JPH0437924B2 - - Google Patents

Info

Publication number
JPH0437924B2
JPH0437924B2 JP13611784A JP13611784A JPH0437924B2 JP H0437924 B2 JPH0437924 B2 JP H0437924B2 JP 13611784 A JP13611784 A JP 13611784A JP 13611784 A JP13611784 A JP 13611784A JP H0437924 B2 JPH0437924 B2 JP H0437924B2
Authority
JP
Japan
Prior art keywords
ultrasonic
distance
ultrasonic distance
distance meter
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13611784A
Other languages
Japanese (ja)
Other versions
JPS6114509A (en
Inventor
Kenichi Matsui
Akio Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13611784A priority Critical patent/JPS6114509A/en
Publication of JPS6114509A publication Critical patent/JPS6114509A/en
Publication of JPH0437924B2 publication Critical patent/JPH0437924B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/04Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring thickness, width, diameter or other transverse dimensions of the product
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B39/00Arrangements for moving, supporting, or positioning work, or controlling its movement, combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B39/14Guiding, positioning or aligning work

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱延鋼板等の圧延ラインにおいてそ
の熱延鋼板等の帯状体の巾および/または蛇行を
測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for measuring the width and/or meandering of a strip of hot-rolled steel sheets or the like in a rolling line for hot-rolled steel sheets or the like.

〔従来の技術〕[Conventional technology]

この種の帯状体の巾や蛇行を測定することは、
圧延操業上きわめて重要であり、従来から種々の
方式によつて実施されている。
Measuring the width and meandering of this type of band is
This is extremely important in rolling operations, and has been conventionally carried out using various methods.

その代表例は、第6図および第7図に示すよう
に、搬送ロール50によつて搬送される材料Mに
対して、その両側部上方にITVやCCDカメラ5
1,51を設け、下方から上方へ投光する光源5
2,52からの光を受けて、材料Mによる遮光状
態に基いて材料Mの側縁をそれぞれ検出し、これ
に基いて材料Mの巾や蛇行、あるいはキヤンバー
等の情報を得ることができる。
A typical example of this is as shown in FIGS. 6 and 7, with respect to the material M being conveyed by the conveyance roll 50, an ITV or CCD camera is placed above both sides of the material M.
1 and 51, and a light source 5 that emits light from below to above.
Upon receiving the light from 2 and 52, the side edges of the material M are detected based on the light shielding state by the material M, and based on this, information such as the width, meandering, or camber of the material M can be obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、材料Mの高速搬送時には、搬送ロール
50から材料Mが第8図のように浮き上ることが
多く、この場合、同図で明らかなように、真の材
料(実線)巾より大きい破線で示した材料の巾と
して測定してしまう。かかる誤差を避けるために
は、カメラ51を材料側縁の真上に設置する必要
があるが、熱延鋼板ラインのように、種々の異な
る巾の材料が流れる場合や、材料の蛇行が生じる
ラインにおいては、制御的に非常に困難であり、
可能であるとしても装置的に高価となる。さら
に、材料が熱延鋼板等の高温材料である場合に
は、カメラが材料の上方にあるため、熱対流に乗
つた粉塵等により、カメラ前面のレンズが汚れ易
く、また圧延ロール冷却に使用した水が蒸気とな
つて、視界を遮り、精度を低下させる等の問題も
ある。
However, when the material M is transported at high speed, the material M often floats up from the transport roll 50 as shown in FIG. It is measured as the width of the material shown. In order to avoid such errors, it is necessary to install the camera 51 directly above the side edge of the material. It is very difficult to control,
Even if it were possible, the equipment would be expensive. Furthermore, when the material is a high-temperature material such as a hot-rolled steel plate, the camera is located above the material, so the lens on the front of the camera is easily contaminated by dust carried by thermal convection. There are also problems such as water turning into steam, blocking visibility and reducing accuracy.

その他に測定法として、静電容量方式や渦電流
方式等があるが、いずれも測定レンジが最大50mm
と狭く、また後者は対象材料の温度変化の影響を
大きく受ける難点がある。
Other measurement methods include capacitance method and eddy current method, but both have a maximum measurement range of 50 mm.
Moreover, the latter has the disadvantage that it is greatly affected by temperature changes of the target material.

