JPH031485Y2 - - Google Patents

Info

Publication number
JPH031485Y2
JPH031485Y2 JP1984125454U JP12545484U JPH031485Y2 JP H031485 Y2 JPH031485 Y2 JP H031485Y2 JP 1984125454 U JP1984125454 U JP 1984125454U JP 12545484 U JP12545484 U JP 12545484U JP H031485 Y2 JPH031485 Y2 JP H031485Y2
Authority
JP
Japan
Prior art keywords
sic
raw material
crystal
control means
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984125454U
Other languages
Japanese (ja)
Other versions
JPS6143275U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12545484U priority Critical patent/JPS6143275U/en
Publication of JPS6143275U publication Critical patent/JPS6143275U/en
Application granted granted Critical
Publication of JPH031485Y2 publication Critical patent/JPH031485Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 (イ) 産業上の利用分野 本考案は単結晶、特にSiC単結晶成長に用いる
装置に関する。
[Detailed description of the invention] (a) Industrial application field The present invention relates to an apparatus used for growing single crystals, particularly SiC single crystals.

(ロ) 従来技術 SiC(シリコンカーバイド)は、その物理的、
化学的性質から耐環境性半導体素子材料として注
目をあびている。また同一組成で多数の結晶形を
有し、そのエネルギーギヤツプは2.4eV(3Cタイ
プ)〜3.0eV(6Hタイプ)の多岐にわたる。従つ
て6HタイプのSiC単結晶は青色発光ダイオード材
料としても実用化されつつある。
(b) Conventional technology SiC (silicon carbide) is physically
Due to its chemical properties, it is attracting attention as a material for environmentally resistant semiconductor devices. It also has many crystal forms with the same composition, and its energy gap varies from 2.4eV (3C type) to 3.0eV (6H type). Therefore, 6H type SiC single crystal is also being put into practical use as a material for blue light emitting diodes.

第3図はJournal of Crystal Growth52(1981)
146−150に掲載されたYu.M.TAIROVとV.F.
TSVETKOVの論文「DENERAL PRINCIPLE
OF GROWINGLARGE−SIZE、SINGLE
CRYSTALS OF VARIOUS SILICON
CARBID POLYTYPES」中に開示されたこの
種装置を示し、1はグラフアイトからなるルツ
ボ、2は該ルツボ中に収納されたSiC原材料、3
は上記ルツボ1の上面開口を閉塞するように載置
されたSiC種結晶である。
Figure 3 is from Journal of Crystal Growth52 (1981)
Yu.M.TAIROV and VF published in 146−150
TSVETKOV's paper "DENERAL PRINCIPLE"
OF GROWING LARGE−SIZE, SINGLE
CRYSTALS OF VARIOUS SILICON
1 is a crucible made of graphite, 2 is a SiC raw material stored in the crucible, and 3 is a device of this kind disclosed in "CARBID POLYTYPES".
is a SiC seed crystal placed so as to close the upper opening of the crucible 1.

斯る装置では上記SiC原材料2を加熱昇華させ
ることにより上記種結晶3の上記原材料2と対向
する面にSiC単結晶4が成長する。しかし乍ら、
SiC単結晶成長にあたつて種結晶3は小面積のも
のしか得られなく、かつその成長の水平方向の拡
がりもルツボ側壁よりり規制さるため大面積化が
困難であり、また成長中にルツボ側壁の影響を受
けて成長した単結晶の周囲が多結晶化してしま
う。
In such an apparatus, by heating and sublimating the SiC raw material 2, a SiC single crystal 4 is grown on the surface of the seed crystal 3 facing the raw material 2. However,
When growing a SiC single crystal, the seed crystal 3 can only have a small area, and the horizontal spread of the growth is also restricted by the side walls of the crucible, making it difficult to grow a large area. The area around the single crystal that grows under the influence of the sidewalls becomes polycrystalline.

斯る点に鑑みて、ルツボ側壁の影響を受けずに
単結晶が可能な装置が実願昭59−22015号で提案
された。
In view of this, an apparatus capable of producing a single crystal without being affected by the crucible side wall was proposed in Utility Model Application No. 59-22015.

(ハ) 考案の解決しようとする問題点 然るに実願昭59−22015号で提案された装置で
は、加熱昇華されたSiC原材料が効率良く種結晶
へ指向しないため成長速度が遅いという問題があ
る。
(c) Problems to be solved by the invention However, in the device proposed in Utility Application No. 59-22015, there is a problem that the growth rate is slow because the heated and sublimated SiC raw material is not directed toward the seed crystal efficiently.

また、一般にSiC原材料は、Si2C、SiC2、Si、
Si2等のガスとして昇華されるが、このうちSi、
Si2のガスは、SiCの寄与しない。しかも、このう
ちSiガスは他のガスに比べ高い蒸気圧を有するた
め、昇華されたガスの大部分を占める。従つてこ
のように昇華したガスの内、成長に寄与するガス
の割合が少ないことも成長速度を遅くする一因と
なつていた。
In addition, SiC raw materials are generally Si 2 C, SiC 2 , Si,
It is sublimated as gases such as Si 2 , among which Si,
Si 2 gas does not contribute to SiC. Moreover, since Si gas has a higher vapor pressure than other gases, it occupies most of the sublimated gas. Therefore, the small proportion of the gas that contributes to growth among the sublimated gases is also a factor in slowing down the growth rate.

(ニ) 問題点を解決するための手段 本考案は斯る点に鑑みてなされたもので、加熱
昇華されたSiC原材料が効率良く種結晶方向へ導
くことが可能な結晶成長装置を提供せんとするも
ので、その特徴はルツボの中の原材料を昇華せし
めて種結晶上に所望の結晶を成長せしめるための
装置であつて、上記昇華した原材料を上記種結晶
表面のみに導くための制御手段を備えたことにあ
る。
(d) Means for solving the problems The present invention has been made in view of the above, and aims to provide a crystal growth apparatus that can efficiently guide heated and sublimated SiC raw materials toward the seed crystal direction. This device is characterized by a device for sublimating the raw material in the crucible to grow a desired crystal on the seed crystal, and a control means for guiding the sublimated raw material only to the surface of the seed crystal. It's about being prepared.

(ホ) 作用 斯る装置を用いた場合、加熱昇華されたSiC原
材料は上記制御手段により種結晶上に集中、さら
に昇華されたSiガスやSi2ガスが当該制御手段の
炭素原子と反応してSi2Cガス、SiC2ガスとなり、
SiCの成長に寄与するガスが増えるので効率良く
結晶成長をすることができる。
(E) Effect When such a device is used, the heated and sublimated SiC raw material is concentrated on the seed crystal by the control means, and the sublimated Si gas or Si 2 gas reacts with the carbon atoms of the control means. Si 2 C gas, SiC 2 gas,
Since the amount of gas that contributes to the growth of SiC increases, crystal growth can be performed efficiently.

(ヘ) 実施例 第1図は本考案の実施例を示し、11はその底
部にSiC原材料12が収納されたルツボであり、
該ルツボは黒鉛からなる。13は上記ルツボ11
の天面開口を閉塞する如く配された黒鉛性の蓋体
であり、該蓋体の略中央には開孔が穿設され、斯
る開孔を閉塞し、かつ一主面がが上記原材料と対
向するように種結晶14が配されている。15は
加熱昇華された上記原材料12を種結晶方向に指
向せしめる制御手段であり、該制御手段は上記ル
ツボ11内を上下方向に2室に分離する基部16
と上記2室を連通せしめる小孔及び該小孔より上
方に向う加熱昇華されたSiC原材料を種結晶14
方向に指向せしめる筒部17とからなる。尚斯る
制御手段15は黒鉛からなり、また第1図からも
明白なように上記SiC原材料12が上記基部16
により分離された下室側に位置するように配され
る。
(f) Example FIG. 1 shows an example of the present invention, 11 is a crucible in which a SiC raw material 12 is stored in the bottom,
The crucible is made of graphite. 13 is the above crucible 11
The lid is made of graphite and is arranged so as to close the opening on the top surface of the lid, and an opening is bored in the approximate center of the lid. Seed crystal 14 is arranged so as to face . Reference numeral 15 denotes a control means for directing the heated and sublimated raw material 12 in the direction of the seed crystal, and the control means includes a base 16 that vertically separates the inside of the crucible 11 into two chambers.
A small hole connecting the two chambers and a heated sublimated SiC raw material directed upward from the small hole are placed in the seed crystal 14.
It consists of a cylindrical portion 17 that is oriented in the direction. The control means 15 is made of graphite, and as is clear from FIG.
It is arranged so that it is located on the lower chamber side separated by.

斯る装置をバツクグランド真空度が1×10-2
2Torr〜10Torrの真空中に配し、SiC種結晶14
を2000℃、SiC原材料12を2400℃に保持するこ
とにより、SiC原材料12が加熱昇華され上記種
結晶14上にSiC単結晶18が成長する。このと
き、上記制御手段15により加熱昇華されたSiC
原材料は効率良く種結晶14上に指向されるた
め、上記制御手段15が存在しないときに較べて
結晶の成長速度が大となることは明らかである。
The background vacuum of such equipment is 1×10 -2
Placed in a vacuum of 2 Torr to 10 Torr, SiC seed crystal 14
By maintaining the SiC raw material 12 at 2000°C and 2400°C, the SiC raw material 12 is heated and sublimated, and the SiC single crystal 18 grows on the seed crystal 14. At this time, the SiC heated and sublimated by the control means 15
It is clear that since the raw material is efficiently directed onto the seed crystal 14, the crystal growth rate is higher than when the control means 15 is not present.

また、一般にSiC原材料は、Si2C、SiC2、Si、
Si2等のガスとして昇華されるが、このうちSi、
Si2のガスは、SiCの成長に寄与しない。しかし、
本実施例装置においては制御手段15を黒鉛Cで
構成しているので、Si、Si2のガスは、上記制御
手段15と接触する際に、当該制御手段15の炭
素原子と反応、結合し、Si2C、SiC2のガスとなつ
て、種結晶14に導かれる。従つて、本実施例装
置では、SiCの成長に寄与するSi2C、SiC2のガス
が増えるため、さらに成長速度が大となる。
In addition, SiC raw materials are generally Si 2 C, SiC 2 , Si,
It is sublimated as gases such as Si 2 , among which Si,
Si 2 gas does not contribute to SiC growth. but,
In the device of this embodiment, the control means 15 is made of graphite C, so when the Si and Si 2 gases come into contact with the control means 15, they react with and combine with the carbon atoms of the control means 15. The gas becomes Si 2 C and SiC 2 gas and is guided to the seed crystal 14 . Therefore, in the apparatus of this embodiment, the amount of Si 2 C and SiC 2 gases that contribute to the growth of SiC increases, so that the growth rate further increases.

第2図は本考案の第2の実施例を示し、21は
天面が開放されたルツボであり、該ルツボの底面
にはSiC原材料22が収納されている。23は上
記ルツボ21の天面上方に配された制御手段であ
り、該制御手段には上記ルツボ21と接する面で
は上記天面開放部と同程度の径大を有し、かつ上
方に向うほど径小となる連通孔24が形成されて
いる。25は上記制御手段23上に配された基板
ホルダであり、該ホルダはその底面が上記連通孔
24と連通するように開口すると共に天面より内
方に突出しその先端がが上記制御手段23に近接
する凸部26を有する。
FIG. 2 shows a second embodiment of the present invention, in which 21 is a crucible with an open top, and a SiC raw material 22 is stored in the bottom of the crucible. Reference numeral 23 denotes a control means disposed above the top surface of the crucible 21, and the control means has a diameter comparable to that of the top surface open portion on the surface in contact with the crucible 21, and A communication hole 24 having a small diameter is formed. Reference numeral 25 denotes a substrate holder disposed on the control means 23. The holder has a bottom surface open to communicate with the communication hole 24, and protrudes inward from the top surface so that its tip is connected to the control means 23. It has protrusions 26 that are adjacent to each other.

また斯る凸部26の先端には一主面がSiC原材
料22と対向するようにSiC種結晶27が固着さ
れている。尚、上記ルツボ21、制御手段23、
基板ホルダ25は共に黒鉛からなる。
Further, a SiC seed crystal 27 is fixed to the tip of the convex portion 26 so that one main surface thereof faces the SiC raw material 22. In addition, the crucible 21, the control means 23,
Both substrate holders 25 are made of graphite.

斯る装置を第1の実施例装置と同様にバツクグ
ランド真空度が1×10−22Torr〜10Torrの真空
中に配し、SiC種結晶27を2000℃〜2200℃、
SiC原材料22を2400℃に保持すると、第1の実
施例と同様にSiC原材料22が加熱昇華され、斯
る昇華した原材料が制御手段23により種結晶2
7方向に指向され、またSi、Si2のガスが当該制
御手段23の炭素原子と反応し、Si2C、SiC2のガ
スが増えるため、上記種結晶27の一主面上に効
率良くSiC単結晶が成長する。
This device is placed in a vacuum with a background vacuum of 1×10−2 2 Torr to 10 Torr like the device of the first embodiment, and the SiC seed crystal 27 is heated at 2000° C. to 2200° C.
When the SiC raw material 22 is held at 2400°C, the SiC raw material 22 is heated and sublimated in the same manner as in the first embodiment, and the sublimated raw material is transferred to the seed crystal 2 by the control means 23.
Furthermore, the Si and Si 2 gases react with the carbon atoms of the control means 23 and the Si 2 C and SiC 2 gases increase, so that SiC is efficiently deposited on one main surface of the seed crystal 27. A single crystal grows.

(ト) 効果 本考案の結晶成長装置を用いれば、加熱昇華し
た原材料が種結晶方向に全て指向され、しかも
SiCの結晶成長に寄与するSiC2、Si2Cのガスが増
加するため、効率の良い結晶成長が行え、また不
所望な結晶の成長を抑止できる。
(g) Effects By using the crystal growth apparatus of the present invention, all heated and sublimated raw materials are directed in the direction of the seed crystal, and
Since SiC 2 and Si 2 C gases that contribute to SiC crystal growth increase, efficient crystal growth can be performed and undesired crystal growth can be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本考案の実施例を示す断面
図、第3図は従来例を示す断面図である。 11,21…ルツボ、12,22…原材料、1
4,27…種結晶、15,23…制御手段。
1 and 2 are sectional views showing an embodiment of the present invention, and FIG. 3 is a sectional view showing a conventional example. 11, 21... Crucible, 12, 22... Raw material, 1
4, 27... Seed crystal, 15, 23... Control means.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ルツボ中のSiC原材料を昇華せしめて種結晶上
に所望のSiC結晶を成長せしめるための装置であ
つて、上記昇華した原材料を上記種結晶表面のみ
に導くための黒鉛からなる制御手段を備えたこと
を特徴とする結晶成長装置。
An apparatus for growing a desired SiC crystal on a seed crystal by sublimating a SiC raw material in a crucible, the apparatus comprising a control means made of graphite for guiding the sublimated raw material only to the surface of the seed crystal. A crystal growth device featuring:
JP12545484U 1984-08-17 1984-08-17 crystal growth equipment Granted JPS6143275U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12545484U JPS6143275U (en) 1984-08-17 1984-08-17 crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12545484U JPS6143275U (en) 1984-08-17 1984-08-17 crystal growth equipment

Publications (2)

Publication Number Publication Date
JPS6143275U JPS6143275U (en) 1986-03-20
JPH031485Y2 true JPH031485Y2 (en) 1991-01-17

Family

ID=30684143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12545484U Granted JPS6143275U (en) 1984-08-17 1984-08-17 crystal growth equipment

Country Status (1)

Country Link
JP (1) JPS6143275U (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256792A (en) * 1986-04-30 1987-11-09 Sharp Corp Method for growing compound semiconductor single crystal in vapor phase
JPS62283897A (en) * 1986-05-30 1987-12-09 Sharp Corp Vapor growth method for compound semiconductor single crystal
JP5210732B2 (en) * 2008-07-01 2013-06-12 昭和電工株式会社 Silicon carbide single crystal growth vessel structure
JP4992965B2 (en) * 2009-12-25 2012-08-08 株式会社デンソー Silicon carbide single crystal manufacturing equipment
JP2011184208A (en) * 2010-03-04 2011-09-22 Bridgestone Corp Apparatus and method for producing silicon carbide single crystal
JP5327126B2 (en) * 2010-04-14 2013-10-30 株式会社デンソー Method and apparatus for producing silicon carbide single crystal
JP2012067012A (en) * 2012-01-12 2012-04-05 Denso Corp Method of producing silicon carbide single crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134555A (en) * 1981-02-10 1982-08-19 Fuji Photo Film Co Ltd Method and device for forming thin film
JPS5935099A (en) * 1982-08-17 1984-02-25 Agency Of Ind Science & Technol Method for growing silicon carbide crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134555A (en) * 1981-02-10 1982-08-19 Fuji Photo Film Co Ltd Method and device for forming thin film
JPS5935099A (en) * 1982-08-17 1984-02-25 Agency Of Ind Science & Technol Method for growing silicon carbide crystal

Also Published As

Publication number Publication date
JPS6143275U (en) 1986-03-20

Similar Documents

Publication Publication Date Title
KR100651149B1 (en) Production of bulk single crystals of aluminum nitride:silicon carbide alloy
CA2346290A1 (en) Production of bulk single crystals of silicon carbide
JPH031485Y2 (en)
JPS6357400B2 (en)
EP1803840A3 (en) Method for growing single crystal of silicon carbide
RU98120936A (en) SINGLE-CRYSTAL SIC AND METHOD FOR ITS PRODUCTION
JP4140123B2 (en) Silicon carbide single crystal manufacturing method and single crystal manufacturing apparatus
RU99103350A (en) MONOCRYSTAL SILICON CARBIDE AND METHOD FOR ITS PREPARATION
JPH0455397A (en) Production of alpha-sic single crystal
KR980700460A (en) PROCESS AND DEVICE FOR SUBLIMATION GROWING SILICON CARBIDE MONOCRYSTALS
JPH0788274B2 (en) Method for growing SiC single crystal
JPH0442911Y2 (en)
JPS54157779A (en) Production of silicon single crystal
JPH0645519B2 (en) Method for growing p-type SiC single crystal
EP0284437A3 (en) Iii - v group compound crystal article and process for producing the same
JPS6350393A (en) Growth method for sic single crystal
JP2001192299A (en) Method and device for producing silicon carbide single crystal
HK36392A (en) Metalorganic vapor phase epitaxial growth of group ii-vi semiconductor materials
JPH031486Y2 (en)
JPH06298514A (en) Production of highly pure silicon carbide
JPH0248495A (en) Method for growing silicon carbide single crystal
JPH06333830A (en) Manufacture of single-crystal silicon carbide
JPS6421074A (en) Method for selectively growing thin metallic film
JPS5380158A (en) Vapor phase growth for compound semiconductor
JPS5510436A (en) Susceptor for vapor phase crystal growth