JPH03146488A - Production of aluminum nitride sintered body with metallizing layer - Google Patents

Production of aluminum nitride sintered body with metallizing layer

Info

Publication number
JPH03146488A
JPH03146488A JP27965389A JP27965389A JPH03146488A JP H03146488 A JPH03146488 A JP H03146488A JP 27965389 A JP27965389 A JP 27965389A JP 27965389 A JP27965389 A JP 27965389A JP H03146488 A JPH03146488 A JP H03146488A
Authority
JP
Japan
Prior art keywords
sintered body
compounds
ain
metallized
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27965389A
Other languages
Japanese (ja)
Other versions
JPH0544434B2 (en
Inventor
Kohei Shimoda
浩平 下田
Takao Maeda
貴雄 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP27965389A priority Critical patent/JPH03146488A/en
Publication of JPH03146488A publication Critical patent/JPH03146488A/en
Publication of JPH0544434B2 publication Critical patent/JPH0544434B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5133Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the refractory metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To firmly adhere an AlN sintered body and to produce the title sintered body with a metallizing layer having superior air tightness by applying and sintering specified metallizing paste to form the metallizing layer when the title sintered body is produced. CONSTITUTION:When the title sintered body is produced, the metallizing layer is formed by applying and sintering W-based metallizing paste contg. one or more kinds (e.g. nickel acetate powder) selected among Ni, Fe, Co, an Ni-Fe-Co alloy and compds. of these metals, one or more kinds (e.g. yttrium oxide powder) selected among Y, Gd and Ce compds., a mixture of these compds. and a Y-Gd- Ce compd. and an Al compd. (e.g. aluminum oxide powder).

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、IC絶縁基板をはじめ多くの分野で注目され
ている窒化アルミニウム焼結体特に金属化層を有する窒
化アルミニウム焼結体の製造方法に関する。
[Industrial Application Field] The present invention relates to an aluminum nitride sintered body, which is attracting attention in many fields including IC insulating substrates, and particularly to a method for manufacturing an aluminum nitride sintered body having a metallized layer.

【従来の技術】[Conventional technology]

窒化アルミニウム(A I N)焼結体は、熱伝導性、
電気絶縁性に優れ、機械的強度も優れていることから、
IC絶縁基板をはじめ、多くの分野で注目されている。 しかし、AIN焼結体は金属との濡れ性が悪く、十分な
密着強度を持つ金属化層を得ることが課題となっている
。 その金属化層を形成せしめる方法としては、厚膜焼成法
、D B C(Direct Bond Copper
)法、薄膜法等が行われ、その成功例も少なくない。 その他、AIN焼結体に金属化ペーストを塗布し、非酸
化性雰囲気中にて焼成する同時焼成法についても成功例
があり、数例報告されている。 その−例として、非酸化物系セラミックス体の金属化用
組成物及び金属化方法(特公昭82−27037号)が
ある。これには、メツキ、ろう付は可能な強固な接着を
得ることができる組成物並びにそれを用いた金属面仕方
法について開示されており、AINセラミックス体では
、金属化用組成物として、タングステン(W)、モリブ
デン(Mo)のほかに非酸化物系セラミックスの構成要
素物質つまりAINと金属あるいは金属酸化物を含有せ
しめてなる金属化用組成物並びにAIN未焼結成形体に
そのペーストを塗布して、非酸化性雰囲気中にて焼成す
る同時焼成法について説明されている。この他にも若干
例の報告があるが、気密性に劣る等、まだ十分満足され
る性能は得られていない。 他方、酸化アルミニウム(AlzOz)焼結体の金属化
方法としては、Wもしくはモリブデン−マンガン(M 
o −M n )の金属化ペーストを塗布し、加湿水素
もしくは加湿フォーミングガス雰囲気中において130
0〜1750”cの温度で焼成するテレフンケン法が広
く一般に知られている。この方法の特徴は、加湿雰囲気
中においてAl2O3焼結体中のガラス相が軟化する温
度まで焼成する点にあり、この焼成によりW及びMoの
表面が酸化されて、W又はMo粒子の焼結を促進するの
みならず、これらの酸化物が焼結体のガラス相に溶は込
んでガラスの流動性を良くし、ガラス相は多孔質の金属
化層中に移動する。更に焼成により生成した酸化物、特
にM n Oは金属化層とAl2O3焼結体との界面近
傍においてガラス相を形成するため、金属化層とAl2
O3焼結体は機械的に強固に結合する。 [発明が解決しようとす−る課題] 本発明は上記事情に鑑み、AtN焼結体と強固に接着し
、かつ気密性の高い金属化層を有するAtN焼結体を提
供することを目的とするものである。 [課題を解決するための手段] 本発明は、金属化層を有する窒化アルミニウム焼結体の
製造において、該金属化層をタングステンを主成分とし
、ニッケル、鉄、コバルト及びそれらの合金、それらの
化合物からなる群より1種以上と、イツトリウム化合物
、カドリニウム化合物及びセリウム化合物及びそれらの
混合物、化合物からなる群より1種以上とアルミニウム
化合物とを含有する金属化ペーストを塗布して焼結して
得る金属化層を有する窒化アルミニウム焼結体の製造方
法である。 すなわち、本発明者らは、気密性の高い金属化層を有す
るAtN焼結体を得るべく鋭意検討した結果、Wl:N
i5Fe、Co及びそれらの合金、それらの化合物から
なる群より1種以上添加することにより、極めて気密性
に優れた金属化層を有するAtN焼結体が得られること
を見出した。 上記物質は、AINの気密化が起る1600℃以上の温
度流域において溶融する。一般に、還元性雰囲気下では
、Wの焼結性は物質移動を伴わないため、極めて劣った
ものではあるが、これら溶融金属を介することにより物
質移動が生じ、Wの焼結性は大いに促進され、緻密な金
属化層を得ることができる。その一方、AINはそれら
溶融金属との濡れ性が悪く、金属化層とAtN焼結体の
界面近傍では多孔質の組織が形成される。このため、気
密性や金属化層とAtN焼結体との接着強度の点におい
て満足な値を得ることはできない。しかしながら、金属
化層とAtN焼結体双方に対し、濡れ性の優れた物質を
添加することにより、この問題を解決することができた
。特にイツトリウム化合物、ガドリニウム化合物及びセ
リウム化合物及びそれらの混合物、化合物からなる群よ
り1種以上とAI化合物を添加するとそ0効果が顕著で
あることが認められた。 かかる金属化層を有するAtN焼結体は、例えば以下の
ようにして製造される。 すなわち、まずAINグリーンシートを常法により得る
。しかるのちに、AINグリーンシートの所定部に金属
化ペーストを塗布する。この金属化ペーストは、タング
ステンを主成分とし、ニッケル、鉄、コバルト及びそれ
らの合金、それらの化合物からなる群より1種以上、イ
ツトリウム化合物、カドリニウム化合物及びセリウム化
合物及びそれらの混合物、化合物からなる群より1種以
上と、アルミニウム化合物とともに、エチルセルロース
、アクリル樹脂、ポリビニルアルコールなどの公知の粘
結材と、α−テルピネオール、ブチルカルピトールなど
の公知の溶剤からなるバインダーを混練することにより
得ることができる。金属化ペーストを塗布したグリーン
シートを焼成することにより、AINの焼結と金属化層
の形成を同時に行う。 このときの焼成温度は1600〜2050℃程度が望ま
しい。又、雰囲気ガスとしては、窒素ガス、ドライフォ
ーミングガス、アンモニアガスなどが使用でき、これに
水素ガス、ヘリウムガス、アルゴンガス、−酸化炭素ガ
スなどを混合せしめることも可能である。 なお、上記のように、AINグリーンシートに金属化ペ
ーストを塗布した後、AINの焼結と金属化層の形成と
を同時に行う、いわゆる同時焼成法に代えて、AIN焼
結体に金属化ペーストを塗布し、しかるのちに焼成して
金属化層を形成せしめる、いわゆるポストメタライズ法
にも適用できる。この場合では真空中にて焼成を行うこ
とも可能である。 [実施例] 次に実施例並びに比較例について述べる。 実施例1 AIN粉末、焼結助剤として酸化イツトリウム、結合剤
としてポリビニルブチラールとポリビニルアルコールの
混合物、可塑剤としてジブチルフタレート(D、B、P
、つ、ベンジルブチルフタレート(B、B、P、)の混
合物、解膠剤としてメンヘンデン魚油、溶剤としてトリ
クロロエチレン、エチルアルコール、メチルエチルケト
ンの混合物、湿潤剤としてモノオレイン酸グリセリン及
び消泡剤をボールミル混合し、スラリーを作製した。′
このスラリーを脱泡し、更にドクターブレード法により
、AINのグリーンシートを作製した。 一方、ポリビニルアルコール、ポリメチルメタクリレー
ト、エチルセルロース等の粘結剤、ブチルカルピトール
、α−テルピネオール等の溶剤を混合し、ビヒクルを作
製した。しかるのち、タングステン粉末、酢酸ニッケル
粉末、酸化イツトリウム粉末、酸化アルミニウム粉末と
ビヒクルとを重合比テloO: o、a: 10: 8
 : 25で混合し、金属化ペーストを作製した。 このようにして作製した金属化ペーストを、スクリーン
印刷法等の手法によりAINのグリーンシートに塗布す
る。 しかるのちにH2/ N 2雰囲気中にて脱バインダー
、焼成を行い、金属化層を有するAIN焼結体を得た。 しかるのち、この金属化層のヘリウムリークテストを行
ったところ、リーク速度は1 x to−a ee a
ta+/see以下で気密性が良好であることが確認さ
れた。しかるのち、この得られた焼結体の2ffla+
0部分にニッケルメッキを施し、これを835℃にてア
ニールした後、ワイヤーをはんだ付けし、引張強度試験
を行ったところ、5.5〜6.2kg/2m+o口で実
用上全く問題のないレベルであった。 実施例2 実施例1に示した方法により、AINのグリーンシート
並びにビヒクルを作製した。 しかるのちにタングステン粉末、酸化第一鉄粉末、酸化
ガドリニウム粉末、酸化アルミニウム粉末とビヒクルと
をWjl比で100:2:9:5:25で混合し、金属
化ペーストを作製した。 このようにして作製した金属化ペーストを、実施例1に
示した手法にて塗布し、しかるのち、N2雰囲気中にて
脱バインダー H2/Nz雰囲気中にて焼成を行い、金
属化層を有するAIN焼結体を得た。実施例1に示した
方法により、ヘリウムリークテスト及び引張強度試験を
行ったところ、それぞれlx 10′acc ats/
see以下、4.9〜5.8kg/2av口で実用上全
く問題のないレベルであった。 実施例3 実施例1に示した方法により、AINのグリーンシート
並びにビヒクルを作製した。 しかるのちにタングステン粉末、コバルト粉末、酸化セ
リウム粉末、乳酸アルミニウム粉末とビヒクルとを重量
比で100: o、s: 5 : 25:28で混合し
、金属化ペーストを作製した。 このようにして作製した金属化ペーストを、実施例1に
示した手法にて塗布し、しかるのち、真空中にて脱バイ
ンダー Ar/Nz雰囲気中にて焼成を行い、金属化層
を有するAIN焼結体を得た。実施例1に示した方法に
より、ヘリウムリークテスト及び引張強度試験を行った
ところ、それぞれLX 1G11 cc atIl/s
ee以下、5.3〜5.7kg/2ssOで実用上全く
問題のないレベルであった。 比較例1 実施例1に示した方法により、AINのグリーンシート
並びにビヒクルを作製した。 しかるのちにタングステン粉末、酸化セリウム粉末、酸
化アルミニウム粉末とビヒクルとを重量比で100: 
5 : 10: 25で混合し、金属化ペーストを作製