そこで、本出願人は、かかる問題点を解決する
ために、先に特願昭59−79076号として、帯状体
の両側縁面外方に超音波距離計を設け、送信した
超音波が側縁面に当り反射して戻つてくる時間を
測定する方式を提案した。
Therefore, in order to solve this problem, the present applicant previously proposed in Japanese Patent Application No. 59-79076 that an ultrasonic distance meter was installed on the outer side of both side edges of the strip, and the transmitted ultrasonic waves We proposed a method that measures the time it takes for an object to hit a surface, be reflected, and return.

しかし、超音波の速度は雰囲気温度に依存する
ので、正確な距離測定には温度による補正が必要
である。ところが、実際の圧延ラインにおける測
定位置の温度を正確に測定することは難しいばか
りでなく、時間的かつ空間的な温度変化や分布の
変動もある。その結果、測定値に誤差を含むこと
となる。
However, since the speed of ultrasonic waves depends on the ambient temperature, temperature correction is necessary for accurate distance measurement. However, it is not only difficult to accurately measure the temperature at a measurement position in an actual rolling line, but also there are temporal and spatial temperature changes and fluctuations in distribution. As a result, the measured value will include an error.

〔問題点を解決するための手段〕[Means for solving problems]

かかる問題点を解決するために、本発明では、
帯状体の圧延ラインに設置されその帯状体の巾ま
たは蛇行を測定するものであつて、前記帯状体の
両側縁面外方にそれぞれ設けられ側縁面に対して
接離移動する支持体と、この各支持体に取付けら
れ、側縁面までの距離を測定する超音波距離計と
を備えた装置を用い、前記支持体は前記超音波距
離計が側縁面に対して所定離隔距離範囲内にある
よう接離移動させるとともに、前記超音波距離計
による各側縁面までの距離の測定に、両超音波距
離計間の実測超音波伝播時間に基く音速を用いる
手段を採つている。
In order to solve such problems, in the present invention,
a support that is installed in a rolling line for a strip and measures the width or meandering of the strip, and is provided outside both side edges of the strip and moves towards and away from the side edges; Using a device equipped with an ultrasonic distance meter attached to each of the supports and measuring the distance to the side edge surface, the ultrasonic distance meter is attached to each of the supports, and the ultrasonic distance meter is within a predetermined distance range from the side edge surface. At the same time, the ultrasonic distance meter measures the distance to each side edge surface using the speed of sound based on the actually measured ultrasonic propagation time between the two ultrasonic distance meters.

〔発明の主要点とその作用〕[Main points of the invention and its effects]

すなわち本発明の主要点は次の通りである。 That is, the main points of the present invention are as follows.

(1) 測定用検出器として、超音波距離計を用いた
点。この超音波距離計によると、前述のように
水蒸気によつて視界が遮られるような問題がな
く、検出時の外乱要素が少なく、高精度の測定
が可能であり、しかも検出器として安価かつ小
型となる。
(1) An ultrasonic distance meter was used as the measurement detector. According to this ultrasonic distance meter, there is no problem of visibility being obstructed by water vapor as mentioned above, there are few disturbance elements during detection, high precision measurement is possible, and it is inexpensive and small as a detector. becomes.

(2) 超音波距離計の取付用の支持体を帯状体の側
縁面に対して所定離隔距離範囲内にあるよう接
離移動するようにした点。一般に帯状体には、
その巾寸法の変更や蛇行がある。そこであまり
超音波距離計と帯状体側縁面とが離れてしまう
と、前述のように測定誤差を生じることを回避
するとともに、逆に支持体を固定しておくと、
巾広材が支持体に接触したり、突掛けを生じる
ため、これを防止するためである。幸い、鋼板
の圧延ラインにおいては、圧延機の入側にサイ
ドガイドが一般的に設置され、鋼板のセンダリ
ングおよびキヤンバー防止のために設けられ、
対象材料の巾寸法に応じて移動することに着目
し、たとえばこのサイドガイドを超音波距離計
の支持体としておけば、既設備のわずかな改造
で対処できる利点がある。
(2) The support for attaching the ultrasonic distance meter is moved toward and away from the side edge surface of the strip so that it is within a predetermined distance range. Generally, the band-like body has
There are changes in the width and meandering. Therefore, if the ultrasonic distance meter and the side edge surface of the strip are too far apart, measurement errors may occur as described above, and on the other hand, if the support is fixed,
This is to prevent the width material from coming into contact with the support or causing a bump. Fortunately, in steel plate rolling lines, side guides are generally installed on the entry side of the rolling mill to prevent steel plate sendering and camber.
Focusing on the fact that it moves according to the width dimension of the target material, for example, if this side guide is used as a support for an ultrasonic distance meter, there is an advantage that it can be handled with a slight modification of existing equipment.

