JPH0315131B2 - - Google Patents

Info

Publication number
JPH0315131B2
JPH0315131B2 JP59051380A JP5138084A JPH0315131B2 JP H0315131 B2 JPH0315131 B2 JP H0315131B2 JP 59051380 A JP59051380 A JP 59051380A JP 5138084 A JP5138084 A JP 5138084A JP H0315131 B2 JPH0315131 B2 JP H0315131B2
Authority
JP
Japan
Prior art keywords
channel box
sensor support
external dimension
external
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59051380A
Other languages
Japanese (ja)
Other versions
JPS60195410A (en
Inventor
Fumio Nakayasu
Atsushi Emori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP59051380A priority Critical patent/JPS60195410A/en
Publication of JPS60195410A publication Critical patent/JPS60195410A/en
Publication of JPH0315131B2 publication Critical patent/JPH0315131B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/06Devices or arrangements for monitoring or testing fuel or fuel elements outside the reactor core, e.g. for burn-up, for contamination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は沸騰水型炉用原子燃料集合体のチヤン
ネルボツクスの外形寸法を測定するための装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus for measuring the external dimensions of a channel box of a nuclear fuel assembly for a boiling water reactor.

(従来技術) チヤンネルボツクスは、照射特性の追跡調査等
のために照射後にチヤンネルボツクスの外形形状
を測定する場合がある。
(Prior Art) The outer shape of the channel box may be measured after irradiation for purposes such as follow-up of irradiation characteristics.

そのため、従来より必要に応じて水中テレビ装
置などを使用してチヤンネルボツクスの外形寸法
を測定する場合があるが、測定作業および測定結
果の処理が繁雑である。
Therefore, conventionally, the external dimensions of the channel box have been measured using an underwater television device or the like as necessary, but the measurement work and the processing of the measurement results are complicated.

そこで、かかる欠点を補う方法として、超音波
を使用したチヤンネルボツクスの外形寸法測定法
が考えられる。この方法はチヤンネルボツクスの
各測定位置にチヤンネルボツクスに沿つた支持枠
体の上下方向に装着された適数個の超音波センサ
ーから順次発信される超音波を当て、前記チヤン
ネルボツクスにより反射されて受信するまでの時
間を測定することによつて行なわれ得る。
Therefore, as a method to compensate for this drawback, a method of measuring the external dimensions of channel boxes using ultrasonic waves is considered. This method applies ultrasonic waves sequentially emitted from an appropriate number of ultrasonic sensors installed vertically on a support frame along the channel box to each measurement position of the channel box, and receives the ultrasonic waves reflected by the channel box. This can be done by measuring the time until

すなわち、受信するまでの時間でその発受信面
から1つの測定位置の何点かの位置までの距離を
個別に求め、これを各測定位置について行ない、
チヤンネルボツクスの長手方向における外形寸法
を演算する。
In other words, the distance from the transmitting/receiving surface to several points at one measurement position is determined individually in the time it takes to receive the signal, and this is performed for each measurement position.
Calculate the external dimensions of the channel box in the longitudinal direction.

しかし、チヤンネルボツクス内に燃料集合体が
存在する場合、通常使用済み原子燃料集合体は崩
壊熱を発しており、その発熱量が原子燃料集合体
の長手方向に均等でなく、これが使用済み燃料貯
蔵プール内のチヤンネルボツクスの周囲の水温分
布を不均一なものとしている。
However, when a fuel assembly exists in a channel box, the spent nuclear fuel assembly usually emits decay heat, and the calorific value is not uniform in the longitudinal direction of the nuclear fuel assembly, which makes it difficult to store spent fuel. The water temperature distribution around the channel box in the pool is non-uniform.

ところが、前記測定では超音波センサーを用い
ているにも拘らず、水温により変化する音速の違
いが考慮されていない。したがつて、超音波セン
サーで検出される時間は、個々の測定位置におけ
る水温に対応する音速に基づき測定されるので、
各測定位置までの測定時間そのままでもつて演算
されたチヤンネルボツクスの全長に亘る外形寸法
は、実際の外形寸法を示したものとはなつていな
い。
However, although the measurement uses an ultrasonic sensor, it does not take into account the difference in sound speed that changes depending on the water temperature. Therefore, the time detected by the ultrasonic sensor is measured based on the sound speed corresponding to the water temperature at each measurement location.
The external dimensions over the entire length of the channel box calculated using the measurement time up to each measurement position do not represent the actual external dimensions.

