JPS6165108A - Measuring instrument of width and zigzag of band-like body - Google Patents

Measuring instrument of width and zigzag of band-like body

Info

Publication number
JPS6165108A
JPS6165108A JP59187493A JP18749384A JPS6165108A JP S6165108 A JPS6165108 A JP S6165108A JP 59187493 A JP59187493 A JP 59187493A JP 18749384 A JP18749384 A JP 18749384A JP S6165108 A JPS6165108 A JP S6165108A
Authority
JP
Japan
Prior art keywords
width
band
ultrasonic
strip
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59187493A
Other languages
Japanese (ja)
Inventor
Akio Yamamoto
山本 章生
Kenichi Matsui
健一 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP59187493A priority Critical patent/JPS6165108A/en
Publication of JPS6165108A publication Critical patent/JPS6165108A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/04Lateral deviation, meandering, camber of product

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To make it possible to measure the width and zigzag of a band-like body even if width variation is large by setting up an ultrasonic range meter to a required separated measuring point position and a height position on the basis of the pass line height signal of the band-like body and the width information of the current band-like body. CONSTITUTION:A pair of ultrasonic range meters 6a, 6b are selected in accordance with the plate width of the band-like body M on a heat expansion line and the angle of a looper roller 5 is measured by a looper angle measuring device to find out the height position of the pass line. The range meter 6a or 6b is vertically moved on the basis of the ultrasonic sensor height position detector to position both the side end surfaces of the band M always in a measurable range even if the pass line is varied. A range signal outputted from the range meter 6a or 6b is inputted to a width/zigzag calculating device to calculate the width and zigzag values. Consequently, measurement from a near distance can be attained and its error can be minimized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱延鋼板等の圧延ラインにおいてその熱延鋼
板等の帯状体の巾および/または蛇行を測定する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for measuring the width and/or meandering of a strip of hot-rolled steel sheets or the like in a rolling line for hot-rolled steel sheets or the like.

〔従来の技術〕[Conventional technology]

この種の帯状体の巾や蛇行を測定することは、圧延操業
上きわめて重要であり、従来から撞々の方式によって実
施さ几ている。
Measuring the width and meandering of this type of strip is extremely important in rolling operations, and has traditionally been carried out using a continuous method.

その代表例は、第6図および第7図に示すように、搬送
ロール50によって搬送さ几る材料Mに対して、その両
測部上方にLTVやCCDカメラ51.51を設け、下
方から上方へ投光する光源52.52からの光を受けて
、材料Mによる遮光状態に基いて材料Mの側縁をそ几ぞ
几検出し、これに基いて材料Mの巾や蛇行、あるいはキ
ャンパー等の情報全得るようにしたものである。
As shown in FIGS. 6 and 7, a typical example is to install an LTV or CCD camera 51, 51 above both measuring sections of the material M transported by the transport roll 50, and Upon receiving light from the light sources 52 and 52 emitting light to the material M, the side edges of the material M are detected step by step based on the light shielding state by the material M, and based on this, the width and meandering of the material M, or the camper, etc. I tried to get all the information.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、材料Mの高速搬送時には、搬送ロール50から
材料Mが第8図のように浮き上がることが多く、この場
会、同図で明らかなように、真の材料(実線)巾より大
きい破線で示した材料の巾として測定してしまう0がか
る誤差を避けるためには、カメラ51を材料側縁の真上
に設置する必要があるが、熱延鋼板ラインのように、種
々の異なる巾の材料が流几る場合や、材料の蛇行が生じ
るラインにおいては、制御的に非常に困難であり、可能
であるとしても装置的に高価となる。さらに、材料が熱
延鋼板等の高温材料である場合には、カメラが材料の上
方にめるため、熱対流に乗った粉塵等により、カメラ前
面のレンズが汚几易ぐ、また圧延ロール冷却に使用した
水が蒸気となって、視界を遮り、精度を低下させる等の
問題もある。
However, when the material M is conveyed at high speed, the material M often floats up from the conveyor roll 50 as shown in Figure 8, and in this case, as is clear from the figure, the broken line is larger than the true width of the material (solid line). In order to avoid errors such as zero when measuring the width of the indicated material, it is necessary to install the camera 51 directly above the side edge of the material. In cases where the material flows or where the material meanderes, it is extremely difficult to control, and even if it were possible, the equipment would be expensive. Furthermore, when the material is a high-temperature material such as a hot-rolled steel plate, the camera is placed above the material, so the lens on the front of the camera is easily contaminated by dust carried by thermal convection, and the rolling roll is cooled. There are also problems such as the water used in the process turning into steam, blocking visibility and reducing accuracy.