(3) さらに、前記先願発明とも異なる点は、両超
音波距離計において、超音波の伝播時間を実測
し、これによつて超音波の伝播速度を求め、こ
れを距離測定の基礎としている点である。
(3) Furthermore, the difference from the prior invention is that both ultrasonic distance meters actually measure the propagation time of ultrasonic waves, determine the propagation speed of the ultrasonic waves, and use this as the basis for distance measurement. It is a point.

超音波の音速は、当該雰囲気の温度に依存する
が、実際の音速を求めれば、温度測定による補正
は不要であり、しかも正確な距離測定が可能とな
る。
The sound speed of ultrasonic waves depends on the temperature of the atmosphere, but if the actual sound speed is determined, there is no need for correction by temperature measurement, and moreover, accurate distance measurement becomes possible.

〔発明の具体例〕[Specific examples of the invention]

以下本発明を第1図〜第4図に示す熱延鋼板の
場合を例に採つた具体例によつて説明する。
The present invention will be explained below using a specific example of a hot-rolled steel sheet shown in FIGS. 1 to 4.

材料Mは搬送ロール1,1…上を第1図矢印方
向に搬送され、圧延機の上下ロール2,3間に通
板されて圧延される。一般に、熱延用圧延機に
は、圧延機への材料の導入を円滑に行うために、
その入側両サイドにサイドガイド(ドライブ側お
よびフリー側)4D,4Fが設けられている。こ
のサイドガイド4D,4Fは、対象の材料の巾に
応じて、その位置が予め変更され、通常材料の一
方の側縁から20mm、合計40mm程度離されてセツト
される。
The material M is conveyed in the direction of the arrow in FIG. 1 over the conveyor rolls 1, 1, . Generally, in order to smoothly introduce material into the rolling mill, hot rolling mills are equipped with
Side guides (drive side and free side) 4D and 4F are provided on both sides of the entrance side. The positions of the side guides 4D and 4F are changed in advance depending on the width of the target material, and are usually set at a distance of 20 mm from one side edge of the material, about 40 mm in total.

本発明においては、これらのサイドガイド4
D,4Fに超音波距離計5D,5Fが取付けら
れ、サイドガイド4D,4Fの一部に形成した開
口を通して、材料Mの側縁面を睨むように配置さ
れている。マタ超音波距離計5D,5Fの位置を
知るために、周知のサイドガイド駆動装置6D,
6Fによつて駆動されるサイドガイド4D,4F
と、ミルフレームとの間に、ミルフレーム7を定
点とする差動トランス、リニアポテンシヨンメー
タまたはマグネスケール等を利用した差動トラン
ス位置検出器8D,8Fが設けられている。
In the present invention, these side guides 4
Ultrasonic distance meters 5D and 5F are attached to D and 4F, and are arranged so as to look at the side edge surface of the material M through openings formed in parts of the side guides 4D and 4F. In order to know the position of the Mata ultrasonic distance meter 5D, 5F, the well-known side guide drive device 6D,
Side guides 4D and 4F driven by 6F
and the mill frame, differential transformer position detectors 8D and 8F using a differential transformer, a linear potentiometer, a magnescale, or the like having the mill frame 7 as a fixed point are provided.

かくして、測定に際しては、超音波距離計と材
料Mの側縁面との距離を測定する場合、超音波の
当該雰囲気における音速を知る必要があるので、
予めこの音速を求めておく。幸い、超音波はかな
りの広がりをもち、一部が材料側縁面で反射し、
残りが対向側の超音波距離計にも達するので、ド
ライブ側またはフリー側で、または両方で対向す
る側からの超音波を受信し超音波距離計間超音波
伝播時間(to)を測定し、知の超音波距離計間距
離(lo)と超音波伝播時間(to)とにより超音波
伝播速度(v=lo/to)を知る。音速測定用と材
料側縁面測定用に独立した超音波距離計を用いて
もよい。
Thus, when measuring the distance between the ultrasonic distance meter and the side edge surface of the material M, it is necessary to know the sound velocity of the ultrasonic wave in the relevant atmosphere.
Find this speed of sound in advance. Fortunately, the ultrasonic waves have a considerable spread, and some of them are reflected from the side edges of the material.
Since the remainder also reaches the ultrasonic distance meter on the opposite side, the drive side, free side, or both receive the ultrasonic wave from the opposite side and measure the ultrasonic propagation time (TO) between the ultrasonic distance meters. The ultrasonic propagation velocity (v=lo/to) is known from the distance between the ultrasonic distance meters (lo) and the ultrasonic propagation time (to). Separate ultrasonic distance meters may be used for measuring the speed of sound and for measuring the side edge surface of the material.

さらに超音波距離計5D,5Fから超音波を材
料Mの側縁面に当て、そこで反射するエコーを受
信し、送信から受信までの時間差(ti)を測定し
(1)式により超音波距離計から材料側縁面までの距
離liを算出する。i=D,Fでドライブ側および
フリー側のそれぞれについて測定と算出を行う。
Furthermore, ultrasonic waves are applied to the side edge surface of the material M from the ultrasonic distance meters 5D and 5F, and the reflected echoes are received, and the time difference (ti) from transmission to reception is measured.
Calculate the distance li from the ultrasonic distance meter to the side edge surface of the material using equation (1). At i=D, F, measurements and calculations are made on the drive side and free side, respectively.

li=1/2vti …(1) このとき、超音波の伝播速度vとして、前述の
超音波距離計間の実測伝播時間toに基く音速を計
算の基礎とする。
li=1/2vti (1) At this time, as the propagation speed v of the ultrasonic wave, the sound speed based on the actually measured propagation time to between the ultrasonic distance meters described above is used as the basis for calculation.

超音波発生に当つては、これに付設されたトリ
ガー発生器によつてドライブ側、フリー側の超音
波距離計5D,5Fから同時に超音波を発信させ
る。ここで、トリガーの出力間隔は、あまり大き
くなると巾変動、蛇行に対する応答が悪くなるの
で状況に応じできる限り短いほうが良く、先に発
信した超音波が対向側サイドガイドから反射され
戻つて来るまでの時間以上に設定するのが望まし
い。
When generating ultrasonic waves, the ultrasonic distance meters 5D and 5F on the drive side and the free side simultaneously emit ultrasonic waves using a trigger generator attached thereto. Here, if the trigger output interval is too large, the response to width fluctuations and meandering will deteriorate, so it is better to keep it as short as possible depending on the situation. It is preferable to set it to a time greater than or equal to the time.

第3図に、制御の概略を示す。説明のためここ
では超音波距離計間の超音波伝播時間の測定は超
音波距離計5Dからの受信によるものとする。ト
リガー発生器10により超音波距離計5D,5F
から同時に発生した超音波が材料Mの側縁面に当
つて反射してきた信号は、側縁面信号検出回路1
1D,11Fに取り込まれ、また超音波距離計5
Dからの信号を超音波距離計間伝播時間測定回路
12を介して得た伝播信号とともに側縁面位置検
出装置13D,13Fに送られる。これら側縁面
位置検出装置13D,13Fでは、サイドガイド
位置検出器8D,8Fからの信号を受けて、側縁
面位置すなわちミルセンターからの距離を算出す
るとともに、駆動回路14D,14Fを介してサ
イドガイド駆動装置6D,6Fに測定誤差を少な
くすべくその位置修正信号を与え、また巾・蛇行
演算装置15へ側縁面位置信号を出力する。巾・
蛇行装置14で得られた結果は、圧延機に対して
圧下量、テンシヨンまたは左右の圧下バランス等
を制御すべく出力する。
FIG. 3 shows an outline of the control. For the sake of explanation, it is assumed here that the ultrasonic propagation time between the ultrasonic range finders is measured by reception from the ultrasonic range finder 5D. Ultrasonic distance meter 5D, 5F by trigger generator 10
The signals that the ultrasonic waves simultaneously generated from
Incorporated into 1D and 11F, and ultrasonic distance meter 5
The signal from D is sent to the side edge surface position detection devices 13D and 13F together with the propagation signal obtained via the ultrasonic distance meter propagation time measurement circuit 12. These side edge surface position detection devices 13D, 13F receive the signals from the side guide position detectors 8D, 8F, calculate the side edge surface position, that is, the distance from the mill center, and also calculate the distance from the mill center via the drive circuits 14D, 14F. A position correction signal is given to the side guide drive devices 6D and 6F to reduce measurement errors, and a side edge surface position signal is output to the width/meandering calculation device 15. Width/
The results obtained by the meandering device 14 are outputted to the rolling mill in order to control the rolling reduction amount, tension, left and right rolling balance, etc.

次に第4図を参照しながら、巾および蛇行の算
出法を説明する。図示の符号は次の意味をもつ。
Next, a method for calculating the width and meandering will be explained with reference to FIG. The illustrated symbols have the following meanings.

○ BD,BF:ドライブサイド、フリーサイドそ
れぞれのサイドガイドの圧延ミルセンターから
の距離。サイドガイドに固定されたサイドガイ
ド位置検出器により、ミルフレーム7の定点ま
での距離eD,eFを測定することにより知ること
ができる。なお、各定点のミルセンターからの
距離およびサイドガイドの各種寸法は、制作時
に測定済で既知である。
○ B D , B F : Distance from the rolling mill center of the drive side and free side side guides. This can be determined by measuring the distances e D and e F to a fixed point on the mill frame 7 using a side guide position detector fixed to the side guide. Note that the distance of each fixed point from the mill center and various dimensions of the side guides have been measured and known at the time of production.

○ AD,AF:サイドガイドの材料側表面と超音
波距離計前面との距離。超音波距離計のセツテ
イング時に測定しておく。
○ A D , A F : Distance between the material side surface of the side guide and the front of the ultrasonic distance meter. Measure when setting up the ultrasonic distance meter.

○ lD,lF:超音波距離計による材料側縁面まで
の測定距離値。
○ l D , l F : Measured distance value to the side edge surface of the material using an ultrasonic distance meter.

○ lO:超音波距離計間の距離 lO=BD+AD+BF+AF で表わされる。○ l O : Distance between ultrasonic range finders l O = B D + A D + B F + A F.

○ GD,GF:圧延ミルセンターからの材料側縁
までの距離。
○ G D , G F : Distance from the rolling mill center to the side edge of the material.

かくして、材料端面位置、巾および蛇行は次の
ようにして求められる。
Thus, the material end face position, width, and meandering can be determined as follows.

(超音波速度) 対向する超音波距離計からの超音波の到達時間
をtoとすると前述のように、超音波速度Vは V=lO/to (超音波距離計と材料端面までの距離) 超音波距離計から材料端面への超音波到達時間
をtD,tFとすると lD=V×tD lF=V×tF tD,tFは材料端面に超音波が当つて距離計に帰
つてくるまでの時間の1/2である。
(Ultrasonic velocity) If the arrival time of the ultrasonic waves from the opposing ultrasonic distance meter is to, then as mentioned above, the ultrasonic velocity V is V=l O /to (distance between the ultrasonic distance meter and the end face of the material) If the ultrasonic wave arrival time from the ultrasonic distance meter to the material end face is t D and t F , l D = V × t D l F = V × t F t D , t F is the distance when the ultrasonic wave hits the material end face. That's 1/2 of the time it takes to get back to work.

ここで超音波到達時間tD,tFによる測定誤差を
小さくするためには、超音波距離計を材料に対し
て可能な限り小さくする必要があることが判る。
Here, it can be seen that in order to reduce the measurement error caused by the ultrasonic arrival times t D and t F , it is necessary to make the ultrasonic distance meter as small as possible with respect to the material.

通常、熱延ラインでは600〜2000mm巾の種々の
材料を圧延するので、たとえば2000mm巾の位置に
超音波距離計を固定的に設けておくと、0〜700
mmの離隔距離範囲で距離測定を行うことになり、
巾の小さい材料測定時には大きな誤差を生じる。
これに対して、上記例のように、材料巾の変更の
都度、離隔距離が合計で通常40mm程度に設定され
るサイドガイドに超音波距離計を取付けておけ
ば、常に至近距離での測定が可能で、測定誤差が
小さくなる。
Normally, a hot rolling line rolls various materials with a width of 600 to 2000 mm, so if an ultrasonic distance meter is fixedly installed at a position of 2000 mm width, it will be possible to
Distance measurement will be performed within a distance range of mm,
Large errors occur when measuring materials with small widths.
On the other hand, as in the example above, if you attach an ultrasonic range finder to a side guide whose total separation distance is usually set to about 40 mm each time the material width is changed, you can always measure at close range. possible, and the measurement error will be small.

(端面位置) GD=BD+AD−lD=BD+AD−(lO/to×tD) =BD+AD−(AD+BD+BF+AF/to×tD) 同様に GF=BF+AF−(AD+BD+BF+AF/to×tF) (巾) GD+GF (蛇行) GD−GF/2 なお、蛇行演算の結果が正ならドライブサイド
に蛇行、負ならフリーサイドに蛇行していること
を意味する。
(End face position) G D =B D +A D −l D =B D +A D −(l O /to×t D ) =B D +A D −(A D +B D +B F +A F /to×t D ) Similarly, G F = B F + A F − (A D + B D + B F + A F /to×t F ) (width) G D + G F (Meandering) G D −G F /2 Note that the result of meandering calculation is correct. If it's negative, it means it's meandering towards the drive side, and if it's negative, it's meandering towards the free side.

次に目的とする超音波受信の際のエコーの弁別
法について述べる。
Next, we will discuss the method for discriminating echoes when receiving ultrasonic waves.

1 材料端面からの反射波と対向サイドガイドか
らの反射波の弁別。
1 Discrimination between reflected waves from the material end face and reflected waves from the opposing side guide.

材料厚みが薄い場合、超音波距離計から発信
される超音波はかなりの広がりがあるため、相
当量が対向するサイドガイドに達し反射され
る。サイドガイドは材料端面よりは遠方にある
が、反射面積が大きいので材料端面よりの反射
波以上の強度で戻ることがある。したがつて以
下の手段で弁別する。
When the material is thin, the ultrasonic waves emitted from the ultrasonic range finder spread considerably, so a considerable amount reaches the opposing side guides and is reflected. Although the side guide is located further away than the end face of the material, since the reflection area is large, the wave may return with an intensity greater than that of the reflected wave from the end face of the material. Therefore, the following methods are used for discrimination.

材料端面からの反射波が戻つてくる時間はサ
イドガイドが対象の材料の巾に応じて、間隔が
変えられるので(通常材料の側縁から20mm)あ
まり大きく変化しない。したがつて、第5図の
ように、受信した音圧を電気信号に変換した後
の受信信号aに対して、材料端面からの反射信
号が戻つて来る可能性のある付近にゲート信号
bをかけて、ゲート外の信号を消した後c、最
大振幅をもつ信号を材料端面からの反射信号と
する。
The time it takes for the reflected wave from the edge of the material to return does not change much because the distance between the side guides can be changed depending on the width of the material (usually 20 mm from the side edge of the material). Therefore, as shown in Fig. 5, a gate signal b is applied to the received signal a after converting the received sound pressure into an electric signal, in the vicinity where there is a possibility that the reflected signal from the material end surface may return. After eliminating the signal outside the gate, the signal with the maximum amplitude is taken as the reflected signal from the end face of the material.

2 対向サイドガイドからの反射波と対向超音波
距離計からの信号との弁別、特に二つの信号の
大きさがほぼ同じである場合。
2. Discrimination between the reflected wave from the opposing side guide and the signal from the opposing ultrasonic rangefinder, especially when the two signals have approximately the same magnitude.

この場合には、サイドガイドの間隔が一定で
ないため、上記ゲート法による弁別は難しい
が、ドライブ側、フリー側の各超音波距離計か
ら交互に送信、受信すれば良い。この場合各端
面位置の測定が同時ではなくなるが、超音波距
離計間隔が2000mm程度の場合20m秒間隔でのく
り返し測定でも前回の発信波との干渉はなく、
測定応答としては充分である。
In this case, since the intervals between the side guides are not constant, it is difficult to discriminate using the gate method, but it is sufficient to transmit and receive data alternately from the drive side and free side ultrasonic range finders. In this case, the positions of each end face will not be measured at the same time, but if the ultrasonic distance meter interval is about 2000 mm, there will be no interference with the previous emitted wave even if measurements are repeated at 20 msec intervals.
This is sufficient as a measurement response.

