JP3951329B2 - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition Download PDF

Info

Publication number
JP3951329B2
JP3951329B2 JP00122897A JP122897A JP3951329B2 JP 3951329 B2 JP3951329 B2 JP 3951329B2 JP 00122897 A JP00122897 A JP 00122897A JP 122897 A JP122897 A JP 122897A JP 3951329 B2 JP3951329 B2 JP 3951329B2
Authority
JP
Japan
Prior art keywords
dielectric ceramic
temperature
dielectric
ceramic
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00122897A
Other languages
Japanese (ja)
Other versions
JPH10199335A (en
Inventor
弘明 的場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP00122897A priority Critical patent/JP3951329B2/en
Publication of JPH10199335A publication Critical patent/JPH10199335A/en
Application granted granted Critical
Publication of JP3951329B2 publication Critical patent/JP3951329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、鉛系複合ペロブスカイト化合物からなる誘電体磁器組成物に関するものである。
【0002】
【従来の技術】
近年、各種電子機器の小型化、高性能化などに伴い、コンデンサにも小型化、高性能化などが要求されている。このため、誘電率の高いセラミック誘電体が多種提案され、積層セラミックコンデンサが実用化されている。
【0003】
積層セラミックコンデンサは、内部電極層と誘電体磁器層とを交互に積層し、内部電極と電気的に接続される外部電極を有する構造となっており、この積層セラミックコンデンサを製造するには、前記誘電体磁器層に前記内部電極層を形成し、前記内部電極層が形成された前記誘電体磁器層を多数積層し、焼成して得られる。前記誘電体磁器層に用いる誘電体材料としては、高誘電率のチタン酸バリウム系が用いられている。しかし、チタン酸バリウム系の焼結温度は1300℃以上と高温であるため、内部電極を同時に焼成するには、内部電極の材料として、次のような条件を満たす必要がある。
(a)誘電体磁器と内部電極とが同時に焼成されるので、誘電体磁器が焼成される温度以上の融点を有すること。
(b)酸化性の高温雰囲気中においても酸化されず、しかも誘電体磁器と反応しないこと。
このような条件を満足させる電極としては、白金、金、パラジウムあるいはそれらの合金などのような貴金属が用いられてきた。しかしながら、これらの電極材料は優れた特性を有する反面、高価であった。そのため、積層セラミックコンデンサの製造コストを上昇させる最大の要因となっていた。
【0004】
【発明が解決しようとする課題】
近年、安価な銀または銀合金を用いることが可能な低温で焼結できる材料として、鉛系複合ペロブスカイト化合物が報告されている。例えば、Pb(Mg1/3Nb2/3)O3−Pb(Fe1/2Nb1/2)O3−PbTiO3系やPb(Mg1/21/2)O3−Pb(Ni1/3Nb2/3)O3−PbTiO3系等の比誘電率の高いものが、現在までに提案されているが、静電容量温度変化率はJIS規格のE特性を満足してもJIS規格のB特性を満足しないため、コンデンサの使用用途が限られていた。
【0005】
この発明の目的は、低温焼成が可能で、銀または銀合金と同時焼成でき、静電容量温度変化率がJIS規格のB特性を満足する、誘電体磁器組成物を提供することにある。
【0006】
【課題を解決するための手段】
すなわち、第1の発明は、一般式xPb(Ni1/3Nb2/3)O3−yPb(Zn1/3Nb2/3)O3−zPb(Ni1/21/2)O3(ただし、x+y+z=100)で示される鉛含有複合酸化物において、x,y,zの三成分組成図(ただし、単位はモル%)としたときに、A(45,55,0)、B(25,75,0)、C(15,55,30)、D(35,35,30)の4点を結ぶ直線で囲まれた領域の内部または線上(ただし点A、点Bと点ABを結ぶ線上は含まない)にある誘電体磁器組成物である。
【0007】
【発明の実施の形態】
以下、この発明の実施の形態について説明する。
この発明の誘電体磁器組成物は、酸化鉛、酸化ニッケル、酸化亜鉛、酸化ニオブ、酸化タングステンからなる材料粉末を所定の配合比となるよう調整することにより、1100℃以下と比較的低温で焼成でき、誘電率が3000を越える誘電体磁器が得られる。
【0008】
また、この発明の誘電体磁器組成物となる原料粉末を秤量し、得られた原料粉末を湿式または乾式で混合して、所定の温度で仮焼し固溶体化させ、得られた仮焼粉を粉砕し、樹脂バインダー等を混合して所定の形状に成形し、得られた成形体を1100℃の比較的低い温度で焼成して、得られた誘電体磁器の両主面に電極を形成したセラミックコンデンサは、誘電率が3000を越え、JIS規格のB特性を満足する。
【0009】
また、この発明の誘電体磁器組成物となる原料粉末を秤量し、得られた原料粉末を湿式または乾式で混合して、所定の温度で仮焼し固溶体化させ、得られた仮焼粉を粉砕し、樹脂バインダー等を混合してスラリー化してシート状とした誘電体磁器層(グリーンシート)を用意し、その一面に銀または銀合金からなる内部電極を形成する。なお、内部電極を形成する方法は、スクリーン印刷などによる形成でも、蒸着、メッキ法による形成でもどちらでも構わない。次に、内部電極を有する誘電体磁器層が必要枚数積層され、内部電極を有しない誘電体磁器層で挟んで圧着し、積層体とする。その後、この積層された誘電体磁器層を所定の雰囲気、温度にて焼成し、磁器積層体が形成される。
次に、磁器積層体の両端面に、内部電極と接続するように、二つの外部電極を形成する。
【0010】
この外部電極の材料としては、内部電極と同じ材料を使用することができる。また、銀、パラジウム、銀−パラジウム合金、銅、銅合金等が使用可能であり、また、これらの金属粉末にB23−SiO2−BaO系ガラス、Li2O−SiO2−BaO系ガラスなどのガラスフリットを添加したものも使用されるが、積層セラミックコンデンサの使用用途、使用場所などを考慮に入れて、適当な材料が選択される。
【0011】
また、外部電極は、材料となる金属粉末から構成される導電ペーストを、焼成により得た磁器積層体に塗布して、焼き付けることで形成されるが、焼成前の磁器積層体に導電ペーストを塗布して、磁器積層体の焼成と同時に外部電極を形成してもよい。この後、外部電極上にニッケル、銅などのメッキを施し、メッキ第1層を形成する。最後に、このメッキ第1層の上にはんだ、錫などのメッキ第2層を形成し、チップ型の積層セラミックコンデンサが製造される。
【0012】
(実施例1)
まず、出発原料として、酸化鉛、酸化ニッケル、酸化亜鉛、酸化ニオブ、酸化タングステンを表1に示す所定の配合比になるように秤量する。次に秤量した各材料をボールミル中で湿式粉砕混合した後、乾燥させて650℃〜850℃で仮焼を行う。この粉末をボールミル中で湿式粉砕混合した後、乾燥させて仮焼粉末とする。
【0013】
【表1】

