JPH03141191A - Production of compound semiconductor crystal substrate - Google Patents

Production of compound semiconductor crystal substrate

Info

Publication number
JPH03141191A
JPH03141191A JP27904689A JP27904689A JPH03141191A JP H03141191 A JPH03141191 A JP H03141191A JP 27904689 A JP27904689 A JP 27904689A JP 27904689 A JP27904689 A JP 27904689A JP H03141191 A JPH03141191 A JP H03141191A
Authority
JP
Japan
Prior art keywords
mixed crystal
substrate
epitaxial
layer
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27904689A
Other languages
Japanese (ja)
Inventor
Keiji Katagiri
片桐 圭司
Masakatsu Ubusawa
生沢 正克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP27904689A priority Critical patent/JPH03141191A/en
Publication of JPH03141191A publication Critical patent/JPH03141191A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To reduce linear defects caused by slips in a substrate by growing an epitaxial layer at a temperature lower than the growth temperature of a mixed crystal layer when the epitaxial layer is grown on the mixed crystal layer formed by a gaseous phase epitaxial method, etc. CONSTITUTION:A mixed crystal layer is grown by a gaseous phase epitaxial method or liquid phase epitaxial method to form a mixed crystal substrate. When an epitaxial layer is grown on the substrate, the epitaxial layer is grown at a growth temperature lower than the growth temperature (Ta) of the mixed crystal layer, thereby permitting to grow the epitaxial layer in a state that thermal strains existing in the substrate are closed, prevent slips in the substrate and reduce linear defects caused by the slips.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は化合物半導体基板の製造方法に関し、例えばI
[[−V族混晶エピタキシャル基板上に気相エピタキシ
ャル法で混晶層を成長させる場合に利用して効果のある
技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a compound semiconductor substrate, for example, I
[[-Relates to a technique that is effective when growing a mixed crystal layer on a V group mixed crystal epitaxial substrate by vapor phase epitaxial method.

[従来の技術] 従来、発光ダイオード用半導体基板として、GaAsや
GaPのような■−V族化合物半導体基板上に、G a
 A s PあるいはQa I nPのような混晶エピ
タキシャル層を成長させ、さらにこの混晶基板上に混晶
層をエピタキシャル成長させたものが提案されている。
[Prior Art] Conventionally, as a semiconductor substrate for a light emitting diode, Ga
It has been proposed to grow a mixed crystal epitaxial layer such as As P or Qa I nP, and further epitaxially grow the mixed crystal layer on this mixed crystal substrate.

従来、混晶エピタキシャル基板の表面の欠陥を減らすた
め、エピタキシャル成長前に反応管内で混晶基板にベー
キング処理を行なうことで、表面の不純物を除去し、清
浄化してからエピタキシャル成長を行なう方法も実施さ
れていた。
Conventionally, in order to reduce defects on the surface of a mixed crystal epitaxial substrate, a method has been implemented in which the mixed crystal substrate is baked in a reaction tube before epitaxial growth to remove impurities on the surface and clean it before epitaxial growth. Ta.

しかしながら、ベーキング処理を行なってから混晶エピ
タキシャル成長を行なうと、基板表面のピラミッド状の
点欠陥を減らせるものの、線状欠陥が多くなるという問
題点があった。このような欠陥が出現すると、この混晶
基板を用いて作成した発光ダイオードの発光効率が低下
してしまう。
However, if mixed crystal epitaxial growth is performed after baking, pyramid-shaped point defects on the substrate surface can be reduced, but there is a problem in that the number of linear defects increases. When such defects appear, the light emitting efficiency of a light emitting diode fabricated using this mixed crystal substrate decreases.

本発明は上記問題点に着目してなされたもので、その目
的とするところは、混晶基板上に成長されるエピタキシ
ャル層表面の欠陥を低減することにある。
The present invention has been made in view of the above problems, and its purpose is to reduce defects on the surface of an epitaxial layer grown on a mixed crystal substrate.

[課題を解決するための手段] 本発明者は、混晶基板上へのエピタキシャル成長やその
前のベーキング処理により線状欠陥が増大する原因は、
混晶基板に内在していた熱歪がエピタキシャル成長やベ
ーキングの際に一気に開放されて結晶内にスリップが生
じ、混晶基板表面に線状欠陥が現われ、このままエピタ
キシャル層を成長させると、線状欠陥がエピタキシャル
層に伝播するためではないかと考え、種々の温度条件の
下に混晶層やその上のエピタキシャル層の成長およびベ
ーキングを行なった。
[Means for Solving the Problems] The present inventors believe that the cause of increase in linear defects due to epitaxial growth on a mixed crystal substrate and baking treatment prior to the epitaxial growth is as follows.
Thermal strain inherent in the mixed crystal substrate is released all at once during epitaxial growth and baking, causing slip within the crystal, and linear defects appear on the surface of the mixed crystal substrate.If the epitaxial layer is grown in this state, linear defects will occur. We thought that this might be due to the propagation of the mixed crystal layer to the epitaxial layer, so we grew and baked the mixed crystal layer and the epitaxial layer thereon under various temperature conditions.