3 熱延スタンド間の如く、ルーパーの動作によ
りパスラインが大きく変動する場合。
3. When the pass line fluctuates greatly due to the operation of the looper, such as between hot rolling stands.

超音波距離計の測定可能な指向角内から高さ
方向に材料端面がはずれる可能性があるため、
超音波距離計を複数台高さ方向に並べる必要が
ある。この場合には材料端面からの反射波を受
信できない超音波距離計がでてくるが、前述し
たように音圧を電気信号に変換した後ゲートを
かけ、ゲート内信号中、生ずる最も大きな振幅
を有する信号を材料端面からの反射波と判断す
る。
Because the end face of the material may deviate in the height direction from within the measurable viewing angle of the ultrasonic distance meter,
It is necessary to line up multiple ultrasonic range finders in the height direction. In this case, an ultrasonic distance meter that cannot receive reflected waves from the material end surface is produced, but as mentioned above, after converting the sound pressure into an electrical signal, a gate is applied, and the largest amplitude of the signal within the gate is detected. This signal is determined to be a reflected wave from the end face of the material.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明は、超音波による距離測定
法に基くとともに、距離計を取付ける支持体を材
料の側縁面に対して接離移動するようにしたの
で、水蒸気の存在等の外的条件に左右されず、か
つ高精度な距離測定ができ、もつて巾、蛇行等の
情報を正しく得ることができる効果をもたらす。
また、特に超音波の当該雰囲気での伝播速度を超
音波距離計間における超音波伝播時間を実測する
ことにより求めるものであるため、当該雰囲気の
温度もしくはその分布に左右されることなく正確
な測定を行うことができる。
As described above, the present invention is based on a distance measurement method using ultrasonic waves, and the support body on which the distance meter is attached is moved toward and away from the side edge surface of the material, so that external conditions such as the presence of water vapor It is possible to measure distances with high accuracy without being affected by the winding, and it is possible to accurately obtain information such as the width of the rope and meandering.
In addition, since the propagation velocity of ultrasonic waves in the relevant atmosphere is determined by actually measuring the ultrasonic propagation time between the ultrasonic distance meters, accurate measurement is possible regardless of the temperature of the relevant atmosphere or its distribution. It can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法による装置例の設置状況の
平面図、第2図はその−線矢視図、第3図は
本発明装置の説明用ブロツク図、第4図は材料の
側縁面位置、巾および蛇行算出の基礎とする寸法
関係図、第5図はタイムチヤート、第6図は従来
法の正面図、第7図はその平面図、第8図は寸法
誤認態様の説明図である。 M……材料(鋼板)、1……搬送ローラ、2,
3……圧延上下ロール、4D,4F……サイドガ
イド、5D,5F……超音波距離計、6D,6F
……サイドガイド駆動装置、7……ミルフレー
ム、8D,8F……サイドガイド位置検出器、1
0……トリガー発生器、11D,11F……側縁
面信号検出回路、12……超音波距離計伝播時間
測定回路、13D,13F……側縁面位置検出装
置、14D,14F……駆動回路、15……巾・
蛇行演算装置。
Fig. 1 is a plan view of an installation situation of an example of a device according to the method of the present invention, Fig. 2 is a view taken along the - line, Fig. 3 is an explanatory block diagram of the device of the present invention, and Fig. 4 is a side edge surface of the material. Figure 5 is a time chart, Figure 6 is a front view of the conventional method, Figure 7 is its plan view, and Figure 8 is an explanatory diagram of how dimensions are misrecognized. be. M...Material (steel plate), 1...Transport roller, 2,
3...Rolling upper and lower rolls, 4D, 4F...Side guide, 5D, 5F...Ultrasonic distance meter, 6D, 6F
...Side guide drive device, 7...Mil frame, 8D, 8F...Side guide position detector, 1
0...Trigger generator, 11D, 11F...Side edge surface signal detection circuit, 12...Ultrasonic distance meter propagation time measurement circuit, 13D, 13F...Side edge surface position detection device, 14D, 14F...Drive circuit , 15...Width・
Meandering calculation device.