Figure 0003951329
【0014】
得られた仮焼粉末に有機バインダー(ポリビニルアルコール)を加え、2t/cm2の圧力で直径10mm、厚さ1.2mmの円板状の成形体とした。次いでこの円板状の成形体を鉛雰囲気中にて、表1に示す温度で焼成し、セラミック焼結体を得た。
焼成後、得られた焼結体の各端面に銀ペーストを塗布し、800℃の温度で焼き付け、セラミックコンデンサを得た。
【0015】
得られたセラミックコンデンサを測定試料として、比誘電率、静電容量温度変化率を測定した。
静電容量(C)は、自動ブリッジ式測定器を用いて周波数1kHz、1Vrms、温度25℃にて測定し、静電容量から誘電率(ε)を算出した。
また、温度変化に対する静電容量の変化率を測定した。
なお、温度変化に対する静電容量の変化率については、20℃での静電容量を基準とした−25℃と85℃での変化率(ΔC/C20℃)および−25℃〜85℃の範囲内で絶対値としてその変化率が最大である値(|ΔC/△C20℃|max)を示す。
以上の結果を、表1に示した。
【0016】
表1から明かなように、この発明の誘電体磁器組成物からなるセラミックコンデンサは誘電率が3000を越え、温度に対する静電容量の変化率が、−25℃〜85℃での範囲でJIS規格のB特性を満足する。
【0017】
ここで、この発明の誘電体磁器組成物の組成限定理由について説明する。
xPb(Ni1/3Nb2/3)O3−yPb(Zn1/3Nb2/3)O3−zPb(Ni1/21/2)O3(ただしx+y+z=100)において、試料番号11,23のように点ABを結ぶ線上では静電容量温度変化率がJIS規格のB特性を満足せず、試料番号18,22のように点DAを結ぶ線上よりPb(Ni1/3Nb2/3)O3が多い領域や試料番号1,4のように点BCを結ぶ線上よりPb(Zn1/3Nb2/3)O3が多い領域では、静電容量温度変化率がJIS規格のB特性を満足せず、試料番号2,6のように点CDを結ぶ線上よりPb(Ni1/21/2)O3が多い領域では、比誘電率が3000より低くなるからである。
【0018】
【発明の効果】
この発明の誘電体磁器組成物は、低温焼成が可能であり、銀または銀合金と同時焼成できる。
また、この発明の誘電体磁器組成物は、比誘電率が3000を越え、静電容量温度特性がJIS規格のB特性を満足するセラミックコンデンサを得ることができる。
さらに、この発明の誘電体磁器組成物は、銀または銀合金と同時焼成できることで、安価な積層セラミックコンデンサを製造できる。
【図面の簡単な説明】
【図1】xPb(Ni1/3Nb2/3)O3−yPb(Zn1/3Nb2/3)O3−zPb(Ni1/21/2)O3系の組成範囲を示す3成分組成図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dielectric ceramic composition comprising a lead-based composite perovskite compound.
[0002]
[Prior art]
In recent years, with the reduction in size and performance of various electronic devices, capacitors are also required to be reduced in size and performance. For this reason, various ceramic dielectrics having a high dielectric constant have been proposed, and multilayer ceramic capacitors have been put into practical use.
[0003]
The multilayer ceramic capacitor has a structure in which internal electrode layers and dielectric ceramic layers are alternately stacked and has an external electrode electrically connected to the internal electrode. It is obtained by forming the internal electrode layer on a dielectric ceramic layer, laminating a large number of the dielectric ceramic layers on which the internal electrode layer is formed, and firing. As the dielectric material used for the dielectric ceramic layer, a high dielectric constant barium titanate is used. However, since the sintering temperature of the barium titanate series is as high as 1300 ° C. or higher, in order to simultaneously fire the internal electrodes, it is necessary to satisfy the following conditions as a material for the internal electrodes.
(A) Since the dielectric ceramic and the internal electrode are fired at the same time, the dielectric ceramic must have a melting point equal to or higher than the firing temperature.
(B) It is not oxidized even in an oxidizing high temperature atmosphere and does not react with the dielectric ceramic.
As an electrode that satisfies such conditions, noble metals such as platinum, gold, palladium, or alloys thereof have been used. However, these electrode materials have excellent characteristics but are expensive. For this reason, it has been the biggest factor in increasing the manufacturing cost of multilayer ceramic capacitors.
[0004]
[Problems to be solved by the invention]
In recent years, a lead-based composite perovskite compound has been reported as a material that can be sintered at a low temperature that can use inexpensive silver or a silver alloy. For example, Pb (Mg 1/3 Nb 2/3 ) O 3 —Pb (Fe 1/2 Nb 1/2 ) O 3 —PbTiO 3 system or Pb (Mg 1/2 W 1/2 ) O 3 —Pb ( Ni 1/3 Nb 2/3 ) O 3 —PbTiO 3 and other high dielectric constants have been proposed so far, but the rate of change in capacitance temperature satisfies the JIS standard E characteristics. However, since the B characteristic of JIS standard is not satisfied, the usage of the capacitor is limited.
[0005]
An object of the present invention is to provide a dielectric ceramic composition that can be fired at a low temperature, can be fired simultaneously with silver or a silver alloy, and has a capacitance temperature change rate that satisfies the B characteristics of the JIS standard.
[0006]
[Means for Solving the Problems]
That is, the first invention relates to the general formula xPb (Ni 1/3 Nb 2/3 ) O 3 -yPb (Zn 1/3 Nb 2/3 ) O 3 -zPb (Ni 1/2 W 1/2 ) O. 3 In the lead-containing composite oxide represented by (where x + y + z = 100), A (45, 55, 0) when x, y, z are ternary composition diagrams (where units are mol%), Inside or on a line surrounded by a straight line connecting four points B (25, 75, 0), C (15, 55, 30), D (35, 35, 30) (however, point A, point B and point The dielectric ceramic composition is not included on the line connecting AB.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
The dielectric ceramic composition of the present invention is fired at a relatively low temperature of 1100 ° C. or less by adjusting a material powder composed of lead oxide, nickel oxide, zinc oxide, niobium oxide, and tungsten oxide to have a predetermined mixing ratio. Thus, a dielectric ceramic having a dielectric constant exceeding 3000 can be obtained.
[0008]
In addition, the raw material powder to be the dielectric ceramic composition of the present invention is weighed, and the obtained raw material powder is mixed in a wet or dry manner, and calcined at a predetermined temperature to form a solid solution. The mixture was pulverized, mixed with a resin binder and formed into a predetermined shape, and the resulting molded body was fired at a relatively low temperature of 1100 ° C. to form electrodes on both main surfaces of the obtained dielectric ceramic. The ceramic capacitor has a dielectric constant exceeding 3000 and satisfies the B characteristic of the JIS standard.
[0009]