した。 このようにして作製した金属化ペーストを、実施例1に
示した手法にて塗布し、しかるのち、N2雰囲気中にて
脱バインダー及び焼成を行い、金属化層を有するAIN
焼結体を得た。実施例1に示した方法により、ヘリウム
リークテスト及び引張強度試験を行ったところ、それぞ
れIx to’ cc atl/seeにとどまり、 
0.8〜1.7kg/2IIm口ときわめて低いレベル
にとどまった。 比較例2 実施例1に示した方法により、AINのグリーンシート
並びにビヒクルを作製した。 しかるのちにタンメステン粉末、鉄粉末、酸化アルミニ
ウム粉末とビヒクルとをl1tl比で100: 3: 
3:23で混合し、金属化ペーストを作製した。 このよ゛うにして作製した金属化ペーストを、実施例1
に示した手法にて塗布し、しがるのち、H2/N2雰囲
気中にて脱バインダー Co/N2雰囲気中にて焼成を
行い、金属化層を有するAIN焼結体を得た。実施例1
に示した方法により、ヘリウムリークテスト及び引張強
度試験を行ったところ、それぞれ1×lO″see  
at■/seeであったものの、1.3〜1.9kg7
2mg+’ときわめて低いレベルにとどまった。 〔発明の効果〕 本発明によれば、強固に接着し、かつ気密性の高い金属
化層を有するAIN焼結体を得ることができ、基板材料
もしくはパッケージ材料特に放熱特性の要求される多層
配線基板材料として極めて有用である。
Aluminum nitride (AIN) sintered body has thermal conductivity,
Due to its excellent electrical insulation and mechanical strength,
It is attracting attention in many fields including IC insulating substrates. However, the AIN sintered body has poor wettability with metal, and it is a problem to obtain a metallized layer with sufficient adhesion strength. Methods for forming the metallized layer include thick film firing method, DBC (Direct Bond Copper)
) method, thin film method, etc., and there are many successful examples. In addition, there are also successful cases of a simultaneous firing method in which a metallized paste is applied to an AIN sintered body and fired in a non-oxidizing atmosphere, and several cases have been reported. An example thereof is a composition and method for metallizing non-oxide ceramic bodies (Japanese Patent Publication No. 82-27037). This document discloses a composition that can provide strong adhesion that can be plated or brazed, as well as a metal surface finishing method using the same.In the case of AIN ceramic bodies, tungsten ( W) A metallizing composition containing, in addition to molybdenum (Mo), a constituent material of non-oxide ceramics, that is, AIN, and a metal or a metal oxide, and applying the paste to the AIN green body. , describes a simultaneous firing method in which firing is performed in a non-oxidizing atmosphere. There have been some reports of other examples, but satisfactory performance has not yet been achieved, such as poor airtightness. On the other hand, as a method for metallizing aluminum oxide (AlzOz) sintered bodies, W or molybdenum-manganese (M
o - M n ) metallized paste was applied and heated at 130° C. in a humidified hydrogen or humidified forming gas atmosphere.
The Telefunken method, which involves firing at a temperature of 0 to 1750"c, is widely known. The feature of this method is that it is fired in a humidified atmosphere to a temperature at which the glass phase in the Al2O3 sintered body softens. The surface of W and Mo is oxidized by firing, which not only promotes sintering of W or Mo particles, but also dissolves these oxides into the glass phase of the sintered body and improves the fluidity of the glass. The glass phase moves into the porous metallized layer.Furthermore, oxides generated by firing, especially MnO, form a glass phase near the interface between the metallized layer and the Al2O3 sintered body, so the metalized layer moves into the porous metallized layer. and Al2
The O3 sintered body is mechanically strongly bonded. [Problems to be Solved by the Invention] In view of the above circumstances, an object of the present invention is to provide an AtN sintered body having a metalized layer that firmly adheres to the AtN sintered body and has a high airtightness. It is something to do. [Means for Solving the Problems] In the production of an aluminum nitride sintered body having a metallized layer, the present invention provides that the metallized layer contains tungsten as a main component, nickel, iron, cobalt, their alloys, and their alloys. Obtained by applying and sintering a metallized paste containing one or more from the group consisting of compounds, one or more from the group consisting of yttrium compounds, cadrinium compounds, cerium compounds, mixtures thereof, and compounds and an aluminum compound. A method for producing an aluminum nitride sintered body having a metallized layer. That is, as a result of intensive studies to obtain an AtN sintered body having a metalized layer with high airtightness, the present inventors found that Wl:N
It has been found that an AtN sintered body having a metallized layer with extremely excellent airtightness can be obtained by adding one or more types from the group consisting of i5Fe, Co, alloys thereof, and compounds thereof. The above substance melts in a temperature range of 1600° C. or higher, where hermeticization of AIN occurs. Generally, in a reducing atmosphere, the sinterability of W is extremely poor because it does not involve mass transfer, but mass transfer occurs through these molten metals, and the sinterability of W is greatly promoted. , a dense metallization layer can be obtained. On the other hand, AIN has poor wettability with these molten metals, and a porous structure is formed near the interface between the metallized layer and the AtN sintered body. For this reason, it is not possible to obtain satisfactory values in terms of airtightness and adhesive strength between the metallized layer and the AtN sintered body. However, this problem could be solved by adding a substance with excellent wettability to both the metallized layer and the AtN sintered body. In particular, it has been found that the addition of one or more compounds selected from the group consisting of yttrium compounds, gadolinium compounds, cerium compounds, and mixtures and compounds thereof and an AI compound has a remarkable zero effect. An AtN sintered body having such a metallized layer is manufactured, for example, as follows. That is, first, an AIN green sheet is obtained by a conventional method. Thereafter, metallization paste is applied to predetermined portions of the AIN green sheet. This metallized paste has tungsten as its main component, and contains one or more of the group consisting of nickel, iron, cobalt, alloys thereof, and compounds thereof, and the group consisting of yttrium compounds, cadrinium compounds, cerium compounds, and mixtures and compounds thereof. It can be obtained by kneading a binder consisting of one or more of the above, an aluminum compound, a known binding agent such as ethyl cellulose, acrylic resin, or polyvinyl alcohol, and a known solvent such as α-terpineol or butyl calpitol. . By firing the green sheet coated with the metallization paste, sintering of AIN and formation of the metallization layer are performed simultaneously. The firing temperature at this time is preferably about 1600 to 2050°C. Further, as the atmospheric gas, nitrogen gas, dry forming gas, ammonia gas, etc. can be used, and it is also possible to mix hydrogen gas, helium gas, argon gas, -carbon oxide gas, etc. with this gas. As mentioned above, instead of applying the metallization paste to the AIN green sheet and then sintering the AIN and forming the metallization layer at the same time, which is the so-called simultaneous firing method, the metallization paste is applied to the AIN sintered body. It can also be applied to the so-called post-metallization method, in which a metallized layer is formed by coating and then firing. In this case, it is also possible to perform the firing in a vacuum. [Example] Next, Examples and Comparative Examples will be described. Example 1 AIN powder, yttrium oxide as a sintering aid, a mixture of polyvinyl butyral and polyvinyl alcohol as a binder, dibutyl phthalate (D, B, P
A mixture of benzyl butyl phthalate (B, B, P), menhenden fish oil as a deflocculant, a mixture of trichloroethylene, ethyl alcohol, and methyl ethyl ketone as a solvent, glycerin monooleate as a wetting agent, and an antifoaming agent were mixed in a ball mill. , a slurry was prepared. ′
This slurry was defoamed, and a green sheet of AIN was produced by a doctor blade method. On the other hand, a vehicle was prepared by mixing a binder such as polyvinyl alcohol, polymethyl methacrylate, and ethyl cellulose, and a solvent such as butylcarpitol and α-terpineol. After that, tungsten powder, nickel acetate powder, yttrium oxide powder, aluminum oxide powder and vehicle were polymerized at a polymerization ratio of 0: o, a: 10: 8.
: 25 to prepare a metallized paste. The metallized paste thus produced is applied to an AIN green sheet by a method such as screen printing. Thereafter, the binder was removed and fired in an H2/N2 atmosphere to obtain an AIN sintered body having a metallized layer. When this metallized layer was then tested for helium leakage, the leakage rate was 1 x to-a ee a
It was confirmed that the airtightness was good at ta+/see or less. After that, 2ffla+ of the obtained sintered body
After applying nickel plating to the 0 part and annealing it at 835℃, we soldered the wire and conducted a tensile strength test, and the result was 5.5 to 6.2 kg/2m+o, a level that would pose no problem in practical use. Met. Example 2 A green sheet and vehicle of AIN were produced by the method shown in Example 1. Thereafter, tungsten powder, ferrous oxide powder, gadolinium oxide powder, aluminum oxide powder, and vehicle were mixed in a Wjl ratio of 100:2:9:5:25 to prepare a metallized paste. The metallized paste thus prepared was applied by the method shown in Example 1, and then the binder was removed in an N2 atmosphere, and the AIN was baked in a H2/Nz atmosphere. A sintered body was obtained. When a helium leak test and a tensile strength test were conducted according to the method shown in Example 1, lx 10'ac ats/
See or less was 4.9 to 5.8 kg/2av mouth, which was a level with no practical problems. Example 3 A green sheet and vehicle of AIN were produced by the method shown in Example 1. Thereafter, tungsten powder, cobalt powder, cerium oxide powder, aluminum lactate powder, and vehicle were mixed in a weight ratio of 100:0, s:5:25:28 to prepare a metallized paste. The metallized paste thus prepared was applied by the method shown in Example 1, and then baked in a vacuum in an Ar/Nz atmosphere to remove the binder. Obtained a body. When a helium leak test and a tensile strength test were conducted according to the method shown in Example 1, LX 1G11 cc atIl/s was obtained, respectively.
ee or less was 5.3 to 5.7 kg/2ssO, which was a level with no practical problems. Comparative Example 1 A green sheet and vehicle of AIN were produced by the method shown in Example 1. Thereafter, tungsten powder, cerium oxide powder, aluminum oxide powder and vehicle were mixed in a weight ratio of 100:
A metallized paste was prepared by mixing at a ratio of 5:10:25. The metallized paste thus prepared was applied by the method shown in Example 1, and then the binder was removed and fired in an N2 atmosphere to form an AIN layer with a metallized layer.
A sintered body was obtained. When a helium leak test and a tensile strength test were conducted according to the method shown in Example 1, the results remained at Ix to' cc atl/see, respectively.
It remained at an extremely low level of 0.8 to 1.7 kg/2IIm. Comparative Example 2 A green sheet and vehicle of AIN were produced by the method shown in Example 1. Thereafter, tanmethane powder, iron powder, aluminum oxide powder, and vehicle were mixed in a l1tl ratio of 100:3:
A metallized paste was prepared by mixing at a ratio of 3:23. The metallized paste thus prepared was prepared in Example 1.
After coating and binding using the method shown in 1., binder removal was performed in a H2/N2 atmosphere, and firing was performed in a Co/N2 atmosphere to obtain an AIN sintered body having a metallized layer. Example 1
When a helium leak test and a tensile strength test were conducted using the method shown in
Although it was at■/see, it was 1.3 to 1.9 kg7
It remained at an extremely low level of 2 mg+'. [Effects of the Invention] According to the present invention, it is possible to obtain an AIN sintered body having a strongly bonded and highly airtight metallized layer, which can be used as a substrate material or package material, especially multilayer wiring that requires heat dissipation properties. It is extremely useful as a substrate material.

Claims (1)

【特許請求の範囲】[Claims]  金属化層を有する窒化アルミニウム焼結体の製造にお
いて、該金属化層をタングステンを主成分とし、ニッケ
ル、鉄、コバルト及びそれらの合金、それらの化合物か
らなる群より1種以上と、イットリウム化合物、カドリ
ニウム化合物及びセリウム化合物及びそれらの混合物、
化合物からなる群より1種以上とアルミニウム化合物と
を含有する金属化ペーストを塗布して焼結して得ること
を特徴とする金属化層を有する窒化アルミニウム焼結体
の製造方法。
In the production of an aluminum nitride sintered body having a metallized layer, the metallized layer contains tungsten as a main component, one or more from the group consisting of nickel, iron, cobalt, alloys thereof, and compounds thereof, and an yttrium compound, Cadolinium compounds and cerium compounds and mixtures thereof,
1. A method for producing an aluminum nitride sintered body having a metallized layer, the method comprising applying and sintering a metallized paste containing one or more compounds from the group consisting of aluminum compounds and an aluminum compound.
JP27965389A 1989-10-30 1989-10-30 Production of aluminum nitride sintered body with metallizing layer Granted JPH03146488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27965389A JPH03146488A (en) 1989-10-30 1989-10-30 Production of aluminum nitride sintered body with metallizing layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27965389A JPH03146488A (en) 1989-10-30 1989-10-30 Production of aluminum nitride sintered body with metallizing layer

Publications (2)

Publication Number Publication Date
JPH03146488A true JPH03146488A (en) 1991-06-21
JPH0544434B2 JPH0544434B2 (en) 1993-07-06

Family

ID=17613980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27965389A Granted JPH03146488A (en) 1989-10-30 1989-10-30 Production of aluminum nitride sintered body with metallizing layer

Country Status (1)

Country Link
JP (1) JPH03146488A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171045A (en) * 2000-11-29 2002-06-14 Kyocera Corp Wiring board
JP2002171044A (en) * 2000-11-29 2002-06-14 Kyocera Corp Wiring board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197374A (en) * 1986-02-20 1987-09-01 株式会社東芝 Aluminum nitride sintered body
JPS63129086A (en) * 1986-11-19 1988-06-01 ティーディーケイ株式会社 Ceramic structure
JPS63182282A (en) * 1987-01-20 1988-07-27 株式会社東芝 Aluminum nitride sintered body
JPH01122984A (en) * 1987-11-06 1989-05-16 Sumitomo Electric Ind Ltd Aluminum nitride sintered form provided with metallization treatment
JPH01249681A (en) * 1988-03-30 1989-10-04 Sumitomo Electric Ind Ltd Aluminum nitride sintered compact having metallized surface and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197374A (en) * 1986-02-20 1987-09-01 株式会社東芝 Aluminum nitride sintered body
JPS63129086A (en) * 1986-11-19 1988-06-01 ティーディーケイ株式会社 Ceramic structure
JPS63182282A (en) * 1987-01-20 1988-07-27 株式会社東芝 Aluminum nitride sintered body
JPH01122984A (en) * 1987-11-06 1989-05-16 Sumitomo Electric Ind Ltd Aluminum nitride sintered form provided with metallization treatment
JPH01249681A (en) * 1988-03-30 1989-10-04 Sumitomo Electric Ind Ltd Aluminum nitride sintered compact having metallized surface and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171045A (en) * 2000-11-29 2002-06-14 Kyocera Corp Wiring board
JP2002171044A (en) * 2000-11-29 2002-06-14 Kyocera Corp Wiring board
JP4530524B2 (en) * 2000-11-29 2010-08-25 京セラ株式会社 Wiring board
JP4530525B2 (en) * 2000-11-29 2010-08-25 京セラ株式会社 Wiring board

Also Published As

Publication number Publication date
JPH0544434B2 (en) 1993-07-06

Similar Documents

Publication Publication Date Title
US3620799A (en) Method for metallizing a ceramic body
US4800137A (en) Composite layer aluminum nitride base sintered body
US4409079A (en) Method of metallizing sintered ceramics
JP3629783B2 (en) Circuit board
US5045400A (en) Composition for and method of metallizing ceramic surface, and surface-metallized ceramic article
JPS6227037B2 (en)
JPH0323512B2 (en)
KR101961123B1 (en) Ceramic metalizing substrate and manufacturing method thereof
JP2822518B2 (en) Method for forming metallized layer on aluminum nitride sintered body
JPS61281089A (en) Surface structure of aluminum nitride base material
JPH03146488A (en) Production of aluminum nitride sintered body with metallizing layer
JPH1067586A (en) Circuit base plate for power module and its production
JPS62216979A (en) Aluminum nitride sintered body with glass layer and manufacture
JPH03146487A (en) Production of aluminum nitride sintered body with metallizing layer
JP2779651B2 (en) Metallization method for high purity alumina ceramics
JP2807429B2 (en) Aluminum nitride sintered body
JPH05156303A (en) Metallizing metal powder composition and production of metallized substrate using the composition
JP2620326B2 (en) Method for producing aluminum nitride sintered body having metallized layer
JPH0240028B2 (en) SERAMITSUKUSUTOKINZOKU * DOSHUSERAMITSUKUSUDOSHIMATAHAISHUSERAMITSUKUSUKANNOSETSUGOHOHO
JPS6345194A (en) Aluminum nitride sintered body with metallized surface and manufacture
JPH0218371A (en) Tungsten metallizing structure of aln body
JPS62179893A (en) Brazing filler metal for joining metal and ceramics
JPH01122984A (en) Aluminum nitride sintered form provided with metallization treatment
JPS6317279A (en) Aluminum nitride sintered body with metallized surface and manufacture
JPS6111912B2 (en)