(発明の目的) 本発明は上述の問題点を解決するためになされ
たもので、使用済み燃料貯蔵プールにおいて周囲
水温分布の異なるチヤンネルボツクスの外形寸法
を測定および演算する場合、それぞれの水温に対
応する音速を考慮して行ない正確な測定が可能な
チヤンネルボツクスの外形寸法測定装置を提供す
ることを目的とする。
(Object of the Invention) The present invention has been made to solve the above-mentioned problems, and when measuring and calculating the external dimensions of channel boxes with different ambient water temperature distributions in a spent fuel storage pool, it is necessary to It is an object of the present invention to provide an apparatus for measuring the external dimensions of a channel box that can perform accurate measurements taking into account the speed of sound.

(発明の構成) 即ち、本発明の特徴とするところは、直線状に
配置された適数個の超音波センサーを水平面内で
配置した距離検出体と、この距離検出体とほゞ同
平面内にあつて一方からの発信が他方に受信され
る如く配置された1対の超音波センサーからなる
音速検出体とを上下方向に立設された案内体上で
昇降自在なセンター支持台に上記各配置で装着し
てなる外形寸法測定装置と、前記距離検出体で測
定された時間と、前記音速検出体で測定された時
間とにより演算された音速を用いてチヤンネルボ
ツクスの外形寸法を求める外形寸法演算手段とを
有して構成せしめた点にある。
(Structure of the Invention) That is, the present invention is characterized by: a distance detecting body in which an appropriate number of linearly arranged ultrasonic sensors are arranged in a horizontal plane; A sound velocity detector consisting of a pair of ultrasonic sensors arranged so that transmission from one side is received by the other is mounted on a center support stand that can be raised and lowered on a vertically erected guide body. External dimensions for determining external dimensions of a channel box using an external dimension measuring device attached to the arrangement, a sound velocity calculated by the time measured by the distance detector, and the time measured by the sound velocity detector. The point is that it is configured to include a calculation means.

(実施例) 以下、上記本発明の具体的な実施態様を更に添
付図面にもとづいて順次詳述する。
(Example) Hereinafter, specific embodiments of the present invention will be described in detail based on the accompanying drawings.

第1図は本発明に係るチヤンネルボツクスの外
形寸法測定装置10を使用済み燃料貯蔵プール1
内に設置せしめた使用時の態様図であり、同外形
寸法測定装置10がプール壁面1aに沿つて吊下
保持されたチヤンネルボツクス3に対向するよう
にして設置されている。
FIG. 1 shows a channel box external dimension measuring device 10 according to the present invention in a spent fuel storage pool 1.
1 is a diagram showing how the external dimension measuring device 10 is installed in the swimming pool in use, and the external dimension measuring device 10 is installed so as to face a channel box 3 that is suspended along the wall surface 1a of the pool.

そして、この測定装置10は図より明らかな如
く、主としてチヤンネルボツクス3の長手方向の
外形寸法を測定する外形寸法測定手段11と、そ
の測定値に基いてチヤンネルボツクス3の実際の
外形寸法を演算する演算手段21とからなつてい
る。
As is clear from the figure, this measuring device 10 mainly includes an external dimension measuring means 11 that measures the longitudinal external dimension of the channel box 3, and calculates the actual external dimension of the channel box 3 based on the measured value. It consists of calculation means 21.