その結果、エピタキシャル成長は混晶層の成長時の温度
よりも低い温度で、またベーキングはエピタキシャル成
長時の温度よりも低い温度で行なった方が線状欠陥を減
らせることを見出した。
As a result, it has been found that linear defects can be reduced by epitaxial growth at a temperature lower than that during growth of the mixed crystal layer, and by performing baking at a lower temperature than the temperature during epitaxial growth.

本発明は上記知見に基づいてなされたもので、気相エピ
タキシャル法もしくは液相エピタキシャル法により混晶
層を成長させてなる混晶基板上に、エピタキシャル層を
成長させるにあたり、上記混晶層の成長温度(Ta)よ
りも低い成長温度(TC)でエピタキシャル層を成長さ
せる。さらに、好ましくは上記エピタキシャル層の成長
の開始前に、混晶基板を成長装置内におき、上記エピタ
キシャル層の成長温度(Tc)よりも高く混晶層の成長
温度(Ta)よりも低い温度(Tb)でベーキング処理
を施すことを提案するものである。また、ベーキング処
理温度Tbは高い方が清浄効果が良いので、混晶成長温
度Taはできるだけ高く設定しておくとよい。
The present invention has been made based on the above knowledge, and when growing an epitaxial layer on a mixed crystal substrate formed by growing a mixed crystal layer by a vapor phase epitaxial method or a liquid phase epitaxial method, The epitaxial layer is grown at a growth temperature (TC) lower than the temperature (Ta). Furthermore, preferably, before starting the growth of the epitaxial layer, the mixed crystal substrate is placed in a growth apparatus at a temperature (Tc) higher than the growth temperature (Tc) of the epitaxial layer and lower than the growth temperature (Ta) of the mixed crystal layer It is proposed to perform baking treatment with Tb). Further, since the higher the baking treatment temperature Tb is, the better the cleaning effect is, the mixed crystal growth temperature Ta is preferably set as high as possible.

[作用コ 上記した手段によれば、混晶層の成長温度をTa1その
上のエピタキシャル層の成長温度をTcとすると、T 
c (T aなる温度条件でエピタキシャル層を成長さ
せるので、混晶基板に内在する熱歪が閉じ込められたま
まエピタキシャル層が成長されるようになり、基板内の
スリップに起因する線状欠陥を低減することができる。
[Function] According to the above-described means, if the growth temperature of the mixed crystal layer is Ta1 and the growth temperature of the epitaxial layer thereon is Tc, then T
c (Since the epitaxial layer is grown under the temperature condition T a, the epitaxial layer is grown while the thermal strain inherent in the mixed crystal substrate is confined, reducing linear defects caused by slip within the substrate. can do.

また、ベーキング処理温度をTbとすると、上記エピタ
キシャル層成長前にT c < T b < T aな
る温度条件の下でベーキングを施すようにしたので、基
板内にスリップを生じさせることなく表面を洗浄でき、
これによって線状欠陥のみならず不純物に起因する点欠
陥も減らすことができる。
Furthermore, assuming that the baking temperature is Tb, baking is performed under the temperature condition T c < T b < Ta before growing the epitaxial layer, so the surface can be cleaned without causing any slip within the substrate. I can do it,
This makes it possible to reduce not only linear defects but also point defects caused by impurities.

[実施例1コ GaAs基板上に、気相エピタキシャル成長法の一つで
あるクロライドCVD法で成長温度T aを740℃と
してG a A S 、、@l P*0me混晶層を1
00μm成長させてなる混晶基板と、同じくクロライド
CVD法でTa=790℃としてGaAs*+@@ P
 11+44混晶層を100μm成長させてなる混晶基
板を用意した。
[Example 1] On a GaAs substrate, one GaAs, ,@lP*0me mixed crystal layer was grown using the chloride CVD method, which is one of the vapor phase epitaxial growth methods, at a growth temperature Ta of 740°C.
A mixed crystal substrate grown to a thickness of 00 μm and GaAs*+@@P grown at Ta=790°C using the same chloride CVD method.
A mixed crystal substrate was prepared by growing an 11+44 mixed crystal layer to a thickness of 100 μm.