Claims (1)

【特許請求の範囲】[Claims] 1 帯状体の圧延ラインに設置されその帯状体の
巾または蛇行を測定するものであつて、前記帯状
体の両側縁面外方にそれぞれ設けられ側縁面に対
して接離移動する支持体と、この各支持体に取付
けられ、側縁面までの距離を測定する超音波距離
計とを備えた装置を用い、前記支持体は前記超音
波距離計が側縁面に対して所定離隔距離範囲内に
あるよう接離移動させるとともに、前記超音波距
離計による各側縁面までの距離の測定に、両超音
波距離計間の実測超音波伝播時間に基く音速を用
いることを特徴とする帯状体の巾・蛇行測定方
法。
1. A device that is installed on a rolling line for strips to measure the width or meandering of the strip, and is provided on the outside of both side edges of the strip and moves toward and away from the side edges; , using a device equipped with an ultrasonic distance meter attached to each of the supports and measuring the distance to the side edge surface; The belt-shaped belt is moved toward and away from the ultrasonic distance meter so that the distance between the two ultrasonic distance meters is within the same range, and the sonic speed based on the measured ultrasonic propagation time between the two ultrasonic distance meters is used to measure the distance to each side edge surface by the ultrasonic distance meter. How to measure body width and meandering.
JP13611784A 1984-06-29 1984-06-29 Measuring method of width and snaking of beltlike body Granted JPS6114509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13611784A JPS6114509A (en) 1984-06-29 1984-06-29 Measuring method of width and snaking of beltlike body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13611784A JPS6114509A (en) 1984-06-29 1984-06-29 Measuring method of width and snaking of beltlike body

Publications (2)

Publication Number Publication Date
JPS6114509A JPS6114509A (en) 1986-01-22
JPH0437924B2 true JPH0437924B2 (en) 1992-06-22

Family

ID=15167696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13611784A Granted JPS6114509A (en) 1984-06-29 1984-06-29 Measuring method of width and snaking of beltlike body

Country Status (1)

Country Link
JP (1) JPS6114509A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184410U (en) * 1986-05-14 1987-11-24
KR100885228B1 (en) * 2004-11-08 2009-02-24 가부시기가이샤니레꼬 Method and device for measuring width direction end position of stripe body, and method and device for measuring width direction central position of stripe body
CN103240283B (en) * 2012-02-08 2015-01-21 宝山钢铁股份有限公司 Automatic band steel width detecting method
CN103909100B (en) * 2014-04-02 2017-01-18 首钢京唐钢铁联合有限责任公司 Slab width auto-measuring device and method

Also Published As

Publication number Publication date
JPS6114509A (en) 1986-01-22

Similar Documents

Publication Publication Date Title
JPH0437924B2 (en)
JPS61281912A (en) How to determine the flatness of a rolling strip during motion
JP3219565B2 (en) Defect depth position detection apparatus and method
JPH06123606A (en) Detection of overlap part of striplike materials
US5488867A (en) Strip measuring and centering system
JPS60222708A (en) Device for measuring width and meandering movement of belt shaped body
JP2501237B2 (en) Device for measuring outer diameter and wall thickness of steel pipe ends
JPH0847707A (en) Method for measuring thickness in hot rolling mill
JPH06167327A (en) Measuring method for camber
JP3073374B2 (en) Dimension measuring device for shaped steel
JPH0158444B2 (en)
JPS6254109A (en) Width and meandering measuring instrument for band-shaped body
JPS62233714A (en) Camber detecting method using ultrasonic range finder
JPH05296728A (en) Breadth measurement method for steel plate
JP3282745B2 (en) Plate width and meandering measurement device using two-dimensional distance meter
JPS6073309A (en) Measurement of surface roughness pattern of running sheet material
JPH0315130B2 (en)
JPS6173008A (en) Method and instrument for measuring path line position of beltlike body
JPS589365B2 (en) How to measure weld groove gap
JPH06331345A (en) Strip-shaped body shape measuring instrument
JPS6330961Y2 (en)
JPS6253043B2 (en)
JPS6165108A (en) Measuring instrument of width and zigzag of band-like body
SU1068192A1 (en) Apparatus for measuring the average thickness of rolled stock
JPH09126746A (en) Thickness gauge