In addition, the raw material powder to be the dielectric ceramic composition of the present invention is weighed, and the obtained raw material powder is mixed in a wet or dry manner, and calcined at a predetermined temperature to form a solid solution. A dielectric ceramic layer (green sheet) which is pulverized and mixed with a resin binder or the like to form a slurry to form a sheet is prepared, and an internal electrode made of silver or a silver alloy is formed on one surface thereof. The internal electrode may be formed by screen printing or by vapor deposition or plating. Next, the required number of dielectric ceramic layers having internal electrodes are stacked, and are sandwiched between the dielectric ceramic layers having no internal electrodes and pressure-bonded to obtain a stacked body. Thereafter, the laminated dielectric ceramic layer is fired at a predetermined atmosphere and temperature to form a ceramic laminate.
Next, two external electrodes are formed on both end faces of the porcelain laminate so as to be connected to the internal electrodes.
[0010]
As the material of the external electrode, the same material as that of the internal electrode can be used. Also, silver, palladium, silver-palladium alloy, copper, copper alloy, etc. can be used, and B 2 O 3 —SiO 2 —BaO based glass, Li 2 O—SiO 2 —BaO based on these metal powders. A glass or other glass frit to which glass frit is added is also used, but an appropriate material is selected in consideration of the intended use and place of use of the multilayer ceramic capacitor.
[0011]
In addition, the external electrode is formed by applying a conductive paste composed of a metal powder as a material to a ceramic laminate obtained by firing and baking, but the conductive paste is applied to the ceramic laminate before firing. And you may form an external electrode simultaneously with baking of a porcelain laminated body. Thereafter, nickel, copper or the like is plated on the external electrode to form a first plating layer. Finally, a second plated layer such as solder or tin is formed on the first plated layer, and a chip-type multilayer ceramic capacitor is manufactured.
[0012]
Example 1
First, as a starting material, lead oxide, nickel oxide, zinc oxide, niobium oxide, and tungsten oxide are weighed so as to have a predetermined mixing ratio shown in Table 1. Next, each weighed material is wet-ground and mixed in a ball mill, and then dried and calcined at 650 ° C to 850 ° C. This powder is wet pulverized and mixed in a ball mill and then dried to obtain a calcined powder.
[0013]
[Table 1]
Figure 0003951329
[0014]
An organic binder (polyvinyl alcohol) was added to the obtained calcined powder to obtain a disk-shaped molded body having a diameter of 10 mm and a thickness of 1.2 mm at a pressure of 2 t / cm 2 . Next, this disk-shaped molded body was fired at a temperature shown in Table 1 in a lead atmosphere to obtain a ceramic sintered body.
After firing, a silver paste was applied to each end face of the obtained sintered body and baked at a temperature of 800 ° C. to obtain a ceramic capacitor.
[0015]
Using the obtained ceramic capacitor as a measurement sample, the relative dielectric constant and the capacitance temperature change rate were measured.
The capacitance (C) was measured at a frequency of 1 kHz, 1 Vrms, and a temperature of 25 ° C. using an automatic bridge type measuring device, and the dielectric constant (ε) was calculated from the capacitance.
Moreover, the change rate of the electrostatic capacitance with respect to the temperature change was measured.
In addition, about the change rate of the electrostatic capacitance with respect to the temperature change, the change rate (ΔC / C20 ° C.) at −25 ° C. and 85 ° C. based on the capacitance at 20 ° C. and the range of −25 ° C. to 85 ° C. The value (| ΔC / ΔC20 ° C. | max) at which the rate of change is maximum as an absolute value is shown.
The above results are shown in Table 1.
[0016]
As is clear from Table 1, the ceramic capacitor comprising the dielectric ceramic composition of the present invention has a dielectric constant exceeding 3000, and the rate of change of capacitance with respect to temperature is in the range of -25 ° C to 85 ° C. B characteristics of
[0017]
Here, the reason for limiting the composition of the dielectric ceramic composition of the present invention will be described.
In xPb (Ni 1/3 Nb 2/3 ) O 3 -yPb (Zn 1/3 Nb 2/3 ) O 3 -zPb (Ni 1/2 W 1/2 ) O 3 (where x + y + z = 100) On the line connecting points AB as indicated by numbers 11 and 23, the rate of change in capacitance temperature does not satisfy the B characteristics of the JIS standard, and Pb (Ni 1/3 is indicated on the line connecting points DA as indicated by sample numbers 18 and 22. In the region where Nb 2/3 ) O 3 is large or in the region where Pb (Zn 1/3 Nb 2/3 ) O 3 is larger than the line connecting the points BC as in sample numbers 1 and 4, the rate of change in capacitance temperature is high. In the region where Pb (Ni 1/2 W 1/2 ) O 3 is larger than the line connecting the points CD as in sample numbers 2 and 6, the dielectric constant is lower than 3000, which does not satisfy the B characteristic of JIS standard. Because.
[0018]
【The invention's effect】
The dielectric ceramic composition of the present invention can be fired at a low temperature and can be fired simultaneously with silver or a silver alloy.
The dielectric ceramic composition of the present invention can provide a ceramic capacitor having a relative dielectric constant exceeding 3000 and a capacitance temperature characteristic satisfying the B characteristic of the JIS standard.
Furthermore, the dielectric ceramic composition of the present invention can be co-fired with silver or a silver alloy, whereby an inexpensive multilayer ceramic capacitor can be produced.
[Brief description of the drawings]
FIG. 1 shows the composition range of xPb (Ni 1/3 Nb 2/3 ) O 3 -yPb (Zn 1/3 Nb 2/3 ) O 3 -zPb (Ni 1/2 W 1/2 ) O 3 system. It is a three component composition figure shown.