そして、これらの混晶基板上にこれと格子整合するGa
InP混晶エピタキシャル層を、成長温度Tcを各々7
60℃としてMOCVD法により2μm成長させた。そ
の結果を表1に示す。
Then, on these mixed crystal substrates, Ga is lattice-matched to the mixed crystal substrates.
The InP mixed crystal epitaxial layer was grown at a growth temperature Tc of 7.
The film was grown to 2 μm at 60° C. by MOCVD. The results are shown in Table 1.

表1 これより温度条件をTb(Taとした場合には、線状欠
陥が減り、転位を少なくできることが分かる。
Table 1 From this, it can be seen that when the temperature condition is Tb (Ta), the number of linear defects is reduced and the number of dislocations can be reduced.

[実施例2コ GaAs基板上にQaAso、。Poo、混晶を塩化物
CVD法を用いて育成し、混晶基板とした。
[Example 2] QaAso on a GaAs substrate. A mixed crystal was grown using a chloride CVD method to prepare a mixed crystal substrate.

GaAsP混晶の成長温度Taは790℃である。The growth temperature Ta of the GaAsP mixed crystal is 790°C.

このG a A s P混晶基板を、温度Tb=700
℃。
This Ga A s P mixed crystal substrate was heated to a temperature Tb=700
℃.

750℃、800℃で7分間それぞれベーキングした後
、GaAsP混晶基板上にMOCVD法を用いてGaI
nP層を2μm成長させた。GaInPの成長温度Tc
は700℃とした。その結果を表2に示す。
After baking at 750°C and 800°C for 7 minutes, GaI was deposited on the GaAsP mixed crystal substrate using MOCVD.
An nP layer was grown to a thickness of 2 μm. GaInP growth temperature Tc
The temperature was 700°C. The results are shown in Table 2.

表2 表3 この表よりT c < T b (T aを満足する温
度条件で欠陥が少なくなることが分かる。
Table 2 Table 3 From this table, it can be seen that defects are reduced under temperature conditions that satisfy T c < T b (T a ).

[実施例3] Ga、、、I n、、、P混晶をGaP基板上にステッ
プグーリング法によるL P E法(液相エピタキシャ
ル法)で成長させた基板を用意した。混晶成長温度は7
50℃である。このQ a I n P混晶基板を、ベ
ーキング温度Tb=680℃、730’C。
[Example 3] A substrate was prepared in which a Ga,..., In,..., P mixed crystal was grown on a GaP substrate by an LPE method (liquid phase epitaxial method) using a step Guhring method. The mixed crystal growth temperature is 7
The temperature is 50°C. This Q a I n P mixed crystal substrate was baked at a temperature Tb of 680°C and 730'C.

780℃で15分間それぞれベーキングし、このGa 
I nP混晶基板上にMOCVD法で同種の混晶G a
、、、 I n、、、 P層を成長させた。MOCVD
成長温度Tcは680℃である。結果を表3に示す。
Baked at 780°C for 15 minutes, this Ga
The same type of mixed crystal Ga is deposited on the I nP mixed crystal substrate using the MOCVD method.
,,, I n, , P layer was grown. MOCVD
The growth temperature Tc is 680°C. The results are shown in Table 3.

[発明の効果] 以上説明したようにこの発明は、気相エピタキシャル法
もしくは液相エピタキシャル法により混晶層を成長させ
てなる混晶基板上に、エピタキシャル層を成長させるに
あたり、上記混晶相の成長温度(Ta)よりも低い成長
温度(Tc)でエピタキシャル層を成長させるようにし
たので、混晶基板に内在する熱歪が閉じ込められたまま
エピタキシャル層が成長されるようになり、これによっ
て基板内のスリップを防止し、これに起因する線状欠陥
を低減することができる。
[Effects of the Invention] As explained above, the present invention provides a method for growing an epitaxial layer on a mixed crystal substrate formed by growing a mixed crystal layer by a vapor phase epitaxial method or a liquid phase epitaxial method. Since the epitaxial layer is grown at a growth temperature (Tc) lower than the growth temperature (Ta), the epitaxial layer is grown while the thermal strain inherent in the mixed crystal substrate is confined. It is possible to prevent slippage within the wafer and reduce linear defects caused by this.

