JPS6254116A - Shape measuring method for hot plate material - Google Patents

Shape measuring method for hot plate material

Info

Publication number
JPS6254116A
JPS6254116A JP19359685A JP19359685A JPS6254116A JP S6254116 A JPS6254116 A JP S6254116A JP 19359685 A JP19359685 A JP 19359685A JP 19359685 A JP19359685 A JP 19359685A JP S6254116 A JPS6254116 A JP S6254116A
Authority
JP
Japan
Prior art keywords
hot
shape
measured
plate material
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19359685A
Other languages
Japanese (ja)
Inventor
Sakae Tezuka
手塚 栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19359685A priority Critical patent/JPS6254116A/en
Publication of JPS6254116A publication Critical patent/JPS6254116A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/06Width

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To presume wave distortion of plate material after cooling during heating with good accuracy by correcting the thermal expansion on a measured result of a hot wave-distortional shape based on the measured result of a temperature distribution of the hot plate material. CONSTITUTION:When a hot-rolled steel plate 10 is being rolled or after the steel plate is rolled, the width and the edge position are measured by a width edge meter 16 and edge position meters 18 and 20 while the steel plate is conveyed by a table roller 12. Further, at the same time, the temperature distribution of the steel plate 10 in the width direction is measured by a radiation thermometer 22 and the wave- distortional shape of the steel plate 10 is measured by a range finder 24. In this way, the width and the position of the edge at a certain position in the (y) direction and the temperature and height of each position in the (x) direction of the position in the (y) direction are measured and inputted to an arithmetic indicator 26 by a pulse from a pulse transmitter 14 for every prescribed conveyance distance and a map of the width, the edge position, the temperature and the height is prepared. Then, the indicator 26 calculates the flat shape of the plate after the plate is cooled and corrected to the flatness using the distribution of the temperature and height and adding the thermal dimensional correction and the wave-distortional correction.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、熱間板材の形状測定方法に係り、特に、厚鋼
板や熱延鋼帯等の平面形状と波歪を熱間で測定する際に
用いるのに好適な、熱間板材の形状測定方法の改良に関
するものである。
The present invention relates to a method for measuring the shape of hot-worked sheet materials, and is particularly suitable for measuring the planar shape and wave distortion of thick steel plates, hot-rolled steel strips, etc. It concerns an improvement in the method.

【従来の技術】[Conventional technology]