その他に測定法として、静電容量方式や渦電流方式等が
あるが、いず1も測定レンジが最大50朋程度と狭く、
ま之後者は対象材料の温度変化の影響を大きく受ける難
点がある。
There are other measurement methods such as capacitance method and eddy current method, but each method has a narrow measurement range of about 50 m at maximum.
However, the latter method has the disadvantage that it is greatly affected by temperature changes in the target material.

そこで、本山2人は、かかる問題を解決するために、先
に特願昭59−79076号ほかにおいて、従来の光学
式測定装置より雰囲気環境に強い超音波式距離計を使用
し、こルを、帯状体の両側縁面外方に配設してこ几より
送信した超音波が帯状体側縁面に反射して戻ってくる時
間を測定することにより帯状体の幅・蛇行を測定する方
法を提案している。
Therefore, in order to solve this problem, the two Motoyamas used an ultrasonic distance meter, which is more resistant to atmospheric environments than conventional optical measuring devices, in Japanese Patent Application No. 59-79076 and others. proposed a method for measuring the width and meandering of a strip by measuring the time it takes for an ultrasonic wave transmitted from a device placed outside the edge of both sides of the strip to reflect back to the side edge of the strip. are doing.

ところが、超音波距離計により帯状体の端面を計測する
場合には、つぎのような問題点がある。
However, when measuring the end face of a strip using an ultrasonic distance meter, there are the following problems.

(1)熱延ラインのように板幅変動が大きい場合(たと
えば、600〜1800朋幅)、端面位置検出が困難で
ある。
(1) When the strip width fluctuates widely as in a hot rolling line (for example, 600 to 1800 mm width), it is difficult to detect the end face position.

(2)ま之、超音波ビームの拡がりにより、帯状体の厚
みが薄いものについては特に検出が難しく、超音波距離
計の測定レンジを大きくとることができない。
(2) However, due to the spread of the ultrasonic beam, it is particularly difficult to detect thin strips, and the measurement range of the ultrasonic distance meter cannot be widened.

(3)  ルーパによる鋼板のバスライン変動により、
鋼板が計測可能範囲外に位置することがある。
(3) Due to the fluctuation of the bus line of the steel plate due to the looper,
The steel plate may be located outside the measurable range.

(4)超音波の速度は雰囲気温度に依存するため、雰囲
気温度による誤差を生じ、帯状体の端面から離nた地点
からの計測では誤差が犬きぐなる。
(4) Since the speed of ultrasonic waves depends on the ambient temperature, an error occurs due to the ambient temperature, and the error becomes extremely large when measured from a point n far away from the end surface of the strip.

(問題点を解決するための手段) 上記問題点のうち、特に問題点(1) 、 (2)およ
び(4)を解決するために、本発明によルば、超音波距
離計による測定点が帯状体の幅方向の所望の位置に選択
可能に設けらル、帯状体の幅に応じて測定屯が選ばnる
構成となっている。
(Means for Solving the Problems) Among the above problems, in order to solve problems (1), (2) and (4) in particular, according to the present invention, measurement points using an ultrasonic distance meter are provided. is selectably provided at a desired position in the width direction of the strip, and the measuring tube is selected according to the width of the strip.

また、上記問題点(3)を解決する几めに、測定点にお
ける鋼板のバスライン変動に追従して超音波距離計によ
る測定点高さが変更さ几る構成となっている。
Further, in order to solve the above problem (3), the height of the measurement point by the ultrasonic distance meter is changed to follow the fluctuation of the bus line of the steel plate at the measurement point.