また、エピタキシャル層の成長開始前に、混晶基板を成
長装置内におき、上記エピタキシャル層の成長温度(T
c)よりも高く混晶層の成長温度(Ta)よりも低い温
度(Tb)でベーキング処理を施すようにしたので、基
板内にスリップを生じさせることなく表面を清浄化でき
、これによって線状欠陥のみならず不純物に起因する点
欠陥も減らすことができるという効果がある。
Furthermore, before starting the growth of the epitaxial layer, the mixed crystal substrate is placed in the growth apparatus, and the epitaxial layer growth temperature (T
Since the baking treatment is performed at a temperature (Tb) which is higher than c) and lower than the growth temperature (Ta) of the mixed crystal layer, the surface can be cleaned without causing any slip within the substrate, and as a result, the linear This has the effect of reducing not only defects but also point defects caused by impurities.

平成 2年 3月30日March 30, 1990

Claims (2)

【特許請求の範囲】[Claims] (1)気相エピタキシャル法もしくは液相エピタキシャ
ル法により混晶層を成長させてなる混晶基板上に、エピ
タキシャル層を成長させるにあたり、上記混晶層の成長
温度(Ta)よりも低い成長温度(Tc)でエピタキシ
ャル層を成長させるようにしたことを特徴とする化合物
半導体結晶基板の製造方法。
(1) When growing an epitaxial layer on a mixed crystal substrate formed by growing a mixed crystal layer by a vapor phase epitaxial method or a liquid phase epitaxial method, the growth temperature (Ta) is lower than the growth temperature (Ta) of the above mixed crystal layer. 1. A method for manufacturing a compound semiconductor crystal substrate, characterized in that an epitaxial layer is grown using Tc).
(2)上記エピタキシャル層の成長の開始前に、混晶基
板を成長装置内におき、上記エピタキシャル層の成長温
度(Tc)よりも高く混晶層の成長温度(Ta)よりも
低い温度(Tb)でベーキング処理を施すようにしたこ
とを特徴とする請求項1記載の化合物半導体結晶基板の
製造方法。
(2) Before starting the growth of the epitaxial layer, place the mixed crystal substrate in a growth apparatus at a temperature (Tb) higher than the growth temperature (Tc) of the epitaxial layer and lower than the growth temperature (Ta) of the mixed crystal layer. 2. The method for manufacturing a compound semiconductor crystal substrate according to claim 1, wherein the baking treatment is carried out in step 2.
JP27904689A 1989-10-26 1989-10-26 Production of compound semiconductor crystal substrate Pending JPH03141191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27904689A JPH03141191A (en) 1989-10-26 1989-10-26 Production of compound semiconductor crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27904689A JPH03141191A (en) 1989-10-26 1989-10-26 Production of compound semiconductor crystal substrate

Publications (1)

Publication Number Publication Date
JPH03141191A true JPH03141191A (en) 1991-06-17

Family

ID=17605647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27904689A Pending JPH03141191A (en) 1989-10-26 1989-10-26 Production of compound semiconductor crystal substrate

Country Status (1)

Country Link
JP (1) JPH03141191A (en)

Similar Documents

Publication Publication Date Title
US10174439B2 (en) Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow
JP3875821B2 (en) GaN film manufacturing method
US20140159112A1 (en) Method for forming group iii/v conformal layers on silicon substrates
JPH07235692A (en) Compound semiconductor device and forming method thereof
TWI725418B (en) Structure of epitaxial on heterogeneous substrate and preparation method
CN116590687A (en) AlN thin film epitaxial wafer, preparation method and application of AlN thin film
JPS6230692B2 (en)
JPH03141191A (en) Production of compound semiconductor crystal substrate
JP2797425B2 (en) Semiconductor crystal growth method
WO2019225112A1 (en) Group iii nitride semiconductor substrate and method of producing same
JP4084539B2 (en) Method for producing crystal growth substrate of group III nitride compound semiconductor
WO2024057698A1 (en) Single crystal silicon substrate equipped with nitride semiconductor layer, and method for manufacturing single crystal silicon substrate equipped with nitride semiconductor layer
JP2002075873A (en) Semiconducor device
JP3078927B2 (en) Method for growing compound semiconductor thin film
JPH0760790B2 (en) Compound semiconductor substrate
JP2503255B2 (en) Method for manufacturing compound semiconductor substrate
JPH01179788A (en) Method for growing iii-v compound semiconductor on si substrate
JPS6012775B2 (en) Method for forming a single crystal semiconductor layer on a foreign substrate
JPH01120011A (en) Inp semiconductor thin film
JPS6211221A (en) Molecular-beam epitaxial growth method
JPH03103390A (en) Production of algaas epitaxial wafer for red led
JPH0573335B2 (en)
JP2005032766A (en) GaN SEMICONDUCTOR AND ITS MANUFACTURING METHOD
JPH03203316A (en) Epitaxial wafer and manufacture thereof
JPH0383327A (en) Manufacture of compound semiconductor substrate