熱間の板材、特に厚鋼板や熱延鋼帯等を圧延するときに
、平面形状不良、特に曲りと、耳波、中伸び等の波歪(
平坦度不良)が発生することがある。曲りが発生すると
目標通りの製品が採取できなかったり、圧延中に設備を
破損したりする問題がある。又、波歪は製品価値を著し
く低下させる。 従って、平面形状や波歪を知ることは、次の圧延パスに
おける圧延の仕方を決定したり、その板の処分方法を決
定する上で非常に重要である。 従って、従来から、例えば特開昭53−31159で提
案されているような波歪の測定技術や、特公昭48−3
2744で提案されているような平面形状測定技術が開
発され、冷間、熱間を問わず使用されている。
When rolling hot plate materials, especially thick steel plates and hot-rolled steel strips, flat shape defects, especially bends, and wave distortions such as ear waves and mid-elongation (
(Poor flatness) may occur. If bending occurs, there are problems such as not being able to collect the desired product or damaging the equipment during rolling. Moreover, wave distortion significantly reduces product value. Therefore, knowing the planar shape and wave distortion is very important in determining the rolling method in the next rolling pass and in determining the disposal method of the plate. Therefore, wave distortion measurement techniques such as those proposed in Japanese Patent Application Laid-Open No. 53-31159, Japanese Patent Publication No. 48-3
Planar shape measurement techniques such as those proposed in No. 2744 have been developed and are used in both cold and hot applications.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかしながら、板肉の温度分布は必ずしも一様でなく、
温度分布による熱膨r&量も不均一であることが多い。 従って、このような場合は、前記の技術をそのまま熱間
材の測定に用いた場合、熱間における測定は正確に行え
るとしても、この熱間材が冷却した後、前記測定結果と
は異なつ値となることを考慮するものではなく、板肉温
度分布により波歪や平面形状測定に誤差を生じる。 例えばスラブを加熱炉内で加熱づる際に発生する偏加熱
(片焼け)により、スラブの幅方向にほぼ一様な勾配の
温度分布が生じる。このとき、高温側は変形抵抗が小さ
いために圧延後の板厚が薄くなり、その結果反対側より
よく伸びるために、板は曲り(キャンバ)を生じる。こ
れに対し、例えば、特開昭49−96955で提案され
ている如く、左右のO−ル開度差を変えることにより板
の曲りを解消するように圧延する技術がある。又、波歪
については、矯正機を用いて矯正する技術がある。 ところが、熱間の測定値をそのまま使用した場合、波歪
については矯正機の圧下設定が十分正確にはできず、又
、平面形状についても、圧延中にその被圧延材の冷却後
の頁の平面形状を考慮した平面形状の修正が行えず、歩
留り等の面で熱間測定結果が十分反映されているとはい
えながった。 即ら、圧延後の鋼根笠では、熱収縮は相対的に10−1
〜10−2のオーダーになることがある。一方、板材の
曲りヤ波歪においては、10−3のオーダーの歪が問題
になり、このような波歪やmU分布を実測してそれらに
よって板材の曲りヤ板歪を補正する必要がある。ところ
が、従来の曲りヤ波歪の測定方法においては、このよう
な補正を伴った測定方法は存在しなかった。 r発明の目的】 本発明は、前記従来の間賂点を解消するべくなされたも
ので、板材の冷却後の波歪を熱間で精度よく推定するこ
とができる熱間板材の形状測定方法を提供することを第
1の目的とする。 又、本発明は、板材の冷却後且つ矯正後の平面形状を熱
提で精瓜よく推定することができる熱間板Iの形状測定
方法を提供することを第2の目的とする。
However, the temperature distribution of the plank is not necessarily uniform;
The amount of thermal expansion r& due to temperature distribution is also often non-uniform. Therefore, in such a case, if the above-mentioned technique is used as it is to measure the hot material, even if the hot measurement can be made accurately, after the hot material has cooled, the measurement result may be different from the above measurement result. It does not take into account the actual value, and errors occur in wave distortion and planar shape measurement due to the plate wall temperature distribution. For example, uneven heating (unilateral burning) that occurs when a slab is heated in a heating furnace causes a temperature distribution with a substantially uniform gradient in the width direction of the slab. At this time, since the deformation resistance is low on the high temperature side, the thickness of the plate after rolling becomes thinner, and as a result, the plate stretches better than the opposite side, causing bending (camber) in the plate. On the other hand, there is a technique, as proposed in Japanese Patent Laid-Open No. 49-96955, in which the bending of the plate is eliminated by changing the difference in opening between the left and right O-ru. Furthermore, there is a technique for correcting wave distortion using a straightening machine. However, if the hot measurement values are used as they are, the reduction setting of the straightening machine cannot be set sufficiently accurately for wave distortion, and the flat shape cannot be adjusted properly during rolling after the rolled material is cooled. The planar shape could not be corrected in consideration of the planar shape, and it could not be said that the hot measurement results were sufficiently reflected in terms of yield, etc. That is, the heat shrinkage of the steel cap after rolling is relatively 10-1.
It can be on the order of ~10-2. On the other hand, distortion of the order of 10-3 is a problem with bending wave distortion of the plate material, and it is necessary to actually measure such wave distortion and mU distribution and correct the bending wave distortion of the plate material. However, in the conventional measuring method of tortuosity wave distortion, there is no measuring method that involves such correction. Object of the Invention The present invention has been made to solve the above-mentioned conventional problems, and provides a method for measuring the shape of a hot plate material that can accurately estimate the wave distortion of the plate material after cooling. The primary purpose is to provide. A second object of the present invention is to provide a method for measuring the shape of a hot plate I, which can accurately estimate the planar shape of the plate material after it has been cooled and straightened.

【問題点を解決するための手段】[Means to solve the problem]

本発明は、熱間板材の波歪形状を測定するに際して、第
1図にその要旨を示ず如く、熱間板材の温度分布も同時
に測定し、該温度分布の測定結果に基づいて、熱間にお
ける波歪形状の測定結果を熱V、脹補正して、板材の冷
却後の波歪形状を推定することにより、前記第1の目的
を達成したものである。 又、本発明は、熱間板材の平面形状を測定するに際して
、第2図にその要旨を示す如く、熱間板材の温度分布及
び波歪形状も同時に測定し、該温度分布及び波歪形状の
測定結果に基づいて、熱間における平面形状の測定結果
を補正して、板材の冷却後且つ矯正後の平面形状を推定
することにより、前記第2の目的を達成したものである
。 (作用] 熱間圧延中又は圧延直後の板材は、一般に板肉の平面的
な温度分布と波歪を有している。今、第3図に示す如く
、板10の長手方向、即ち搬送方向にX軸をとり、先端
をx=Qとする。又、板の幅方向、即ち搬送方向に直角
な方向にy軸をとり、幅中心をy−0とする。又、板肉
の点A (x 、 v )の空温との温度差をθ<x 
、 y >とじ、長手方向の板波の傾き角をβ(x 、
 y ) 、波歪の振幅の暴準位置からの高さをh(y
)、波長を1(y)とする。 すると、点Aの周囲の板材を空温まで冷却した後、平坦
に矯正したときの点Aの近傍の点B(x十dx、 y 
+dy)は、点Aを固定して考えると点B’  (x 
+dx” 、y +dy’ )に移り、次式の関係が成
立する。 dX=(1−+4−θ(x’ 、y’ ))dx’ ・
 (1)dV=(1+α・θ(x’  、y’  ))
dy’  ・・・(2)dx’  −dX” −CQS
 β           ・(3)β=(X/J2)
  ・2π+β0      ・・・(4)dh(X 
、 V ) =dX’  −tan β      ・
(5)ここで、αは線膨張係数である。 面出(1)式と(2)式は次のように近似することがで
きる。 dx’=(1−(X・θ (x 、 V )  )dx
−(1’  )dy’  = (1−α・θ(X、V)
)dV・・・(2′ )従って、次式の関係が成立する
。 dx” = (1−α・θ(X 、 V ) )xSe
C((x/i)・2π+βG)−dx・・・(6) dl+(x Sy ) −(1−α・θ(x 、 y 
) )xtan((x /12 )・2π十β0)・d
x        ・・・(7) この(2)、(6)、(7)式より、冷却後の平面形状
(Xe″、we’)と波歪の高さh′(x、y)は、次
のように表わされる。 xe″=、r”(1−(X ・θ(X、l/))−se
c((X /fl )  ・2π+β0)・dx・・・
(8) Ve’=J”(1−α・θ(x、y))dy・・・(9
) h’  (x、V)=/″(1−a−θ(X 、 l/
 ) ’jxtan((x /i )・2π +β0)・dx   ・・・(10) ここで、(Xe、Me)は、高温板材の平面形状を表わ
す端部位置の任意の点の座標である。従って、この(X
e、Ve)と(Xe’ 、  Ve’ )との差及びl
+(x、y)とil’(X、y)との差が冷却による平
面形状と波歪形状の測定誤差となる。 従って、本発明においては、熱間板材の波歪形状を測定
するに際して、熱間板材の温度分布も同時に測定し、該
温度分布の測定結果に基づいて、熱間における波歪形状
の測定結果を線膨張補正7るようにしている。従って、
板材の冷却後の波歪形状が熱間でla度よく推定できる
。 又、熱間板Hの平面形状を測定するに際して、熱間板材
の温度分布及び波歪形状も同時に測定し、該温度分布及
び波歪形状の測定結果に基づいて、熱間における平面形
状の測定結果を補正するようにしている。従って、板材
の冷却後且つ矯正後の平面形状を熱間で精度よく推定す
ることができる。 なお、冷却は、自然放冷か少量の冷却水による緩冷却を
前提としているが、人世の冷却水を用いる強冷却につい
ては、その冷却条件を加味して、更に補正することによ
って、精度のよい測定結果を得ることができる。
As shown in FIG. 1, when measuring the wave distortion shape of a hot plate material, the present invention simultaneously measures the temperature distribution of the hot plate material, and based on the measurement results of the temperature distribution, The first objective is achieved by correcting the wave distortion shape measured by heat V and swelling in order to estimate the wave distortion shape after cooling of the plate material. Furthermore, when measuring the planar shape of a hot work plate, the present invention also measures the temperature distribution and wave distortion shape of the hot work board at the same time, as shown in FIG. The second objective is achieved by correcting the hot planar shape measurement results based on the measurement results and estimating the planar shape of the plate after cooling and straightening. (Function) A plate material during hot rolling or immediately after rolling generally has a planar temperature distribution and wave distortion of the plate thickness.As shown in FIG. The X-axis is set at , and the tip is x = Q.The y-axis is set in the width direction of the board, that is, the direction perpendicular to the conveyance direction, and the width center is set at y-0.Also, the point A on the board The temperature difference between (x, v) and the air temperature is θ<x