Claims (1)

一般式xPb(Ni1/3Nb2/3)O3−yPb(Zn1/3Nb2/3)O3−zPb(Ni1/21/2)O3(ただし、x+y+z=100)で示される鉛含有複合酸化物において、x,y,zの三成分組成図(ただし、単位はモル%)としたときに、
A(45,55, 0)
B(25,75, 0)
C(15,55,30)
D(35,35,30)
の4点を結ぶ直線で囲まれた領域の内部または線上(ただし点A、点Bと点ABを結ぶ線上は含まない)にあることを特徴とする誘電体磁器組成物。
General formula xPb (Ni 1/3 Nb 2/3 ) O 3 -yPb (Zn 1/3 Nb 2/3 ) O 3 -zPb (Ni 1/2 W 1/2 ) O 3 (where x + y + z = 100) In the lead-containing composite oxide represented by the following formula, the x-, y-, and z-component composition diagram (where the unit is mol%)
A (45, 55, 0)
B (25, 75, 0)
C (15, 55, 30)
D (35, 35, 30)
A dielectric ceramic composition characterized by being in or on a line surrounded by a straight line connecting the four points (not including the line connecting points A, B and AB).
JP00122897A 1997-01-08 1997-01-08 Dielectric porcelain composition Expired - Fee Related JP3951329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00122897A JP3951329B2 (en) 1997-01-08 1997-01-08 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00122897A JP3951329B2 (en) 1997-01-08 1997-01-08 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH10199335A JPH10199335A (en) 1998-07-31
JP3951329B2 true JP3951329B2 (en) 2007-08-01

Family

ID=11495623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00122897A Expired - Fee Related JP3951329B2 (en) 1997-01-08 1997-01-08 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP3951329B2 (en)

Also Published As

Publication number Publication date
JPH10199335A (en) 1998-07-31

Similar Documents

Publication Publication Date Title
JP2998639B2 (en) Multilayer ceramic capacitors
JP3282520B2 (en) Multilayer ceramic capacitors
JP3180690B2 (en) Multilayer ceramic capacitors
KR100464219B1 (en) Method for manufacturing laminated ceramic electronic component, and laminated ceramic electronic component
JP4682426B2 (en) Electronic component and manufacturing method thereof
JP4029204B2 (en) Dielectric ceramic composition and multilayer ceramic electronic component
JP3064659B2 (en) Manufacturing method of multilayer ceramic element
JP4048808B2 (en) Dielectric ceramic composition and multilayer ceramic electronic component
JP4496639B2 (en) Electronic component and manufacturing method thereof
JP2001052952A (en) Layered ceramic capacitor and its manufacture
JP4114434B2 (en) Dielectric ceramic and multilayer ceramic capacitor using the same
JP3951329B2 (en) Dielectric porcelain composition
JP4506090B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP4691790B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP2001060527A (en) Laminated ceramic electronic component and manufacture thereof
JP3675076B2 (en) Multilayer ceramic capacitor
JP2893703B2 (en) Multilayer ceramic capacitors
JP3316720B2 (en) Multilayer ceramic capacitors
JP3018934B2 (en) Multilayer ceramic capacitors
JP3085596B2 (en) Multilayer ceramic capacitors
JPS6234707B2 (en)
JP3361531B2 (en) Dielectric ceramic composition for Ni internal electrode
JP2803227B2 (en) Multilayer electronic components
JPH0453042B2 (en)
JP3078375B2 (en) Multilayer ceramic capacitors

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees