1 wt%, the effect of adding metallic copper powder will not be sufficient. 5. .. If it exceeds 0 wt%, the negative effect of decreasing the dielectric constant of the dielectric material becomes significant.

普通、金属銅粉末をセラミック誘電体原料粉末に加え混
合するが、金属銅粉末粒子のサイズがセラミック誘電体
原料粉末粒子サイズより小さい場合には、均一に混合さ
せやすくなる。
Usually, metallic copper powder is added to ceramic dielectric raw material powder and mixed, but when the size of the metallic copper powder particles is smaller than the ceramic dielectric raw material powder particle size, it becomes easier to mix uniformly.

この発明のコンデンサは、上記図示の層構成や化合物に
限らないことは言うまでもない。
It goes without saying that the capacitor of the present invention is not limited to the layer structure or compound illustrated above.

低温焼成は、内部電極用材料に安価な卑金属や誘電性酸
化物の使用を可能にするため、コストダウンが図れる。
Low-temperature firing allows the use of inexpensive base metals and dielectric oxides as materials for internal electrodes, thereby reducing costs.

更に、具体的に説明する。Further, it will be explained in detail.

コンデンサにおける層構成は、第1図に示す層構成と同
じである。
The layer structure in the capacitor is the same as the layer structure shown in FIG.

まず、セラミック誘電体原料であるBaTi0a粉末に
、金属銅粉末を添加し、エタノール中で12時間混合し
、乾燥させ、金属銅粉末が均一に混ざった原料粉末を得
た。
First, metallic copper powder was added to BaTi0a powder, which is a ceramic dielectric material raw material, and the mixture was mixed in ethanol for 12 hours and dried to obtain a raw material powder in which metallic copper powder was uniformly mixed.

そして、これら原料粉末と内部電極用材料を用い、セラ
ミック誘電体原料層と内部電極用材料層が交互に積層さ
れた積層体を、従来と同様の方法で作った。この後、1
100″Cで焼成させてコンデンサを得た。
Then, using these raw material powders and internal electrode materials, a laminate in which ceramic dielectric raw material layers and internal electrode material layers were alternately laminated was produced in the same manner as in the prior art. After this, 1
A capacitor was obtained by firing at 100''C.

なお、セラミック誘電体層が1100°Cの低い温度で
十分に焼結されていることを、以下のようにして確認し
た。
In addition, it was confirmed as follows that the ceramic dielectric layer was sufficiently sintered at a low temperature of 1100°C.

金属銅粉末を添加した原料粉末で直径13■のペレット
を作った。金属銅粉末の添加量は、0.5wt%、1.
0賀t%、5.0wt%の3通りである。各ペレットを
、様々な温度で2時間焼成し収縮率を調べた。収縮率と
焼結進度は略比例関係にある。比較のために金属銅粉末
を添加しないペレットも作り同様に焼成し収縮率を調べ
た。結果を第2図に示す。
Pellets with a diameter of 13 square meters were made from raw material powder to which metallic copper powder was added. The amount of metal copper powder added was 0.5 wt%, 1.
There are three types: 0gt% and 5.0wt%. Each pellet was fired for 2 hours at various temperatures and the shrinkage rate was examined. The shrinkage rate and the sintering progress are approximately proportional to each other. For comparison, pellets without the addition of metallic copper powder were also made, fired in the same manner, and the shrinkage rate was examined. The results are shown in Figure 2.

第2図にみるように、金属銅粉末を添加したペレットは
、1100°Cの温度で、金属銅粉末未添加のペレット
の1350°Cの焼結温度のものと同じ収縮率、すなわ
ち十分な焼結状態になっていることが分かる。
As shown in Figure 2, the pellets to which metallic copper powder was added had the same shrinkage rate at a temperature of 1100°C as the pellets without metallic copper powder at a sintering temperature of 1350°C, that is, sufficient sintering. It can be seen that it is in a deadlock state.

また、比較のために、金属銅粉末を添加せず、1300
°Cで焼結させるようにした他は、全く同様にしてコン
デンサを得た。
Also, for comparison, 1300
A capacitor was obtained in exactly the same manner except that the sintering was performed at °C.

実施例と比較例のコンデンサの特性を比べてみたところ
殆ど差がなく、特性劣化を伴うことなく、金属銅粉末の
添加により焼結温度を200°C程度低くすることがで
きることが確認できた。
When the characteristics of the capacitors of the example and the comparative example were compared, there was almost no difference, and it was confirmed that the sintering temperature could be lowered by about 200°C by adding metallic copper powder without deteriorating the characteristics.

発明の効果 以上に述べたように、この発明のコンデンサは、セラミ
ック誘電体層に焼結助剤として金属銅粉末を含んでいる
ため、十分な特性を保ちつつ低温焼成が可能となり、こ
れに従って、内部電極用材料として卑金属や誘電性酸化
物が使え大幅なコストダウンが可能となる。
Effects of the Invention As described above, since the capacitor of the present invention contains metallic copper powder as a sintering aid in the ceramic dielectric layer, it can be fired at a low temperature while maintaining sufficient characteristics. Base metals and dielectric oxides can be used as materials for internal electrodes, making it possible to significantly reduce costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明のかかるコンデンサの層構成をあら
れす模式的断面図、第2図は、焼結進度確認用ペレット
の焼成温度と収縮率の関係をあられすグラフである。 l・・・・・・セラミック誘電体層、2・・・・・・内
部電極層、3・・・・・・接続電極。
FIG. 1 is a schematic sectional view showing the layer structure of a capacitor according to the present invention, and FIG. 2 is a graph showing the relationship between the firing temperature and shrinkage rate of pellets for checking the progress of sintering. l... Ceramic dielectric layer, 2... Internal electrode layer, 3... Connection electrode.

Claims (1)

【特許請求の範囲】[Claims]  セラミック誘電体層と内部電極層が積層焼結されてな
り、前記セラミック誘電体層が焼結助剤として金属銅粉
末を0.1〜5.0wt%含んで焼結されてなる積層セ
ラミックコンデンサ。
A multilayer ceramic capacitor formed by laminating and sintering a ceramic dielectric layer and an internal electrode layer, the ceramic dielectric layer containing 0.1 to 5.0 wt % of metallic copper powder as a sintering aid.
JP29020289A 1989-11-08 1989-11-08 Multilayer ceramic capacitors Expired - Fee Related JP2775916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29020289A JP2775916B2 (en) 1989-11-08 1989-11-08 Multilayer ceramic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29020289A JP2775916B2 (en) 1989-11-08 1989-11-08 Multilayer ceramic capacitors

Publications (2)

Publication Number Publication Date
JPH03151613A true JPH03151613A (en) 1991-06-27
JP2775916B2 JP2775916B2 (en) 1998-07-16

Family

ID=17753076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29020289A Expired - Fee Related JP2775916B2 (en) 1989-11-08 1989-11-08 Multilayer ceramic capacitors

Country Status (1)

Country Link
JP (1) JP2775916B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004549A (en) * 2011-06-13 2013-01-07 Ngk Spark Plug Co Ltd Electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004549A (en) * 2011-06-13 2013-01-07 Ngk Spark Plug Co Ltd Electronic component

Also Published As

Publication number Publication date
JP2775916B2 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
JP4936850B2 (en) Multilayer ceramic capacitor
KR100272424B1 (en) Monolithic ceramic capacitor and producing method thereof
JP2003178623A (en) Conductive paste, manufacturing method of laminated ceramic electronic component, and laminated ceramic electronic component
JPH10130051A (en) Dielectric paste, use of the same for producing high dielectric constant region of ceramic multilayer circuit and production of the same
JP3471839B2 (en) Dielectric porcelain composition
JPH1025157A (en) Dielectric ceramic composition and multilayer capacitor
JPH053134A (en) Manufacture of outer electrode of laminated ceramic capacitor
JPS62256422A (en) Laminated type porcelain capacitor
JPH0397211A (en) Ic composite parts
JP2727626B2 (en) Ceramic capacitor and method of manufacturing the same
JPH03151613A (en) Laminar ceramic capacitor
JP2893703B2 (en) Multilayer ceramic capacitors
JPH0311716A (en) Grain boundary insulating type semiconductor ceramic capacitor and manufacture thereof
JP2870511B2 (en) Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same
JPH0359907A (en) Particle field insulation type semiconductor ceramic capacitor and manufacture thereof
JPH07326540A (en) Multilayer capacitor and its manufacture
JPH02240904A (en) Grain boundary insulation type semiconductor ceramic capacitor and manufacture thereof
JPS63293910A (en) Ceramic capacitor and manufacture thereof
JP3951329B2 (en) Dielectric porcelain composition
JPH02206108A (en) Laminated ceramic capacitor
JPH03116916A (en) Laminated type electronic part
JPH0360006A (en) Grain boundary insulating type semiconductor ceramic capacitor and its manufacture
JPH04367559A (en) Nonreducible dielectric porcelain composition
JPH04280411A (en) Laminated ceramic capacitor
JP2000252156A (en) Multilayer ceramic capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees