JPH03139885A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPH03139885A
JPH03139885A JP1279243A JP27924389A JPH03139885A JP H03139885 A JPH03139885 A JP H03139885A JP 1279243 A JP1279243 A JP 1279243A JP 27924389 A JP27924389 A JP 27924389A JP H03139885 A JPH03139885 A JP H03139885A
Authority
JP
Japan
Prior art keywords
aluminum
solid
photoelectric conversion
melting point
high melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1279243A
Other languages
Japanese (ja)
Inventor
Hidekazu Yamamoto
秀和 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1279243A priority Critical patent/JPH03139885A/en
Publication of JPH03139885A publication Critical patent/JPH03139885A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the diffusion of aluminum to the photoelectric transfer film and the deterioration of the photoelectric transfer film by covering aluminum wiring with high melting point metal. CONSTITUTION:High melting point metal 12 is deposited on aluminum wirings 7 and 7a. For example, this is done by the selective CVD method of tungsten. To be concrete, a semi-finished product 13 is arranged in the reactor 14 of a CVD device, and then the atmospheric pressure within the reactor 14 is put to 0.1Torr. In this condition, tungsten hexafluoride and hydrogen are introduced into the reactor 14, and the temperature inside the reactor 14 is set 400 deg.C-500 deg.C by heating it with a heater 15. Under this condition, on the aluminum wirings 7 and 7a, WF6 is reduced in contact with Si, so tungsten W is deposited.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、テレビカメラなどに適用される固体撮像装置
に関し、さらに詳しくは、光電変換部と信号転送部とを
重ねた積層型固体撮像装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a solid-state imaging device applied to a television camera, etc., and more specifically, a stacked solid-state imaging device in which a photoelectric conversion section and a signal transfer section are stacked. It is related to.

〔従来の技術〕[Conventional technology]

従来例によるこの種の積層型固体撮像装置として、ここ
では、例えば文献(菊地誠監修、田中−宜編著、「アモ
ルファス半導体の基礎」、オーム社発行)の195真に
記載されている積層型固体撮像装置の概要断面を第3図
に示す。
As a conventional example of this type of stacked solid-state imaging device, here, for example, a stacked solid-state image pickup device described in the literature (Supervised by Makoto Kikuchi, edited by Tanaka-Yoshi, "Basics of Amorphous Semiconductors", published by Ohm Publishing Co., Ltd.), No. 195, is used. FIG. 3 shows a schematic cross section of the imaging device.

すなわち、この第3図の従来例の構成において、■は半
導体基板、2,3および4は半導体基板1の主面上に形
成されて、後述する信号電荷を外部ニ読み出すための素
子構成で、ここでは、いわゆるMOSFETを構成する
それぞれにソース領域ドレイン領域およびゲート電極、
5はこれらの構成2.3.4の上に形成された絶縁膜、
6はソース領域2から取り出されたソース電極配線、7
および7aはドレイン領域3がら取り出されたドレイン
電極配線(アルミニウムから成る配線、以下「アルミニ
ウム配線」という)およびアルミニウム配線、8はソー
ス電極配線6とアルミニウム配線7,7aとの間を隔て
る眉間絶縁膜、9はこれらの上部を覆い、かつアルミニ
ウム配線7,7aに接して堆積形成され、外部からの入
射光11を電気信号に変換する光電変換膜、1oは光電
変換膜9上に形成された透明導電膜である。
That is, in the configuration of the conventional example shown in FIG. 3, ``■'' is a semiconductor substrate, and 2, 3, and 4 are element configurations formed on the main surface of the semiconductor substrate 1 for reading out signal charges to the outside, which will be described later. Here, a source region, a drain region, a gate electrode,
5 is an insulating film formed on these structures 2.3.4,
6 is a source electrode wiring taken out from the source region 2; 7
7a is a drain electrode wiring (wiring made of aluminum, hereinafter referred to as "aluminum wiring") and aluminum wiring taken out from the drain region 3, and 8 is an insulating film between the eyebrows separating the source electrode wiring 6 and the aluminum wirings 7 and 7a. , 9 is a photoelectric conversion film that covers the tops of these and is deposited in contact with the aluminum wirings 7 and 7a, and converts incident light 11 from the outside into an electrical signal; 1o is a transparent film formed on the photoelectric conversion film 9; It is a conductive film.

そして、この従来例の装置の場合には、まず、半導体基
板1の主面上にあって、ソース領域2゜ドレイン領域3
およびゲート電極4からなる信号電荷を読み出すための
MOS F ETを構成させ、また、絶縁膜5を形成し
た後、ソース領域2に接続されるソース電極配線6を施
し、かつこのソース電極配線6との間の眉間絶縁膜8を
形成した後、次の上層での充電変換膜9に接するアルミ
ニウム配線7aを有して、ドレイン領域3に接続される
アルミニウム配線(ドレイン電極配線)7を施す。
In the case of this conventional device, first, on the main surface of the semiconductor substrate 1, the source region 2, the drain region 3
After forming a MOS FET for reading signal charges consisting of a gate electrode 4 and a gate electrode 4, and forming an insulating film 5, a source electrode wiring 6 connected to the source region 2 is formed, and a source electrode wiring 6 is connected to the source electrode wiring 6. After forming the glabellar insulating film 8 between the eyebrows, an aluminum wiring (drain electrode wiring) 7 having an aluminum wiring 7a in contact with the charge conversion film 9 in the next upper layer and connected to the drain region 3 is formed.

続いて、これらの上部にあって、アルミニウム配線7,
7aに接して、アモルファスシリコンなどの光電変換膜
9を堆積させ、さらにその上に透明導電膜lOを形成さ
せて、装置構成を完成する。
Next, on top of these, aluminum wiring 7,
A photoelectric conversion film 9 made of amorphous silicon or the like is deposited in contact with the photoelectric conversion film 7a, and a transparent conductive film 1O is further formed thereon to complete the device configuration.

従って、この従来例装置の構成では、透明導電膜10側
から入射される信号入射光11により、光電変換膜9内
で信号電荷が発生され、この発生された信号電荷は、透
明導電膜10とアルミニウム配線7.7a間の電界によ
り、アルミニウム配線7を通してドレイン領域3に一旦
蓄積されると共に、このドレイン領域3に一定時間だけ
蓄積された信号電荷は、読み出しのための素子であるM
OSFETを通して外部に読み出されるのである。
Therefore, in the configuration of this conventional device, signal charges are generated within the photoelectric conversion film 9 by the signal incident light 11 that enters from the transparent conductive film 10 side, and the generated signal charges are transferred to the transparent conductive film 10. Due to the electric field between the aluminum wirings 7 and 7a, the signal charges are temporarily accumulated in the drain region 3 through the aluminum wiring 7, and the signal charges accumulated in the drain region 3 for a certain period of time are transferred to the readout element M.
It is read out to the outside through the OSFET.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の積層型固体撮像装置は以上のように構成されてお
り、アルミニウム配線7,7a上に直接光電変換膜9が
堆積される。そのため、光電変換膜9の堆積時あるいは
装置完成後の常温放置によって、アルミニウムが光電変
換膜9内に拡散し、特性を劣化させるという問題があっ
た。
The conventional stacked solid-state imaging device is configured as described above, and the photoelectric conversion film 9 is deposited directly on the aluminum wirings 7 and 7a. Therefore, there is a problem that aluminum diffuses into the photoelectric conversion film 9 during deposition of the photoelectric conversion film 9 or when the device is left at room temperature after completion of the device, degrading the characteristics.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、アルミニウムの光電変換膜内へ
の拡散をなくすことができる積層型固体撮像装置を得る
ことにある。
The present invention has been made in view of these points, and an object thereof is to obtain a stacked solid-state imaging device that can eliminate diffusion of aluminum into a photoelectric conversion film.

〔課題を解決するための手段〕[Means to solve the problem]

このような課題を解決するために本発明は、信号電荷蓄
積部と光電変換部とをつなぐ配線上に高融点金属を積層
して、この高融点金属で上記配線を被覆するようにした
ものである。
In order to solve these problems, the present invention is such that a high melting point metal is laminated on the wiring connecting the signal charge storage section and the photoelectric conversion section, and the wiring is covered with this high melting point metal. be.