すなわち、本発明は、帯状体の圧延ラインに設置さ几そ
の帯状体の幅または蛇行を測定するものであって、帯状
体の両側端面外方に臨んで帯状体の幅に応じて側端面に
対する離隔測定点位置の選択可能な少なくとも1対の超
音波距離計と、帯状体のバスライン信号 スライン信号および現帯状体の幅情報に基いて前記超音
波距離計を所望の離隔測定点位置および高さ位置に設定
する超音波距離計駆動装置と、超音波距離計と帯状体側
端面間の距離を測定し、こ几に基いて帯状体の幅・蛇行
を算出する装置とを備えたことを特徴とするものである
That is, the present invention measures the width or meandering of a strip, which is installed in a strip rolling line, and measures the width or meandering of the strip, facing outward from both end surfaces of the strip, and measuring the width or meandering of the strip according to the width of the strip. At least one pair of ultrasonic range finders whose remote measurement point positions can be selected, and the ultrasonic range finders are used to select desired remote measurement point positions and heights based on the bus line signal of the strip body and the width information of the current strip body. A device that measures the distance between the ultrasonic distance meter and the side end face of the strip and calculates the width and meandering of the strip based on this method. That is.

(作用) 空気中を音波および超音波が進む速・度■は、空気温度
がT℃のとき、(1)式で与えら几る。
(Function) The speed at which sound waves and ultrasonic waves travel in the air is given by equation (1) when the air temperature is T°C.

V=331.5+0.617 (m/秒)・・・・(1
)したがって、超音波距離計から発信さ几た超音波が、
材料の側縁面に当って反射してくるまでの時間がt秒で
あるとき、そ几らの間の距離L((社)は(2)式とな
る。
V=331.5+0.617 (m/sec)...(1
) Therefore, the ultrasonic waves emitted from the ultrasonic distance meter are
When the time it takes for the light to hit the side edge surface of the material and be reflected is t seconds, the distance L between them is expressed by equation (2).

しかし、熱延ラインでは、赤熱材が間欠的に通るため、
空気温度は不安定であり、変動が太きい。
However, in the hot rolling line, red-hot material passes intermittently,
Air temperature is unstable and fluctuates widely.

したがって、Tt−正確に測定することは難しく、誤差
も大きくなる。真の温度がTO=’l’+ΔT(ΔT:
温度誤差)のとき、真の距離Loは(3)式で与えら几
る。
Therefore, it is difficult to accurately measure Tt and the error is large. The true temperature is TO='l'+ΔT(ΔT:
temperature error), the true distance Lo is given by equation (3).

したがって、ΔTによる距離の測定誤差ΔLは(4)式
となる。
Therefore, the distance measurement error ΔL due to ΔT is expressed by equation (4).

この(4)式から、測定誤差ΔLを小さくするためには
、温度測定を可能な限り正確に行うとともに、tを小さ
くするために超音波距ガを計を(材料に対して可能な限
り近づける必要があることが判る。
From this equation (4), in order to reduce the measurement error ΔL, the temperature must be measured as accurately as possible, and in order to reduce t, the ultrasonic distance meter should be moved as close as possible to the material. It turns out that it is necessary.

通常、熱延ライ/では600〜1800 am巾の種々
の材料を圧延するので、たとえば2000−巾の位置に
超音波距離計を固定的に設、ばておくと、0〜700(
20(10−600)工の離隔距離範囲で距離側定を行
うことになり、巾の小さい材料測定時には大きな誤差を
生じる。
Normally, various materials with a width of 600 to 1800 am are rolled in a hot rolling lie/line, so if an ultrasonic distance meter is fixedly installed at a position of 2000 am, for example, it is possible to roll a variety of materials with a width of 0 to 700 am.
Distance measurements must be made within a distance range of 20 (10-600) mm, resulting in a large error when measuring small width materials.

こnに対して、本発明によ几ば、超音波距離計による測
定位置を帯状体の幅方向に可変とすることにより、測定
対象となるべき帯状体の幅に応じて測定位置すなわち超
音波距離計位置を材料に対して近づけることができる0
このように、常に至近距離での測定が可能となり、測定
1惧差が小さくなる0たとえばLO=0.17111程
度のときは、ΔT75:数℃であったとしても、実用上
問題となる誤差を生じないので、気温の連続精密測定は
、必須でなく、時々測定する程度で十分である〇 一方、本発明によ几ば、測定点における鋼板のバスライ
ン変動に追従して測定位置を変更する構成となっている
ので、ルーツζによる鋼板ノζスラインに変動があって
も、被411j定物を常に計測り能範曲内にとどめてお
くことができる。
In contrast, according to the present invention, by making the measurement position by the ultrasonic distance meter variable in the width direction of the strip, the measurement position, that is, the ultrasonic 0 which allows the rangefinder position to be closer to the material
In this way, measurements can always be made at close range, and the difference in measurements is small. For example, when LO = 0.17111, even if ΔT75 is several degrees Celsius, the error that is a practical problem can be avoided. Therefore, continuous precision measurement of temperature is not essential, and occasional measurement is sufficient.On the other hand, according to the present invention, the measurement position can be changed by following the fluctuation of the bus line of the steel plate at the measurement point. Therefore, even if there is a variation in the ζ line of the steel plate due to the roots ζ, the fixed object 411j can always be measured and kept within the normal range.