このうち、前記外形寸法測定手段11は本発明
の基本的な測定装置であり、その詳細は第2図に
示すように、直線状に配置された適数個の超音波
セセンター12を互いにその発信がチヤンネルボ
ツクス3の側面より反射される如く水平面内で直
交するように配置した距離検出体13と、この距
離検出体13と同平面上に配置されその一方が発
信し、他方がこれを受信する1対の超音波センサ
ー14からなる音速検出体15とをセンター支持
台16に装着することによつて構成されている。
Of these, the external dimension measuring means 11 is a basic measuring device of the present invention, and its details are as shown in FIG. A distance detecting body 13 is arranged to be perpendicular to the horizontal plane so that the transmitted signal is reflected from the side surface of the channel box 3, and a distance detecting body 13 is disposed on the same plane as the distance detecting body 13, one of which emits and the other which receives it. A sound velocity detector 15 consisting of a pair of ultrasonic sensors 14 is attached to a center support base 16.

このセンサー支持台16はその平面形状がほゞ
L字状で、第1図に示すように使用済み燃料貯蔵
プール1の全面1aに固定立設された案内体17
上に昇降自在に装着され、これに隣接すべく搬入
されたチヤンネルボツクス3の測定位置に対応す
る位置に移動できるようになつている。
This sensor support stand 16 has a substantially L-shaped planar shape, and as shown in FIG.
It is mounted so as to be movable up and down, and can be moved to a position corresponding to the measurement position of the channel box 3 carried in to be adjacent thereto.

そして、前記案内体17の近傍の貯蔵プール1
上には、前記超音波センサー12,14における
超音波の発受信を指令する操作盤19が設けられ
ている。
The storage pool 1 near the guide body 17
An operation panel 19 is provided above to instruct the ultrasonic sensors 12 and 14 to transmit and receive ultrasonic waves.

又、上記の構成に加えて、更に前記した昇降自
在のセンサー支持台16の上方または下方におい
て別途、チヤンネルボツクス3の上部又は下部に
対応する位置に、前記と同様の距離検出体13お
よび音速検出体15を装着したセンサー支持台2
0を前記案内体17に固定しておくことも好まし
く、後述する如く揺動しているチヤンネルボツク
ス3の外形寸法も測定することができる。
In addition to the above configuration, a distance detector 13 similar to that described above and a sound velocity detector are separately provided above or below the sensor support base 16, which can be raised and lowered, at a position corresponding to the upper or lower part of the channel box 3. Sensor support stand 2 with body 15 attached
It is also preferable to fix the channel box 3 to the guide body 17, so that the external dimensions of the swinging channel box 3 can also be measured as described later.

一方、前記の外形寸法演算手段21は、前記距
離検出体13および音速検出体15で測定された
時間に基づいてチヤンネルボツクス3の外形寸法
を温度補正を加えて演算するものであり、通常、
プール上の地上に設置される。
On the other hand, the external dimension calculation means 21 calculates the external dimensions of the channel box 3 based on the time measured by the distance detector 13 and the sound velocity detector 15 by adding temperature correction, and usually
It is installed above the ground above the pool.

本発明は以上述べたような構成を有しており、
次にその作動について説明する。
The present invention has the configuration described above,
Next, its operation will be explained.

第1図において、先ず、使用済み燃料貯蔵プー
ル1内でチヤンネルボツクス3の1つを、貯蔵プ
ール1上を走行する燃料交換機2で吊持して壁面
1aの近傍に設けられた外形寸法測定装置10に
移送する。この場合、測定装置10の平面形が
ほゞL字状であるので、極めて簡単に隣接させる
ことができる。
In FIG. 1, first, one of the channel boxes 3 is suspended in the spent fuel storage pool 1 by a fuel exchanger 2 running above the storage pool 1, and an external dimension measuring device is installed near the wall surface 1a. Transfer to 10. In this case, since the planar shape of the measuring device 10 is substantially L-shaped, they can be placed adjacent to each other very easily.

次に、チヤンネルボツクス3の移送による揺動
が止まると、操作盤19によりチヤンネルボツク
ス3に対面したセンサー支持台16に装着されて
いる距離検出体13および音速検出体15の超音
波センサー12,14より超音波を発信させる。
Next, when the movement of the channel box 3 stops, the ultrasonic sensors 12 and 14 of the distance detector 13 and the sonic velocity detector 15 mounted on the sensor support stand 16 facing the channel box 3 are controlled by the operation panel 19. Transmit more ultrasonic waves.