, y > binding, and the inclination angle of the plate wave in the longitudinal direction is β(x,
y), and the height of the wave distortion amplitude from the normal position to h(y
), and the wavelength is 1(y). Then, after cooling the plate material around point A to air temperature and straightening it flat, point B (x 0 dx, y
+dy) is considered as point B' (x
+dx'', y +dy'), and the following relationship holds true: dX=(1-+4-θ(x', y'))dx'
(1) dV=(1+α・θ(x', y'))
dy'...(2)dx'-dX"-CQS
β ・(3)β=(X/J2)
・2π+β0...(4)dh(X
, V ) = dX' - tan β ・
(5) Here, α is the linear expansion coefficient. Mende equations (1) and (2) can be approximated as follows. dx'=(1-(X・θ(x, V))dx
-(1')dy' = (1-α・θ(X, V)
)dV...(2') Therefore, the following relationship holds true. dx" = (1-α・θ(X, V))xSe
C((x/i)・2π+βG)−dx...(6) dl+(x Sy) −(1−α・θ(x, y
))xtan((x/12)・2π×β0)・d
x ... (7) From equations (2), (6), and (7), the planar shape (Xe'', we') and wave distortion height h' (x, y) after cooling are as follows. It is expressed as: xe″=, r”(1-(X ・θ(X, l/))-se
c((X/fl)・2π+β0)・dx...
(8) Ve'=J"(1-α・θ(x,y))dy...(9
) h' (x, V)=/''(1-a-θ(X, l/
)'jxtan((x/i)・2π+β0)・dx (10) Here, (Xe, Me) are the coordinates of an arbitrary point at the end position representing the planar shape of the high-temperature plate material. Therefore, this (X
The difference between e, Ve) and (Xe', Ve') and l
The difference between +(x, y) and il'(X, y) becomes the measurement error of the planar shape and wave distortion shape due to cooling. Therefore, in the present invention, when measuring the wave distortion shape of the hot plate material, the temperature distribution of the hot plate material is also measured at the same time, and based on the measurement result of the temperature distribution, the measurement result of the wave distortion shape in the hot process is determined. Linear expansion correction 7 is applied. Therefore,
The shape of wave distortion after cooling the plate material can be accurately estimated in the hot state. In addition, when measuring the planar shape of the hot work plate H, the temperature distribution and wave distortion shape of the hot work board material are also measured at the same time, and based on the measurement results of the temperature distribution and wave distortion shape, the planar shape during hot work is measured. I am trying to correct the results. Therefore, the planar shape of the plate material after cooling and straightening can be accurately estimated in the hot state. Note that cooling is based on natural cooling or slow cooling using a small amount of cooling water, but for strong cooling using human cooling water, it is possible to achieve high accuracy by taking into account the cooling conditions and making further corrections. Measurement results can be obtained.

【実施例】【Example】

以下図面を参照して、本発明に係る熱間板材の形状測定
方法が採用された熱延鋼板の形状測定方法の実施例を詳
細に説明する。 本実施例は、第4図に示す如(構成されており、図にお
いて、10は、圧延された板、例えば熱延鋼板、12は
、該熱延鋼板10を搬送するテーブルローラ、14は、
該テーブルローラ12の回転角を測定するパルス発信器
、16は、熱延鋼板10の幅とエツジ位置を同時に測定
する幅エツジ計、18及び20は、熱延鋼板10のエツ
ジ位置を測定するエツジ位置S1.22は、熱延鋼板1
0の表面温度θを幅方向に測定するための、熱延鋼板1
0の幅方向に多数並設された放射温度計、24は、熱延
鋼板10の波歪形状を幅方向に測定するための、熱延鋼
板10の幅方向に多数並設された距頭計、26は、熱延
鋼板10の形状を演算し表示するPAn表示器である。 前記幅エツジ計16及びエツジ位置計18.20は、熱
延鋼板10自身の発生する赤外光を受光する形式のもの
でもよいし、又、熱延鋼板10に対し反対側に置いた光
源を熱延鋼板10が遮蔽することを利用する形式のもの
でもよい。又、それらの検出器としては、CODカメラ
等でもよいし、又、回転スリットドラムとフォトマルチ
プライヤを組合わせた形式のものでもよい。 前記放射温度計22は、第4図に示した如く、多数の放
射温度計22を熱延鋼板1oの幅方向、即らy方向に並
べ、それらの放!)j温度計の信号を走査して収集する
方式でもよいし、あるいは、1台の放射温度計を板幅方
向に走査する形式のものでもよい。 更に、前記距離計24は、レーザ光を使った光マイクロ
メータ方式、水中超音波方式あるいは水柱電気抵抗方式
等の距離計をy方向に多数設置し、それらの出力を走査
して収集する方式とすることができる。 以下実施例の作用を説明する。 熱延鋼板10が圧延されているとき、又は圧延された後
にテーブルローラ12で搬送される途中で、幅エツジ計
16及びエツジ位置計18.20によって、幅とエツジ
位置を測定する。又同時に放射温度計22によって、熱
延鋼板10の幅方向温度分布を測定すると共に、距離計
24によって、熱延鋼板10の波歪形状、即ち高ざhの
分布を測定J”る。 このようにして、■方向のある位置における幅とエツジ
の位置及びその■方向位置の各X方向位置の温度と高さ
が測定され、所定の搬送距離毎にパルス発信器14から
発せられるパルスによって、演算表示器26に入力され
、幅、エツジ位置、温度、高さのマツプが作成される。 演算表示器26は、温度と高さの分布を用いて、前出(
7)式及び(8)式を基に熱寸補正と波歪補正を加えて
、冷!J]後で且つ平坦に矯正した後の板の平面形状を
求める。叩も、補正前の形状は(xe、  we)で表
わされ、波歪はh<x、y)で表わされると仮定すると
、補正後の形状は(8)式と(9)式、波歪は(10)
式で表わされる。 仕上り寸法が厚み12mm1幅50001111長ざ4
0000關の厚板を、圧延後に温度、歪、平面形状を測
定したところ、温度は第5図に示づ如く、作業側(WS
)が700″C1中央部が900’C1駆動flll(
DS>が800″Cで、歪は、WS、DSとも対称テΔ
H(V ) 712−441度λ=o。 5%の耳波となっており、更に平面形状は、はぼ一様な
曲率でDSが凸に150mm曲っていた。ここで、ΔH
(y )は、第6図に示ず如く、波歪高さの1/2であ
る。 この厚板を一様の数量分布のミストスプレィにより空温
まで緩冷却した後、歪を測定したところ、λ=0.67
%の耳波であった。更にこの冷却後の厚板をローラ矯正
機で矯正して平坦にした後、平面形状を測定した結果、
曲り量は185 mmになっていた。 このような例において、本発明により熱間の測定値を補
正した場合、熱間における測定値に基づく推定値がλ=
0.61%、曲り間=200龍となった。これは、冷却
後、あるいは矯正後の値に対する誤差が、それぞれ65
%、57%減少したことに相当する。 なお前記実施例においては、熱延鋼板10の温度分布及
び波歪形状の測定結果に基づいて、熱間における平面形
状の測定結果を補正して、熱延鋼板10の冷却後且つ矯
正後の平面形状を推定するようにしていたが、本発明の
適用範囲はこれに限定されず、熱延鋼板10の波歪形状
を測定するに際して、温度分布の測定結果に基づいて、
熱間における波歪形状の測定結果を熱膨張補正して、板
材の冷却後の波歪形状を推定する場合にも同様に適用で
きることは明らかである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of a method for measuring the shape of a hot-rolled steel sheet, in which the method for measuring the shape of a hot-rolled steel sheet according to the present invention is adopted, will be described in detail below with reference to the drawings. The present embodiment is constructed as shown in FIG.
16 is a width edge meter that measures the width and edge position of the hot rolled steel plate 10 at the same time; 18 and 20 are edge meters that measure the edge position of the hot rolled steel plate 10; Position S1.22 is hot rolled steel plate 1
Hot rolled steel plate 1 for measuring the surface temperature θ of 0 in the width direction
Numerous radiation thermometers 24 are arranged in parallel in the width direction of the hot rolled steel sheet 10, and 24 are distance meters arranged in large number in the width direction of the hot rolled steel sheet 10 for measuring the wave distortion shape of the hot rolled steel sheet 10 in the width direction. , 26 is a PAn display that calculates and displays the shape of the hot rolled steel sheet 10. The width edge meter 16 and edge position meter 18.20 may be of a type that receives infrared light generated by the hot rolled steel sheet 10 itself, or may be of a type that receives infrared light generated by the hot rolled steel sheet 10, or a light source placed on the opposite side to the hot rolled steel sheet 10. A type that utilizes the shielding effect of the hot rolled steel plate 10 may also be used. Further, these detectors may be a COD camera or the like, or a combination of a rotating slit drum and a photomultiplier. As shown in FIG. 4, the radiation thermometer 22 is constructed by arranging a large number of radiation thermometers 22 in the width direction of the hot rolled steel sheet 1o, that is, in the y direction, and measuring the radiation of the radiation thermometers 22. )j The method may be one in which the signals of the thermometer are scanned and collected, or the method may be one in which one radiation thermometer is scanned in the board width direction. Further, the distance meter 24 may be a method in which a number of distance meters such as an optical micrometer method using a laser beam, an underwater ultrasonic method, or a water column electrical resistance method are installed in the y direction, and their outputs are scanned and collected. can do. The operation of the embodiment will be explained below. While the hot-rolled steel sheet 10 is being rolled, or while being conveyed by the table rollers 12 after being rolled, the width and edge position are measured by the width edge meter 16 and edge position meter 18, 20. At the same time, the radiation thermometer 22 measures the temperature distribution in the width direction of the hot-rolled steel sheet 10, and the distance meter 24 measures the wave distortion shape, that is, the distribution of height h, of the hot-rolled steel sheet 10. Then, the width and edge position at a certain position in the ■ direction, and the temperature and height at each X direction position of that position in the The information is input to the display 26, and a map of width, edge position, temperature, and height is created.The calculation display 26 uses the temperature and height distribution to
Based on equations (7) and (8), thermal dimension correction and wave distortion correction are added, and cold! J] Find the planar shape of the plate after it has been straightened to be flat. Assuming that the shape before correction is expressed by (xe, we) and the wave distortion is expressed by h<x, y), the shape after correction is expressed by equations (8), (9), and wave distortion. The distortion is (10)
It is expressed by the formula. Finished dimensions are thickness 12mm, width 50001111, length 4
When we measured the temperature, strain, and planar shape of a 0,000 mm thick plate after rolling, we found that the temperature was on the working side (WS) as shown in Figure 5.
) is 700″C1 center part is 900′C1 drive flll(
DS> is 800″C, and the distortion is symmetrical TeΔ for both WS and DS.
H(V) 712-441 degrees λ=o. The ear wave was 5%, and the planar shape had a uniform curvature, with the DS convexly curved by 150 mm. Here, ΔH
(y) is 1/2 of the wave distortion height, as shown in FIG. After slowly cooling this thick plate to air temperature by spraying mist with a uniform quantity distribution, the strain was measured, and it was found that λ = 0.67.
% ear waves. Furthermore, after straightening the cooled thick plate using a roller straightener to make it flat, the planar shape was measured.
The amount of bend was 185 mm. In such an example, when the hot measurement value is corrected according to the present invention, the estimated value based on the hot measurement value becomes λ=
0.61%, curve interval = 200 dragons. This means that the error for the value after cooling or after correction is 65, respectively.
%, corresponding to a decrease of 57%. In the above embodiments, the measurement results of the hot planar shape are corrected based on the measurement results of the temperature distribution and wave distortion shape of the hot rolled steel sheet 10, and the planar shape of the hot rolled steel sheet 10 after cooling and straightening is corrected. Although the shape was estimated, the scope of application of the present invention is not limited to this, and when measuring the wave distortion shape of the hot rolled steel sheet 10, based on the measurement results of the temperature distribution,
It is clear that the present invention can be similarly applied to the case where the wave distortion shape of a plate material is estimated after cooling by thermal expansion correction of the measurement results of the wave distortion shape in hot conditions.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、板材の冷却後の波
歪形状及び冷f!I後且つ矯正後の平面形状を熱間で正
確に推定することが可能となる。従って、波歪形状に関
しては、熱間矯正機における矯正ロールの圧下口を正確
に設定することが可能となる。又、平面形状に関しては
、圧延中に冷却後且つ矯正後の予測形状に基づいて、正
確な形状修正が可能となり、歩留り向上に寄与するとこ
ろが大であるという優れた効果を有する。
As explained above, according to the present invention, the wave distortion shape and the cooling f! It becomes possible to hotly and accurately estimate the planar shape after I and after correction. Therefore, regarding the wave distortion shape, it is possible to accurately set the rolling opening of the straightening roll in the hot straightening machine. In addition, regarding the planar shape, it is possible to accurately correct the shape based on the predicted shape after cooling and straightening during rolling, which has an excellent effect that greatly contributes to improving yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1及び第2図は、本発明に係る熱間板材の形状測定方
法の要旨を示ず流れ図、第3図は、本発明の詳細な説明
するための、耳波が発生している板材を示す斜視図、第
4図は、本発明が採用された熱延鋼板の形状測定装置の
実施例の構成を示ず、一部ブロック線図を含む斜視図、
第5図は、前記実施例で測定された、熱延鋼板の温度分
布の例を示す斜視図、第6図は、波歪の例を示す縦断面
図である。 10・・・熱延鋼板、  14・・・パルス発信器、1
6・・・幅エツジ計、 18.20・・・エツジ位置計
、22・・・放射温度計、 24・・・距離計、26・
・・演算表示器。
1 and 2 are flowcharts without showing the gist of the method for measuring the shape of hot plate materials according to the present invention, and FIG. The perspective view shown in FIG. 4 does not show the configuration of the embodiment of the hot-rolled steel sheet shape measuring device to which the present invention is adopted, but is a perspective view partially including a block diagram.
FIG. 5 is a perspective view showing an example of the temperature distribution of a hot rolled steel sheet measured in the above example, and FIG. 6 is a longitudinal sectional view showing an example of wave distortion. 10...Hot rolled steel plate, 14...Pulse transmitter, 1
6...Width edge meter, 18.20...Edge position meter, 22...Radiation thermometer, 24...Distance meter, 26.
...Calculation display.