(実施例) 本発明、の一実施例2171図から第3スに基いて説明
する。
(Example) An example of the present invention will be described based on FIG. 2171 to the third screen.

未実施例は熱延ラインに適用さ几るもので、材料Mは搬
送ロール1上全第1図矢視方E町に搬送さ几、圧延機の
上、下ロール2.3間に通板さルて圧延さnる。熱延用
圧延機には、圧延機への材料の導入全円滑に行うために
、その人側両サイドにサイドガイド(ドライブ側および
フリー側)4D。
The unimplemented example is applied to a hot rolling line, in which the material M is conveyed over the conveying roll 1 in the direction of arrow E in Fig. 1, and passed between the upper and lower rolls 2 and 3 of the rolling mill. Then it is rolled. The rolling mill for hot rolling has 4D side guides (drive side and free side) on both sides of the person's side to ensure smooth introduction of material into the rolling mill.

4Fが設けらnている。このサイドガイド4D。There are 4 floors. This side guide 4D.

4Fは、対象の材料の巾に応じて、その位置が予め変更
さ几、通常材料の一方の側縁から各々20myu程度離
さrてセットさnる。5は、ルーツくロールを示し、ス
タンド間の利料Mに適切な張力を与  ゛えて各スタン
ド間の圧延状@を安定させる定めに設けらnている0 いま、未実施例によ几ば、材料Mの幅方向に、複数対の
超音波距離計6(6a、6a、6b、6bが配設さルて
いる。図示の実施例では、2対の超音波距離計6a、6
a、6b、6bが設けら几、そ几ぞn広幅用、狭幅用と
なっている。こル′らの超音波距離計6は、後に詳述す
るように、たとえば/リンダー7’(7a、7a、7b
、7b)、油圧式駆動機構により上下に駆動さ几るよう
になっている。広幅用の超音波距離計6a+ 6aは、
第2図に示すように、広幅材料の両側端面外方に位置し
、こ1″Lを睨むように設置さ几ている。狭幅用の超音
波距離計6b、6bは、広幅材料の通板時には、第2因
に示すように下方退避位置にあり、通板の障害とならな
いようになっており、狭幅材料の通板時にはンリンダー
7b、7bにより上方に、駆動さnて、狭幅材料の両側
端面外方にあってこ几を睨む上方作用位置に配設さルる
The positions of the 4Fs are changed in advance depending on the width of the target material, and are usually set at a distance of about 20 myu from one side edge of the material. 5 indicates a root roll, which is provided to stabilize the rolled shape between each stand by applying an appropriate tension to the rolling stock M between the stands. , a plurality of pairs of ultrasonic distance meters 6 (6a, 6a, 6b, 6b) are arranged in the width direction of the material M. In the illustrated embodiment, two pairs of ultrasonic distance meters 6a, 6
A, 6b, and 6b are provided for wide and narrow widths. The ultrasonic distance meter 6 of these companies is, for example, / Linder 7' (7a, 7a, 7b), as will be described in detail later.
, 7b), it is driven up and down by a hydraulic drive mechanism. Ultrasonic distance meter 6a+ 6a for wide width is
As shown in Fig. 2, the ultrasonic range finders 6b and 6b for narrow width are located on the outside of both end surfaces of the wide material and are installed so as to look at this 1"L. During sheeting, it is in the downward retracted position as shown in the second factor, so that it does not become an obstacle to sheet threading, and when threading narrow width materials, it is driven upward by unlinders 7b, 7b, and the narrow width It is placed at an upper operating position facing the lever, which is located on the outside of both end faces of the material.

未実施例の測定装置には、さらに、超音波距離計6から
の距離信号を取り込んで材料の両(Il11端而までの
距離を演算する距離演算装@8 (8a + 8a。
The unembodied measuring device further includes a distance calculation device @8 (8a + 8a) that takes in the distance signal from the ultrasonic distance meter 6 and calculates the distance to both ends of the material (Il11).

8b、8b )と、演算結果に基いて材料の幅・蛇行を
算出する幅・蛇行算出装置9(9a、9b)と、板幅に
応じて算出出力を選択し、幅・蛇行量として出力する出
力選択装置10とが設けらnる○また、超音波距離計さ
らに正確には超音波センサ高さ位置を検出する超音波セ
ンサ位置検出器11と、ルーパロール5の角度を測定す
るルーパ角度測定装置12と、ルーパ角度よりバスライ
ン高さ位置を演算するバスライン高さ位置演算装置13
と、演算バスライン高さ位置を目標として超音波センサ
高さ位置を制御する超音波センサ位置制御装置14と、
板幅に応じて選択さ7″L、た超音波距離計、すなわち
広幅材料の場合には超音波距離計6a、6as狭幅材料
の場合には超音波距離計t3 b +6b、を選択する
手段15と選択手段15からの超音波距離計選択指令に
基いて選択さ/′L、た超音波距離計を、超音波センサ
位置制御装置からの信号に応じて/リンダーを駆動する
シリンダー駆動装@16とがさらに設けら几でいる。
8b, 8b), a width/meandering calculation device 9 (9a, 9b) that calculates the width/meandering of the material based on the calculation results, and selects a calculation output according to the board width and outputs it as the width/meandering amount. Also, an ultrasonic distance meter, more precisely an ultrasonic sensor position detector 11 that detects the height position of the ultrasonic sensor, and a looper angle measuring device that measures the angle of the looper roll 5 are provided. 12, and a bus line height position calculation device 13 that calculates the bus line height position from the looper angle.
and an ultrasonic sensor position control device 14 that controls the ultrasonic sensor height position with the calculated bus line height position as a target;
Means for selecting an ultrasonic distance meter 7"L selected according to the plate width, that is, an ultrasonic distance meter 6a for a wide material, and an ultrasonic distance meter t3b +6b for a 6as narrow material. 15 and a cylinder drive device for driving the cylinder selected based on the ultrasonic distance meter selection command from the selection means 15 in response to a signal from the ultrasonic sensor position control device. 16 are further provided.

第3図に基いて制御の概略を説明すると、まず、通板さ
几る材料の板幅に応じて、測定全行なう超音波距、ii
!、計対6 a 、  6 a Ifcはfib、6b
が選択さ几る〇一方、ルーパ角度測定装詩12によつル
ーバローラ5の角度が測定きnJこの測定角度から超音
波距離計設置位置における材料Mのバスライン高さ位置
がバスライン演算装置13により求めらnる。同時に超
音伎センサ高さ位置検出器11によりセンサ高さ位置が
検出さ几ており、上記演算バスライン高さ位置全目標と
(−でセンサ高さ位置がこ几と一致するよう、該当超音
波ll′I2離計の7リング駆動装置16を駆動するこ
とにより、制御さ几る00のようにして、ルーパローラ
5による材料Mのバスラインに変動があっても、常に材
料Mの両側端面を計測可能範囲内に位置させることがで
きる。
To explain the outline of the control based on FIG. 3, first, depending on the width of the material being threaded, the ultrasonic distance to be measured,
! , total pair 6 a, 6 a Ifc is fib, 6b
On the other hand, the angle of the louver roller 5 is measured by the looper angle measuring device 12, and from this measurement angle, the bus line height position of the material M at the ultrasonic distance meter installation position is determined by the bus line calculation device. 13. At the same time, the sensor height position is detected by the ultra-sonic sensor height position detector 11, and the corresponding calculated bus line height position is compared with the above calculated bus line height position (-) so that the sensor height position matches the target. By driving the seven-ring drive device 16 of the acoustic wave ll'I2 distance, the both end surfaces of the material M are always controlled even if there are fluctuations in the bus line of the material M caused by the looper roller 5. It can be located within the measurable range.

各超音波距離計6a、6a、6b、6bがらの距離信号
は距離演算装置8 a + 8 a + 8 b 、8
 bに取り込ま几、材料側端面までの距離が演算さルる
。このようにして得ら7″した距離は各超音波距離計対
ごとに幅・蛇行算出装置9a、9bに人力さ几、幅・蛇
行量が算出さ几る。出力選択装置10でば、超音波距離
計選択−J=段15がらの選択指令Qてし友がって、い
ず几かの超音波距離計対についての幅・蛇行量が選択さ
J’L、出力さnる0以上のように、通板さnる材料M
の板幅に応じて、超音波距離計の測定点が選択さnるの
で、常に材料Mに対して至近位置から測定を行なうこと
ができ、測定誤差を最小とすることができる。
Distance signals from each ultrasonic distance meter 6a, 6a, 6b, 6b are sent to a distance calculation device 8a + 8a + 8b, 8
The distance to the end surface on the material side is calculated. The 7" distance thus obtained is manually calculated by the width/meandering calculation devices 9a and 9b for each pair of ultrasonic distance meters.The output selection device 10 calculates the width/meandering amount. Sonic distance meter selection - J = selection command Q from stage 15, then the width and meandering amount for any pair of ultrasonic distance meters are selected J'L, output n is 0 or more The material M to be threaded as shown in
Since the measurement points of the ultrasonic distance meter are selected according to the width of the plate, it is possible to always measure the material M from a close position, and measurement errors can be minimized.

第・1図および第5図には、本発明の他の実施例が示さ
nる。
1 and 5 show other embodiments of the invention.

本実施例では、複数対の超音波距離計を材料の幅方向に
配設し、通板さ几る材料の板幅に応じて適宜切換使用す
る前記第1の実施例と異なり、一対の超音波距離計6,
6が使用さnl この超音波距離計は材料の幅方向に移
動可能な構成となっている。さらに詳細に説明すると、
超音波距離計6゜6はたとえばシ11ンダー7.7等の
上下駆動装置により上下方向に駆動可能とさnるととも
に、/リンダ−7,7は幅方向駆動装置17.17に固
着さ几ており、幅方向に駆動可能となっている。
In this embodiment, unlike the first embodiment, in which a plurality of pairs of ultrasonic range finders are arranged in the width direction of the material and are used by switching as appropriate depending on the width of the material to be threaded, a pair of ultrasonic range finders are used. Sonic distance meter 6,
6 is used nl This ultrasonic distance meter is configured to be movable in the width direction of the material. To explain in more detail,
The ultrasonic distance meter 6°6 can be driven in the vertical direction by a vertical drive device such as a cylinder 7.7, and the cylinders 7, 7 are fixed to a widthwise drive device 17.17. It can be driven in the width direction.

幅方向駆動装置17.17にはさらに抵抗式または磁気
音(■計18.18が取り付けらnている。
The widthwise drive device 17.17 is further equipped with a resistive or magnetic sound device (18.18 in total).

木実、@1/111り)制御のllχ略を第5図に基い
て説明すも。
Kimi, @1/111) The control llχ is explained based on Fig. 5.

まず、通板される拐料ヵ阪幅に心してj唱方向駆動装置
1f’i、16が駆動さn1超音波距離計6゜6が(オ
(」Q′こえ(1(、て至近1京首がらτ9[1定を行
なえるよう配置さ几る。ループ用度からト3料のバスラ
イン金木の、こrLに応1〕て堅詮波距離計ある論(ケ
セ/サーr立11′?全制御する方のは第1L実悔例と
同じでりる。
First, the direction driving device 1f'i, 16 is driven keeping in mind the width of the sliver to be passed through, and the ultrasonic distance meter 6°6 is There is a theory that there is a solid wave distance meter (Kese/Serr standing 11) in response to the bus line Kanagi's bus line Kanagi of 3 charges from the loop use. '? The one that controls everything is the same as the 1L example of actual repentance.

本実施例では、変位計18.18からの出方は、超音1
ノグ距に1F計6からの距Jl信号とと・もに距、・唯
演算装ガ8&こ入力さ几、材料の両端部位置が求めら几
る。
In this embodiment, the output from the displacement meter 18.18 is the ultrasonic 1
When the distance is input to the nog distance along with the distance Jl signal from the 1F meter 6, the positions of both ends of the material are determined.