このとき、距離検出体13の超音波センサー1
2からの超音波は、チヤンネルボツクス3の測面
4より反射され、再び受信されるまでの時間が測
定される。この測定と同時または僅かな時間遅れ
でもつて前記音速検出体15の超音波センサー1
4の一方から他方の超音波センサー14に発信さ
れ、その受信までの時間が測定される。
At this time, the ultrasonic sensor 1 of the distance detector 13
The ultrasonic waves from 2 are reflected from the measuring surface 4 of the channel box 3, and the time until they are received again is measured. At the same time as this measurement or with a slight time delay, the ultrasonic sensor 1 of the sound velocity detector 15
4 is transmitted to the other ultrasonic sensor 14, and the time until reception is measured.

なお、この超音波セセンサー14からの超音波
が第2図に示すようにチヤンネルボツクス3に当
らない程度に接近させておくと、前記超音波セセ
ンサー12の超音波が伝播する領域の測定を行な
うことができるし、また、相互の超音波セセンサ
ー14の装着位置をできるだけ離して(図示Lo)
おくと、音速を求めるための所要時間が長くな
り、それだけその測定精度を向上させることがで
きる。
As shown in FIG. 2, if the ultrasonic waves from the ultrasonic sensor 14 are brought close enough that they do not hit the channel box 3, the area in which the ultrasonic waves from the ultrasonic sensor 12 propagate can be measured. In addition, the mounting positions of the ultrasonic sensors 14 can be separated as much as possible (Lo in the figure).
If the time is longer, the time required to determine the speed of sound becomes longer, and the accuracy of the measurement can be improved accordingly.

このようにして次々と必要な測定位置にセセン
サー支持台16をエアシリンダー等の昇降駆動機
により移動させ、その位置で測定が行なわれる。
そして、センサー支持台16に対面する測定部位
の全ての2面の測定が完了すると、更に必要に応
じチヤンネルボツクス3を180度反転させ、各測
定位置の他の2面についても測定する。このと
き、水中テレビカメラ23による観察が必要なら
ば、水中テレビカメラヘツド18と共にセンサー
支持台16を移動すればよい。
In this way, the sensor support base 16 is moved one after another to the required measurement positions by an elevating drive device such as an air cylinder, and measurements are performed at those positions.
When the measurement of all two sides of the measurement site facing the sensor support stand 16 is completed, the channel box 3 is further turned over by 180 degrees if necessary, and the other two sides of each measurement position are also measured. At this time, if observation using the underwater television camera 23 is required, the sensor support stand 16 may be moved together with the underwater television camera head 18.

上述した超音波セセンサー12,14により測
定された時間は、前記外形寸法演算手段21のコ
ンピユータに入力され、そこで前記時間に基づい
て外形寸法が演算される。
The time measured by the ultrasonic sensor 12, 14 described above is input to the computer of the external dimension calculation means 21, and the external dimension is calculated there based on the time.

即ち、超音波センサー14により測定された時
間tiと、予めLoの間隔で装着された超音波セセン
サー14間の距離とでもつて、その個所における
音速がLo/tiで求められる。なお、水温と音速と
の相関関係が第3図に示すように伴つている場合
には、直接温度センサーなどにより水温を検出し
て音速を求めるようにしてもよい。この音速に前
記超音波センサー12で測定された測定位置まで
の片道の時間Ti/2を乗ずると、測定位置まで
の真の距離(Lo・Ti/2ti)が演算される。従つ
て、各測定位置の何個所かの距離をいくつかの測
定位置について行ないそれぞれの相対位置を求め
ると第4図a,bに示すようにチヤンネルボツク
ス3の長手方向における外形寸法を演算すること
ができる。
That is, based on the time ti measured by the ultrasonic sensor 14 and the distance between the ultrasonic sensors 14 installed in advance at an interval of Lo, the speed of sound at that point can be determined as Lo/ti. Note that if there is a correlation between the water temperature and the speed of sound as shown in FIG. 3, the speed of sound may be determined by directly detecting the water temperature using a temperature sensor or the like. By multiplying this sound speed by the one-way time Ti/2 to the measurement position measured by the ultrasonic sensor 12, the true distance to the measurement position (Lo·Ti/2ti) is calculated. Therefore, by measuring the distances of several locations at each measurement location and finding their relative positions, the external dimensions of the channel box 3 in the longitudinal direction can be calculated as shown in FIGS. 4a and 4b. Can be done.

