JPH03147337A - Manufacture of schottky barrier gate type fet - Google Patents

Manufacture of schottky barrier gate type fet

Info

Publication number
JPH03147337A
JPH03147337A JP1284801A JP28480189A JPH03147337A JP H03147337 A JPH03147337 A JP H03147337A JP 1284801 A JP1284801 A JP 1284801A JP 28480189 A JP28480189 A JP 28480189A JP H03147337 A JPH03147337 A JP H03147337A
Authority
JP
Japan
Prior art keywords
layer
gate
etching
dummy gate
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1284801A
Other languages
Japanese (ja)
Inventor
Yuji Sakota
迫田 祐治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP1284801A priority Critical patent/JPH03147337A/en
Publication of JPH03147337A publication Critical patent/JPH03147337A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Weting (AREA)

Abstract

PURPOSE:To obtain a T-type gate electrode with a low gate resistance by eliminating a T-type dummy gate using etching, performing recess etching of a substrate layer of the remaining resist layer which is exposed to a mask, and then by forming a gate electrode at the recess-etched region by the lift-off method. CONSTITUTION:An ohmic metal 6 which becomes a source/drain electrode is formed by the lift-off method utilizing a resist layer 5 covering a T-type dummy gate 4 which is subjected to patterning in an inverse taper structure. Then, the resist layer 5 is eliminated, a resist 7 is coated over the entire surface to a thickness covering the dummy gate 4, the resist layer 7 is etched back by dry etching with oxygen for enabling the upper part of the T-type dummy gate 4 to be exposed. The exposed T-type dummy gate 4 is eliminated by etching using a buffered fluoric acid, an exposed substrate layer 1 is recess-etched, and a gate metal 8 is deposited onto the entire surface. Then, when an unneeded gate metal 8 is eliminated, the gate metal in T-type shape is formed on the recess-etched substrate layer.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ショットキーバリアゲート型FETの製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a Schottky barrier gate type FET.

[従来の技術] n形のGaAsにおける電子の移動度は、SNにおける
ものより遥かに大きく、また、ショットキーバリア接合
では、多数キャリアにより整流特性が得られ、PN接合
のように少数キャリアにより支配された特性でない。こ
のことより、GaAsによるショットキーバリアゲート
型FETは、非常に高速応答性に優れ、この高速応答性
を生かすことにより、マイクロ波領域の素子に適し、ま
た、超高集積度ICに応用されている。
[Prior art] The electron mobility in n-type GaAs is much larger than that in SN, and in Schottky barrier junctions, rectifying characteristics are obtained by majority carriers, whereas in PN junctions, the electron mobility is dominated by minority carriers. It is not a given characteristic. From this, Schottky barrier gate FETs made of GaAs have excellent high-speed response, and by taking advantage of this high-speed response, they are suitable for devices in the microwave region and are also applied to ultra-highly integrated ICs. There is.

第3図は従来のショットキーバリアゲート型FETの製
造方法の一例を示す。
FIG. 3 shows an example of a method for manufacturing a conventional Schottky barrier gate type FET.

まず、逆テーパ構造にパターニングしたレジスト層5を
利用し、リフトオフ法により、半導体基板1上にソース
・ドレイン電極用オーミックメタル6を形成し[図(a
)]、次に、全面にレジストを塗布し、リングラフィに
よりリセスエッチング用マスクとするレジスト層7を形
成し[図(b)]、リリセスエラチンを行ない[図(C
)]、ゲートメタル8を蒸着する[図(d)コ。
First, using a resist layer 5 patterned in a reverse tapered structure, an ohmic metal 6 for source/drain electrodes is formed on a semiconductor substrate 1 by a lift-off method [Fig.
)], next, a resist is applied to the entire surface, a resist layer 7 is formed as a mask for recess etching by phosphorography [Figure (b)], and recess etching is performed [Figure (C)].
)], and gate metal 8 is deposited [Figure (d).

リセスエッチングされた基板層に蒸着されたゲートメタ
ル8とレジスト層7上に蒸着されたゲトメタル8とがリ
フトオフされ、レジスト層7を除去すると、不用のゲー
トメタル8が除去され、リセス構造のショットキーバリ
アゲート型FETが得られる[図(C)]。9はソース
電極、10はドレイン電極、11はゲート電極である。
When the gate metal 8 deposited on the recess-etched substrate layer and the gate metal 8 deposited on the resist layer 7 are lifted off and the resist layer 7 is removed, the unnecessary gate metal 8 is removed and the Schottky structure of the recessed structure is removed. A barrier gate type FET is obtained [Figure (C)]. 9 is a source electrode, 10 is a drain electrode, and 11 is a gate electrode.

[発明が解決しようとする課題] FETの動作特性に影響するパラメータの1つにゲート
抵抗Rがあり、ゲート抵抗Rが低い2g はど、FETの動作特性がよくなることが知られている
[Problems to be Solved by the Invention] One of the parameters that affects the operating characteristics of an FET is the gate resistance R, and it is known that the lower the gate resistance R is, the better the operating characteristics of the FET will be.

従来の製造方法では、ゲート電極のゲート長を短くする
と、ゲート抵抗Rが大きくなるという問題があった。
Conventional manufacturing methods have had the problem that when the gate length of the gate electrode is shortened, the gate resistance R increases.

本発明は上記の問題を解消するためになされたもので、
実効ゲート長を変えることなく、従来の方法よりゲート
抵抗を下げることができる方法を提供することを目的と
する。
The present invention was made to solve the above problems.
It is an object of the present invention to provide a method that can lower gate resistance than conventional methods without changing the effective gate length.

[課題を解決するための手段] 本発明の製造方法は、まず、半導体瓦板上にプラズマC
VDによりエツチングレートが基板側から層ごとに順次
小さくなる3層構造のプラズマCVD窒化シリコン膜を
形成し、リアクティブイオンエツチングとウェットエツ
チングにより、2段構造のT型ダミーゲートを形成し、
次に、レジストを塗布し、上記T型ダミーゲートを覆う
レジスト層をエッチバックして上記T型ダミーゲートの
上部を露出させ、該T型ダミーゲートをエツチング除去
し、残ったレジスト層をマスクに露出した基板層をリセ
スエッチングし、リセスエッチングした領域にリフトオ
フ法によってゲート電極を形成し、ゲート抵抗の低いT
型ゲート電極を得る方法である。
[Means for Solving the Problems] The manufacturing method of the present invention first involves applying plasma C to a semiconductor tile board.
A plasma CVD silicon nitride film with a three-layer structure in which the etching rate decreases sequentially from the substrate side is formed by VD, and a T-shaped dummy gate with a two-stage structure is formed by reactive ion etching and wet etching.
Next, a resist is applied, the resist layer covering the T-shaped dummy gate is etched back to expose the upper part of the T-shaped dummy gate, the T-shaped dummy gate is removed by etching, and the remaining resist layer is used as a mask. The exposed substrate layer is recess-etched, a gate electrode is formed in the recess-etched region by a lift-off method, and a gate electrode with low gate resistance is formed.
This is a method to obtain a type gate electrode.

[実施例] 第1図は本発明の一実施例を示す。[Example] FIG. 1 shows an embodiment of the invention.

まず、半導体基板1上に、プラズマCVDによりエツチ
ングレートの一番大きな窒化シリコン膜2aを堆積し、
次に、窒化シリコン膜2a上にプラズマCVDの条件を
変えてエツチングレートが中位の窒化シリコン膜2bを
堆積し、さらに、プラズマCVDの条件を変えて窒化シ
リコン膜2b上にエツチングレートの一番小さい窒化シ
リコン膜2cを堆積して、3層構造のプラズマCVD窒
化シリコン膜2を形成する[図(a)]。
First, a silicon nitride film 2a having the highest etching rate is deposited on the semiconductor substrate 1 by plasma CVD,
Next, a silicon nitride film 2b having an intermediate etching rate is deposited on the silicon nitride film 2a by changing the plasma CVD conditions, and then a silicon nitride film 2b having the highest etching rate is deposited on the silicon nitride film 2b by changing the plasma CVD conditions. A small silicon nitride film 2c is deposited to form a three-layer plasma CVD silicon nitride film 2 [FIG. (a)].

本来、SiHとN H3のガスによるプラズマCVD窒
化シリコン膜はS j 3N i、という化学量論的組
成はとりにくい。一般に、S 1 、 N yHzとい
う形で、水素を含むと言われている。
Originally, it is difficult for a silicon nitride film formed by plasma CVD using SiH and N H3 gases to have a stoichiometric composition of S j 3N i. Generally, it is said to contain hydrogen in the form S 1 , N yHz.

膜中に含まれるこの水素の量を調整することで、膜質を
変化できるだろうということに着目し、S i H4と
NH3のガス流量比を変えることで、形成されるプラズ
マCVD窒化シリコン膜に含まれろ水素濃度を変え、膜
質を変化させた。
Focusing on the fact that the film quality could be changed by adjusting the amount of hydrogen contained in the film, by changing the gas flow rate ratio of Si H4 and NH3, the plasma CVD silicon nitride film formed The film quality was changed by changing the hydrogen concentration.

第2図はプラズマCVDにおける反応ガス流量比と形成
されたプラズマCVD窒化シリコン膜のエツチングレー
トとデポジションレートの関係を示す。SiHとNH3
の反応ガス流量比を太きくすると、形成されたプラズマ
CVD窒化シリコン膜のエツチングレートが上昇するこ
とが判る。
FIG. 2 shows the relationship between the reaction gas flow rate ratio in plasma CVD and the etching rate and deposition rate of the plasma CVD silicon nitride film formed. SiH and NH3
It can be seen that when the reaction gas flow rate ratio is increased, the etching rate of the formed plasma CVD silicon nitride film increases.

次に、全面に蒸着A41層3を形成し、このAΩ層3を
ホトエツチングにより所定のパターンにパターニングし
[図(b)]、Al層3のパターンをマスクに3層構造
のプラズマCVD窒化シリコン膜2をリアクティブイオ
ンエツチングし[図(C)]、Al1層3をエツチング
除去した後、バッファード弗酸でエツチングし、エツチ
ングレート差を利用して2段構造のT型ダミーゲート4
を形成する[図(d)]。
Next, a vapor-deposited A41 layer 3 is formed on the entire surface, and this AΩ layer 3 is patterned into a predetermined pattern by photoetching [Figure (b)]. Using the pattern of the Al layer 3 as a mask, a plasma CVD silicon nitride film with a three-layer structure is formed. 2 is subjected to reactive ion etching [Figure (C)], the Al1 layer 3 is etched away, and then etched with buffered hydrofluoric acid to form a two-stage T-shaped dummy gate 4 using the difference in etching rate.
[Figure (d)].

次に、逆テーパ構造にパターニングしたT型ダミーゲー
ト4を覆うレジスト層5を利用して、リフトオフ法によ
り、ソース−ドレイン電極となるオーミックメタル6を
形成する[図(e)]。
Next, using the resist layer 5 covering the T-shaped dummy gate 4 patterned to have an inverted tapered structure, an ohmic metal 6 that will become the source-drain electrode is formed by a lift-off method [FIG. (e)].

続いて、レジスト層5を除去し、全面にレジストアをダ
ミーゲート4を覆う厚さに塗布し、酸素によるドライエ
ツチングでレジスト層7をエッチバックしてT型ダミー
ゲート4の上部を露出させる[図(r)]。
Subsequently, the resist layer 5 is removed, resist is applied to the entire surface to a thickness that covers the dummy gate 4, and the resist layer 7 is etched back by dry etching with oxygen to expose the upper part of the T-shaped dummy gate 4. Figure (r)].

露出したT型ダミーゲート4をバッファード弗酸でエツ
チング除去し、露出した基板層lをリセスエッチングし
[図(g)]、全面にゲートメタル8を蒸着する[図(
h)]。
The exposed T-type dummy gate 4 is removed by etching with buffered hydrofluoric acid, the exposed substrate layer l is recessed and etched [Figure (g)], and gate metal 8 is deposited on the entire surface [Figure (
h)].

リセスエッチングされた基板層に蒸着されたゲートメタ
ル8とレジスト層7上に蒸着されたゲートメタル8とが
リフトオフされ、レジスト層7を除去すると、不用のゲ
ートメタル8が除去される。
When the gate metal 8 deposited on the recess-etched substrate layer and the gate metal 8 deposited on the resist layer 7 are lifted off and the resist layer 7 is removed, the unnecessary gate metal 8 is removed.

一方、リセスエッチングされた基板層に蒸着されたゲー
トメタル8はT型形状となり、実効ゲート長は従来の方
法によるものと同じで、ゲート抵抗は、従来の方法に比
べ、相当低減することができる。
On the other hand, the gate metal 8 deposited on the recess-etched substrate layer has a T-shape, the effective gate length is the same as that by the conventional method, and the gate resistance can be significantly reduced compared to the conventional method. .

[発明の効果] 以上説明したように、本発明によれば、ゲート電極がT
型形状となり、短いゲート長でゲート抵抗を低減するこ
とができ、FET動作特性の向」二に寄与する効果が大
である。
[Effects of the Invention] As explained above, according to the present invention, the gate electrode has T
The gate resistance can be reduced with a short gate length, which greatly contributes to improving the FET operating characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す説明図、第2図はプラ
ズマCVDにおける反応ガス流量比と形成されたプラズ
マCVD窒化シリコン膜のエツチングレートとデポジシ
ョンレートの関係を示すグラフ、第3図は従来のショッ
トキーバリアゲート型FETの製造方法の一例を示す説
明図である。 1・・・半導体基板、2・・・プラズマCVD窒化シリ
コン膜、3・・・AJ7層、4・・・T型ダミーゲート
、5・・・レジスト層、6・・・オーミックメタル、7
・・レジスト層、8・・・ゲートメタル、9・・・ソー
ス電極、10・・・ドレイン電極、11・・・ゲート電
極。 なお図中同一符号は同一または相当する部分を示す。 特r[出願人 新日本無線株式会社 第1図
FIG. 1 is an explanatory diagram showing one embodiment of the present invention, FIG. 2 is a graph showing the relationship between the reactant gas flow rate ratio in plasma CVD and the etching rate and deposition rate of the plasma CVD silicon nitride film formed. The figure is an explanatory diagram showing an example of a method for manufacturing a conventional Schottky barrier gate type FET. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Plasma CVD silicon nitride film, 3... AJ7 layer, 4... T-type dummy gate, 5... Resist layer, 6... Ohmic metal, 7
...Resist layer, 8... Gate metal, 9... Source electrode, 10... Drain electrode, 11... Gate electrode. Note that the same reference numerals in the figures indicate the same or corresponding parts. Special r [Applicant: New Japan Radio Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】  半導体基板上にプラズマCVDによりエッチングレー
トが基板側から層ごとに順次小さくなる3層構造のプラ
ズマCVD窒化シリコン膜を形成し、該窒化シリコン膜
上に蒸着Al層を形成し、該Al層をホトエッチングに
より所定のパターンにパターニングし、該Al層をマス
クに上記3層構造のプラズマCVD窒化シリコン膜をリ
アクティブイオンエッチングし、上記Al層を除去した
後バッファード弗酸によりエッチングし、エッチングレ
ート差を利用して2段構造のT型ダミーゲートを形成す
る工程と、 逆テーパ構造のレジスト層を利用して形成したソース、
ドレイン電極用オーミックメタルと上記T型ダミーゲー
トを覆うレジスト層を形成し、該レジスト層を酸素によ
るドライエッチングでエッチバックして上記T型ダミー
ゲートの上部を露出させ、バッファード弗酸により上記
T型ダミーゲートをエッチング除去し、露出した基板層
をリセスエッチングし、リセスエッチングした基板層に
リフトオフ法によりT型ゲート電極を形成する工程とを
備えたショットキーバリアゲート型FETの製造方法。
[Claims] A plasma CVD silicon nitride film having a three-layer structure in which the etching rate decreases layer by layer from the substrate side is formed by plasma CVD on a semiconductor substrate, and a vapor-deposited Al layer is formed on the silicon nitride film. , pattern the Al layer into a predetermined pattern by photo-etching, perform reactive ion etching on the plasma CVD silicon nitride film with the three-layer structure using the Al layer as a mask, remove the Al layer, and then pattern it with buffered hydrofluoric acid. A process of etching and forming a T-shaped dummy gate with a two-stage structure using the etching rate difference, and a source formed using a resist layer with an inverted tapered structure.
A resist layer is formed to cover the ohmic metal for the drain electrode and the T-shaped dummy gate, and the resist layer is etched back by dry etching using oxygen to expose the upper part of the T-shaped dummy gate. A method for manufacturing a Schottky barrier gate type FET, comprising the steps of etching away a type dummy gate, recess-etching an exposed substrate layer, and forming a T-type gate electrode on the recess-etched substrate layer by a lift-off method.
JP1284801A 1989-11-02 1989-11-02 Manufacture of schottky barrier gate type fet Pending JPH03147337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1284801A JPH03147337A (en) 1989-11-02 1989-11-02 Manufacture of schottky barrier gate type fet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1284801A JPH03147337A (en) 1989-11-02 1989-11-02 Manufacture of schottky barrier gate type fet

Publications (1)

Publication Number Publication Date
JPH03147337A true JPH03147337A (en) 1991-06-24

Family

ID=17683193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1284801A Pending JPH03147337A (en) 1989-11-02 1989-11-02 Manufacture of schottky barrier gate type fet

Country Status (1)

Country Link
JP (1) JPH03147337A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19530050A1 (en) * 1995-08-16 1997-02-20 Daimler Benz Ag Multi-layer FET self-adjusting manufacturing method for e.g. digital signal processor
US6051506A (en) * 1996-06-29 2000-04-18 Hyundai Electronics Industries Co., Ltd. Method of fabrication ultra-frequency semiconductor device
JP2014099463A (en) * 2012-11-13 2014-05-29 Mitsubishi Electric Corp Semiconductor device manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19530050A1 (en) * 1995-08-16 1997-02-20 Daimler Benz Ag Multi-layer FET self-adjusting manufacturing method for e.g. digital signal processor
DE19530050C2 (en) * 1995-08-16 2003-04-10 Daimler Chrysler Ag Self-adjusting method for the production of field-effect transistors
US6051506A (en) * 1996-06-29 2000-04-18 Hyundai Electronics Industries Co., Ltd. Method of fabrication ultra-frequency semiconductor device
JP2014099463A (en) * 2012-11-13 2014-05-29 Mitsubishi Electric Corp Semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
JPH03147337A (en) Manufacture of schottky barrier gate type fet
JPH0312966A (en) Field-effect type transistor and manufacture
KR0154781B1 (en) Manufacturing method of thin film transistor using wet etching
JPH04236423A (en) Manufacture of semiconductor device
KR100266560B1 (en) Fabrication method of thin-film transistor
JPH0372634A (en) Manufacture of mes fet
JPH03188632A (en) Semiconductor device
JPH01165126A (en) Manufacture of semiconductor device
JP2655497B2 (en) Method for manufacturing semiconductor device
JPS61216487A (en) Manufacture of semiconductor device
JP2550495B2 (en) Method for manufacturing semiconductor device
JPS62115782A (en) Manufacture of semiconductor device
JPS63291476A (en) Manufacture of semiconductor device
JPH01218072A (en) Manufacture of semiconductor device
JPS59130481A (en) Schottky gate field effect transistor
JPH01199473A (en) Manufacture of field-effect transistor
JPH01184959A (en) Manufacture of semiconductor device
JPS6260268A (en) Manufacture of field effect transistor
JPH01120831A (en) Manufacture of semiconductor device
JPH11150123A (en) Fabrication of semiconductor device
JPH0684951A (en) Manufacture of semiconductor device
JPH04367234A (en) Manufacture of field-effect transistor
JPH0684961A (en) Manufacture of field effect transistor
JPH07130763A (en) Manufacture of compound semiconductor device
JPH02159733A (en) Manufacture of field-effect transistor