Claims (2)

【特許請求の範囲】[Claims] (1)熱間板材の波歪形状を測定するに際して、熱間板
材の温度分布も同時に測定し、 該温度分布の測定結果に基づいて、熱間における波歪形
状の測定結果を熱膨張補正して、板材の冷却後の波歪形
状を推定することを特徴とする熱間板材の形状測定方法
(1) When measuring the wave distortion shape of the hot plate material, the temperature distribution of the hot plate material is also measured at the same time, and based on the measurement result of the temperature distribution, the measurement result of the wave distortion shape in the hot process is corrected for thermal expansion. A method for measuring the shape of a hot plate material, characterized by estimating the wave distortion shape of the plate material after cooling.
(2)熱間板材の平面形状を測定するに際して、熱間板
材の温度分布及び波歪形状も同時に測定し、 該温度分布及び波歪形状の測定結果に基づいて、熱間に
おける平面形状の測定結果を補正して、板材の冷却後且
つ矯正後の平面形状を推定することを特徴とする熱間板
材の形状測定方法。
(2) When measuring the planar shape of the hot plate material, the temperature distribution and wave distortion shape of the hot plate material are also measured at the same time, and the planar shape during hot processing is measured based on the measurement results of the temperature distribution and wave distortion shape. A method for measuring the shape of a hot plate material, the method comprising correcting the results to estimate the planar shape of the plate material after cooling and straightening.
JP19359685A 1985-09-02 1985-09-02 Shape measuring method for hot plate material Pending JPS6254116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19359685A JPS6254116A (en) 1985-09-02 1985-09-02 Shape measuring method for hot plate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19359685A JPS6254116A (en) 1985-09-02 1985-09-02 Shape measuring method for hot plate material

Publications (1)

Publication Number Publication Date
JPS6254116A true JPS6254116A (en) 1987-03-09

Family

ID=16310584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19359685A Pending JPS6254116A (en) 1985-09-02 1985-09-02 Shape measuring method for hot plate material

Country Status (1)

Country Link
JP (1) JPS6254116A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425004A (en) * 1987-07-21 1989-01-27 Amada Co Ltd Recognizing apparatus of shape of plate-shaped work piece
JPH01292208A (en) * 1988-05-19 1989-11-24 Ishikawajima Harima Heavy Ind Co Ltd Strip shape detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425004A (en) * 1987-07-21 1989-01-27 Amada Co Ltd Recognizing apparatus of shape of plate-shaped work piece
JPH01292208A (en) * 1988-05-19 1989-11-24 Ishikawajima Harima Heavy Ind Co Ltd Strip shape detector

Similar Documents

Publication Publication Date Title
EP2492634B1 (en) Method of measuring flatness of sheet and method of manufacturing steel sheet using same
CN104936713B (en) Flatness measuring and measuring of residual stresses for a metallic flat product
PL179092B1 (en) Method and device for shaping flat metal products between two rolls, particularly for continuously determining a throat size between said rolls
CN105229413A (en) The manufacture method of the flatness assay method of sheet material, the flatness determinator of sheet material and steel plate
JPS6254116A (en) Shape measuring method for hot plate material
JPH048128B2 (en)
JP2000094044A (en) Method for bending plate by linear heating
JPS6252406A (en) Method and apparatus for measuring shape of flat surface of hot plate material
JP3307229B2 (en) Method of estimating stripped camber and method of manufacturing steel sheet with less stripped camber
JP2000254718A (en) Method for predicting shape of steel plate
CN111633058B (en) Plate straightening method and system
JPS59156502A (en) Method of broadside rolling in thick plate rolling
KR100415921B1 (en) Method for measuring width of slab
JP3239761B2 (en) Method of estimating stripped camber and method of manufacturing steel sheet with less stripped camber
JPH10249419A (en) Device for predicting out-of-plane deformation of thick steel plate
JPH0526569B2 (en)
JPS62197221A (en) Correcting method for lateral bending of metallic plate
KR100286666B1 (en) Apparatus and method for on-line measurement of inflection of cold-rolled steel plate
JPS5841610A (en) Rolling method for thick plate
JPS5924887B2 (en) Hot rolling mill strip width control method and device
JPS5923882B2 (en) Hot rolling mill strip width control method
JPS6165108A (en) Measuring instrument of width and zigzag of band-like body
Pálinkás et al. Investigation of the flatness of rolled aluminium sheet
JPH06194241A (en) Device and method for measuring tension
JPS58127114A (en) Measuring method for flatness in cold mill