なお、上記したように昇降するセンサー支持台
16の上方または下方において、チヤンネルボツ
クス3の上部または下部に対応する位置に、前記
と同様の距離検出体13および音速検出体15を
装着したセンサー支持台20が設けられている
と、チヤンネルボツクス3が僅かに揺動していて
も、例えばその下部の位置を測定すると同時に上
記した測定位置の1つの距離測定を行なえば、下
部を基準にしてその外形寸法の測定が可能とな
る。
In addition, above or below the sensor support 16 that moves up and down as described above, a sensor support is provided with a distance detector 13 and a sound velocity detector 15 similar to those described above, at a position corresponding to the upper or lower part of the channel box 3. 20, even if the channel box 3 is slightly oscillating, for example, by measuring the position of its lower part and simultaneously measuring the distance of one of the above measurement positions, its outer shape can be determined with the lower part as a reference. Dimensions can be measured.

かくして、上記本発明測定装置によりチヤンネ
ルボツクスの外形寸法を適確に測定することがで
きる。
Thus, the external dimensions of the channel box can be accurately measured by the measuring device of the present invention.

以上は超音波センサーが互いに直交して配置さ
れた距離検出体の場合について説明したが、距離
検出体13は必ずしも超音波センサーを直交して
配置しなくてもよく、例えば第5図に示すように
センサー支持台16に超音波センサー12を一線
上のみに配置して音速検出体15の超音波センサ
ー14と共にチヤンネルボツクス3に対向し併せ
設置せしめてもよく、同様にその効果を達成す
る。
The above description has been made regarding the case of a distance detecting body in which the ultrasonic sensors are arranged orthogonally to each other, but the distance detecting body 13 does not necessarily have to have the ultrasonic sensors arranged orthogonally to each other, for example, as shown in FIG. Alternatively, the ultrasonic sensor 12 may be arranged only on one line on the sensor support base 16, and together with the ultrasonic sensor 14 of the sonic velocity detector 15, they may be installed facing the channel box 3, and the same effect can be achieved.

(発明の効果) 本発明は以上詳細に説明したように、直線状に
配置された適数個の超音波センサーを水平面内で
配置した距離検出体と、この距離検出体とほゞ同
平面上に配置された1対の超音波センサーからな
る音速検出体と、この音速検出体と前記距離検出
体とを装着し上下方向に設置された案内体上で昇
降自在なセンサー支持台とを有する外形寸法測定
手段と、前記距離検出体で測定された時間を、前
記音速検出体で測定された時間とにより演算され
た音速を用いて、チヤンネルボツクスの外形形状
を求める外形寸法演算手段とを有し、特に温度補
正用の音速検出体を距離検出体とほぼ同水平面内
に設けたことにより、距離検出体と音速検出体の
超音波経過径路を同温水域にて一致せしめて高精
度な温度補正をなし、両検出体による測定時間の
相乗によつて使用済み原子燃料集合体の崩壊熱等
により周囲温度の異なる状態下にあるチヤンネル
ボツクスの外形寸法を、真の外形寸法として測定
することができる。
(Effects of the Invention) As described above in detail, the present invention includes a distance detecting body in which an appropriate number of ultrasonic sensors arranged in a straight line are arranged in a horizontal plane, and A sound velocity detector consisting of a pair of ultrasonic sensors arranged in the outer shape, and a sensor support base to which the sonic velocity detector and the distance detector are mounted and which can be raised and lowered on a guide body installed in the vertical direction. dimension measuring means; and external dimension calculating means for determining the external shape of the channel box using the sound velocity calculated from the time measured by the distance detecting body and the time measured by the sound speed detecting body. In particular, by arranging the sound velocity detector for temperature correction in almost the same horizontal plane as the distance detector, the ultrasonic paths of the distance detector and the sound velocity detector are made to match in the same temperature water area, allowing highly accurate temperature correction. By synergizing the measurement times of both detectors, the external dimensions of the channel box under different ambient temperatures due to decay heat of spent nuclear fuel assemblies can be measured as true external dimensions. .

しかも、上記装置にあつて、センサー支持台が
昇降自在なので、多数の超音波センサーを配置す
る必要がなく構成が簡素化され、また操作盤にお
ける測定操作も簡単となる。加えて、センサー支
持台の停止位置によつてはチヤンネルボツクスの
任意の部分の測定を自在に行なうことができる利
点があり、チヤンネルボツクスの外形寸法測定に
おける測定精度の向上に頗る有用性を発揮する。
なお、測定装置は燃料集合体にも適用が可能であ
る。
Furthermore, in the above device, since the sensor support base is movable up and down, there is no need to arrange a large number of ultrasonic sensors, the configuration is simplified, and the measurement operation on the operation panel is also simplified. In addition, depending on the stopping position of the sensor support stand, it has the advantage of being able to freely measure any part of the channel box, which is extremely useful in improving measurement accuracy in measuring the external dimensions of the channel box. .
Note that the measuring device can also be applied to fuel assemblies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の外形寸法測定装置の設置図、
第2図は外形寸法測定手段の平面配置図、第3図
は水温と音速の相関関係図、第4図a,bはチヤ
ンネルボツクス外形寸法の測定状態図、第5図は
超音波センサー配置の他の実施例を示す平面図で
ある。 3……チヤンネルボツクス、10……外形寸法
測定装置、11……外形寸法測定手段、12,1
4……超音波センサー、13……距離検出体、1
5……音速検出体、16,20……セセンサー支
持台、17……案内体、21……外形寸法演算手
段。
FIG. 1 is an installation diagram of the external dimension measuring device of the present invention;
Figure 2 is a plan layout of the external dimension measuring means, Figure 3 is a correlation diagram between water temperature and sound speed, Figures 4 a and b are diagrams of the measurement state of channel box external dimensions, and Figure 5 is a diagram of the ultrasonic sensor arrangement. FIG. 7 is a plan view showing another embodiment. 3... Channel box, 10... External dimension measuring device, 11... External dimension measuring means, 12, 1
4...Ultrasonic sensor, 13...Distance detector, 1
5...Sonic velocity detector, 16, 20...Sensor support base, 17...Guiding body, 21...External dimension calculation means.

Claims (1)

【特許請求の範囲】 1 直線状に配置された適数個の超音波センサー
を水平面内で配置した距離検出体と、この距離検
出体とほゞ同平面上にあつて、一方からの発信が
他方に発信される如く配置された1対の超音波セ
ンサーからなる音速検出体とを上下方向に立設さ
れた案内体上で昇降自在なセンサー支持台に上記
配置で装着してなる外形寸法測定手段と、前記距
離検出体で測定された時間と、前記音速検出体で
測定された時間とにより演算された音速を用い
て、チヤンネルボツクスの外形寸法を求める外形
寸法演算手段とを有してなることを特徴とするチ
ヤンネルボツクスの外形寸法測定装置。 2 前記センサー支持台の平面形は、ほゞL字状
である特許請求の範囲第1項記載のチヤンネルボ
ツクスの外形寸法測定装置。 3 前記センサー支持台は、前記案内体に昇降自
在に装着された水中テレビカメラヘツドと一体的
に構成されている特許請求の範囲第1項または第
2項記載のチヤンネルボツクスの外形寸法測定装
置。 4 チヤンネルボツクスの上部又は/及び下部に
対応する位置に前記両検出体を装着したセンサー
支持台と同構成のセンサー支持台を固定し、静止
または揺動しているチヤンネルボツクスの外形寸
法を測定することができるようにした特許請求の
範囲第1項ないし第3項のいずれかに記載のチヤ
ンネルボツクスの外形寸法測定装置。
[Scope of Claims] 1. A distance detecting body in which an appropriate number of ultrasonic sensors arranged in a straight line are arranged in a horizontal plane, and a distance detecting body that is substantially on the same plane as the distance detecting body and transmits from one side. External dimension measurement in which a sound velocity detection body consisting of a pair of ultrasonic sensors arranged so as to emit signals to the other is mounted in the above arrangement on a sensor support stand that can be raised and lowered on a guide body erected in the vertical direction. and external dimension calculation means for calculating the external dimensions of the channel box using the sound velocity calculated from the time measured by the distance detector and the time measured by the sound velocity detector. A channel box external dimension measuring device characterized by: 2. The channel box external dimension measuring device according to claim 1, wherein the sensor support base has a substantially L-shaped planar shape. 3. The channel box external dimension measuring device according to claim 1 or 2, wherein the sensor support base is integrally constructed with an underwater television camera head mounted on the guide body so as to be movable up and down. 4. Fix a sensor support stand with the same configuration as the sensor support stand on which both of the detection bodies are attached to a position corresponding to the upper and/or lower part of the channel box, and measure the external dimensions of the stationary or swinging channel box. An apparatus for measuring external dimensions of a channel box according to any one of claims 1 to 3.
JP59051380A 1984-03-16 1984-03-16 External size measuring instrument of channel box Granted JPS60195410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59051380A JPS60195410A (en) 1984-03-16 1984-03-16 External size measuring instrument of channel box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59051380A JPS60195410A (en) 1984-03-16 1984-03-16 External size measuring instrument of channel box

Publications (2)

Publication Number Publication Date
JPS60195410A JPS60195410A (en) 1985-10-03
JPH0315131B2 true JPH0315131B2 (en) 1991-02-28

Family

ID=12885334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59051380A Granted JPS60195410A (en) 1984-03-16 1984-03-16 External size measuring instrument of channel box

Country Status (1)

Country Link
JP (1) JPS60195410A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3542200A1 (en) * 1985-11-29 1987-06-04 Bbc Reaktor Gmbh METHOD FOR CHECKING THE DIMENSIONS OF A FUEL ELEMENT FOR CORE REACTORS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023842A (en) * 1973-07-02 1975-03-14
JPS5696205A (en) * 1979-12-28 1981-08-04 Nuclear Fuel Ind Ltd Measuring device for curve and torsion of fuel aggregate for hydraulic furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023842A (en) * 1973-07-02 1975-03-14
JPS5696205A (en) * 1979-12-28 1981-08-04 Nuclear Fuel Ind Ltd Measuring device for curve and torsion of fuel aggregate for hydraulic furnace

Also Published As

Publication number Publication date
JPS60195410A (en) 1985-10-03

Similar Documents

Publication Publication Date Title
US5930904A (en) Catenary system measurement apparatus and method
US5753808A (en) Self-compensating rolling weight deflectometer
US5426978A (en) Non-destructive axle flaw detecting apparatus
KR100614141B1 (en) Thickness measuring device for cylindrical tank bottom plate
JPH0315131B2 (en)
US5251487A (en) Apparatus for acoustically coupling an ultrasonic transducer with a body
JP2000206098A (en) Apparatus for inspecting wall structure of building
JP3567583B2 (en) Underwater mobile robot positioning method
JPH0315130B2 (en)
EP0201989B1 (en) Ultrasonic range finding
JP2000297998A (en) Apparatus and method for detecting mine
CN111487322B (en) Detection device and detection method for fracture of sprayed concrete and surrounding rock
RU2554307C1 (en) Acoustic profiler
JPS6118812A (en) Automatic displacement measuring apparatus
JPH06331353A (en) Method and device for measuring displacement of air section inside tunnel
JPS6225724Y2 (en)
GB2285131A (en) Water level measurement
JPH0694416A (en) Rail displacement measuring device
JPH0315132B2 (en)
JPH0437924B2 (en)
SU1545078A1 (en) Apparatus for ledelling ship-launching rail tracks
JPH044969Y2 (en)
JPH06102359A (en) Embedded object detector
JPH0481123B2 (en)
JPS5930406Y2 (en) Flatness measurement device for hot rolled plate materials