求、りらnた両端部位置からさらに材料の幅・蛇行;6
が幅・蛇行算出乍1□°σ9により算出さnる〇七実姉
例:ζも・いても、第1D実施例と同様シこ、バス:)
イノが変′1ツノしても1・;1゛にt」4一時國1′
7波距!ηItii士・、’) ;i’jl定−1丁1
1巨範:用1rC飲(]゛tさせることがてきるととも
に、超a波距、“η(を計f))il’jll定点全1
オ(3Fの至近(57置とすもことかてするので、測定
1山とを二“(り小とすることができる。なお、この実
施例では、超音波距離計が一対ですむため、機構が単純
となる利点かある。
Further increase the width and meandering of the material from both end positions; 6
The width and meandering are calculated by 1□°σ9.
Even if Ino changes '1 horn, it's 1.;
7 wave distance! ηItii 士・,');
1 big example: It is possible to use 1rC (]゛t, and the ultra-a wave distance, "η (total f))il'jll fixed point all 1
(57), so one measurement peak can be as small as 2. There is an advantage that the mechanism is simple.

なお、上記各実施例において、好ましくは、上下、駆動
可能な基準板19i設け、スタンド間cで材料がない時
にこの基準数19全超音波距離計の計測範囲に上昇させ
るようにし、既知の超音波7(土離計−基準板間距離と
の比較に上り超γテ1ノシ距雅計の校正全行なうよ’+
[さする。スタンド間に弓゛科がある時、すなわち圧延
中は、基僧坂J!−)は材料と干渉しない位置まで7リ
ンダー等により下降さ几る。
In each of the above-mentioned embodiments, it is preferable to provide a reference plate 19i that can be moved upwardly and downwardly, so that when there is no material between the stands c, the reference plate 19 is raised to the measurement range of the total ultrasonic distance meter, and a known ultrasonic distance meter is used. Sound wave 7 (Compare the distance between the soil meter and the reference plate and perform all the calibrations of the distance meter.
[Rubbing. When there is a bow between the stands, that is, during rolling, Kisozaka J! -) is lowered using a 7-liner etc. to a position where it does not interfere with the material.

(効果) 上記したように、本発明によれば、超音波距離計を使用
することにより、周囲環境の影W At受けずに熱延ラ
イノ等における帯1に体の幅・蛇行をF1411定でき
るようにする一方で、超音波距離計の測定点全バスライ
ンに追従さごるとともに11;゛天体の両ツ11端面外
方の至近位置に設定でさる溝数とすることにより、超音
波距離計の欠点である測定モ町北領域の問題訃よび温朋
:・ζよる測定誤差り間:】が駈決さ!1.on 1    図 1を百 σ) 1m パh、  な 1
1兜 12月第1図は木定明の第1実施列の限要説明゛
ト面図、第21閾は同正面図、第13図は同制御漿略図
、第1I図は本発明の第2実施例の眠要説明正面図、第
5図は同!fi(1@概略図、第614は従来法の正面
図、第7図はその平面図、第81凶は寸法誤認態様の説
甲図である。
(Effects) As described above, according to the present invention, by using an ultrasonic range finder, it is possible to determine the width and meandering of the body of band 1 in hot rolling rhino etc. without being affected by the surrounding environment. At the same time, the measurement points of the ultrasonic distance meter can follow all the bus lines, and by setting the number of grooves at the closest position outside the end face of the celestial object, the ultrasonic distance can be The shortcomings of the meter, the problems in the northern area of the measurement area, and the measurement error due to ζ, have come to a head! 1. on 1 Figure 1 to 100 σ) 1m Pah, na 1
1 December Figure 1 is a limited explanatory front view of the first implementation row of Kisadaaki, the 21st threshold is a front view of the same, Figure 13 is a schematic diagram of the same control panel, and Figure 1I is a diagram of the present invention. The explanation front view and Figure 5 of the second embodiment are the same! fi (1@Schematic diagram, No. 614 is a front view of the conventional method, FIG. 7 is a plan view thereof, and No. 81 is an explanatory view of a form of dimensional misrecognition.

〜■・・l第14  5・・ルー・シローラ[〕(+]
a  、  +5  b  ’)  ・・超Ff i皮
h1巨離 マド7(7a、7b)・・/リノダー 17・・幅方向、小動し置 18・・変位計 4?許出出1願  生反金属工妄株式会社1℃理人弁理
士   水  井  梃  入・j 第1図 第2図 、2 tυ         /D 第3図 第4図 第5図 第6図 Dt                     つと
~■...l No. 14 5...Lou Shirola [](+]
a, +5 b')...Super Ff i skin h1 large distance Mado 7 (7a, 7b).../renoder 17...width direction, small movement position 18...displacement meter 4? 1 Application for Permission Seikan Metal Engineering Co., Ltd. 1℃ Patent Attorney Mizui Kaoru Iri・j Figure 1 Figure 2, 2 tυ /D Figure 3 Figure 4 Figure 5 Figure 6 Dt One.

Claims (1)

【特許請求の範囲】[Claims] (1)帯状体の圧延ラインに設置されその帯状体の幅ま
たは蛇行を測定するものであって、帯状体の両側端面外
方に臨んで帯状体の幅に応じて側端面に対する離隔測定
点位置の選択可能な少なくとも1対の超音波距離計と、
帯状体のバスライン高さ位置検出器と、これからのバス
ライン信号および現帯状体の幅情報に基いて前記超音波
距離計を所望の離隔測定点位置および高さ位置に設定す
る超音波距離計駆動装置と、超音波距離計と帯状体測端
面間の距離を測定し、これに基いて帯状体の幅蛇行を算
出する装置とを備えたことを特徴とする帯状体の幅・蛇
行測定装置。
(1) A device installed on a rolling line for strips to measure the width or meandering of the strip, facing outward from both end surfaces of the strip and positioning measurement points at distances from the side end surfaces according to the width of the strip. at least one selectable pair of ultrasonic distance meters;
An ultrasonic distance meter that sets the ultrasonic distance meter to a desired remote measurement point position and height position based on a bus line height position detector of a strip body, and a future bus line signal and current width information of the strip body. A device for measuring the width and meandering of a band-shaped object, comprising a drive device, and a device that measures the distance between an ultrasonic distance meter and the measuring end face of the band-shaped object, and calculates the width and meandering of the band-like object based on this. .
JP59187493A 1984-09-06 1984-09-06 Measuring instrument of width and zigzag of band-like body Pending JPS6165108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59187493A JPS6165108A (en) 1984-09-06 1984-09-06 Measuring instrument of width and zigzag of band-like body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59187493A JPS6165108A (en) 1984-09-06 1984-09-06 Measuring instrument of width and zigzag of band-like body

Publications (1)

Publication Number Publication Date
JPS6165108A true JPS6165108A (en) 1986-04-03

Family

ID=16207024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59187493A Pending JPS6165108A (en) 1984-09-06 1984-09-06 Measuring instrument of width and zigzag of band-like body

Country Status (1)

Country Link
JP (1) JPS6165108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001089A (en) * 2018-06-25 2020-01-09 東莞理工学院 Fixed-distance transport punching machine for piece shape body which can detect failure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001089A (en) * 2018-06-25 2020-01-09 東莞理工学院 Fixed-distance transport punching machine for piece shape body which can detect failure

Similar Documents

Publication Publication Date Title
EP2492634B1 (en) Method of measuring flatness of sheet and method of manufacturing steel sheet using same
KR960010674B1 (en) Non-contact determination of the position of a rectilinear feature of an article
JPH04274706A (en) Thickness measuring apparatus
US7054013B2 (en) Process and device for measuring distances on strips of bright metal strip
US6480802B1 (en) Method for determining the flatness of a material strip
JPS6165108A (en) Measuring instrument of width and zigzag of band-like body
KR960013682B1 (en) Process and apparatus for measuring sizes of steel spections
JPH08193887A (en) Method for measuring temperature of material in hot rolling line
JPH05107124A (en) Method and device for nondestructive-measuring characteristic of continuously manufactured product by on-line
CN109675936A (en) Strip shape wave on-line detecting system and method
US3798450A (en) Apparatus for detecting corrugation of strip material
JPS5842904A (en) Length measuring device
JPH0663848B2 (en) How to measure the surface temperature of an object
JPH0437924B2 (en)
JPH06273162A (en) Flatness measuring device
JPH01113102A (en) Method for edging thick steel plate
JPS5964112A (en) Method and device for automatic control of sheet width in continuous hot rolling mill
JP2825428B2 (en) Strip crown control method in rolling mill
JPH03218404A (en) Method and device for measuring shape of plate
JPS6073309A (en) Measurement of surface roughness pattern of running sheet material
JPS6254116A (en) Shape measuring method for hot plate material
JPS6254109A (en) Width and meandering measuring instrument for band-shaped body
KR100332710B1 (en) Method and device for measuring shape and / or leveling of moving strip steel
JPS6035231A (en) Method for measuring temperature distribution in substance
JPH0381605A (en) Flatness measuring method