〔作用〕[Effect]

本発明による固体撮像装置において、高融点金属は、ア
ルミニウムの光電変換膜への拡散を防止し、光電変換膜
の劣化を抑える。
In the solid-state imaging device according to the present invention, the high melting point metal prevents aluminum from diffusing into the photoelectric conversion film and suppresses deterioration of the photoelectric conversion film.

〔実施例〕〔Example〕

以下、本発明による固体撮像装置の一実施例を図を用い
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a solid-state imaging device according to the present invention will be described below with reference to the drawings.

第1図(a)〜(C)は、本発明の一実施例の製造方法
を説明するための断面図である。同図において、I2は
タングステンなどの高融点金属層である。
FIGS. 1(a) to 1(C) are cross-sectional views for explaining a manufacturing method according to an embodiment of the present invention. In the figure, I2 is a high melting point metal layer such as tungsten.

なお、第1図において第3図と同一部分又は相当部分に
は同一符号が付しである。また、光電変換膜9と透明導
電膜10は光電変換部を構成する。
In FIG. 1, the same or equivalent parts as in FIG. 3 are given the same reference numerals. Furthermore, the photoelectric conversion film 9 and the transparent conductive film 10 constitute a photoelectric conversion section.

第1図(a)は、従来の積層型固体撮像装置と同様にし
てアルミニウム配線7,7aまで施したものを示す断面
図である。
FIG. 1(a) is a cross-sectional view showing aluminum wiring 7, 7a provided in the same manner as in a conventional stacked solid-state imaging device.

次に、第1図(blに示すように、アルミニウム配線7
,7aをタングステンなどの高融点金属12で被覆する
Next, as shown in FIG.
, 7a are coated with a high melting point metal 12 such as tungsten.

次に、第1図(C1に示すように、従来の積層型固体撮
像装置と同様にしてアモルファスシリコンなどの光電変
換膜9を堆積させ、さらにその上に透明導電膜10を形
成させて装置構成を完成する。
Next, as shown in FIG. 1 (C1), a photoelectric conversion film 9 made of amorphous silicon or the like is deposited in the same manner as in the conventional stacked solid-state imaging device, and a transparent conductive film 10 is further formed thereon to form the device configuration. complete.

次に、アルミニウム配線7.7a上に高融点金属12を
選択的に形成する方法を説明する。アルミニウム配線7
.7a上に高融点金属12を形成することは、例えば第
2図に示すような装置を用い、タングステンの選択CV
D法によって行なうことができる。具体的には、第1図
(a)に示した状態の半加工製品13(第2図)を第2
図に示すCVD装置の反応室14内に配置した後、反応
室14内の気圧を0.ITorrにする。この状態で反
応室14に六弗化タングステン(WF6)および水素(
H2)を導入し、ヒータ15によって加熱して反応室1
4内の温度を400℃〜500℃に設定する。この条件
下では、アルミニウム配線77a上においては、WF、
がSiと接触して還元されるため、タングステンWが堆
積する。
Next, a method for selectively forming high melting point metal 12 on aluminum wiring 7.7a will be described. aluminum wiring 7
.. Forming the high melting point metal 12 on the tungsten metal 7a can be done by using, for example, an apparatus as shown in FIG.
This can be done by method D. Specifically, the semi-finished product 13 (FIG. 2) in the state shown in FIG. 1(a) is
After placing the CVD device in the reaction chamber 14 shown in the figure, the pressure inside the reaction chamber 14 is reduced to 0. Set it to ITorr. In this state, tungsten hexafluoride (WF6) and hydrogen (
H2) is introduced into the reaction chamber 1 and heated by the heater 15.
Set the temperature in 4 to 400°C to 500°C. Under this condition, on the aluminum wiring 77a, WF,
tungsten W is deposited because it comes into contact with Si and is reduced.

なお、上記実施例で示した選択CVD法では、WF、と
H2を用いた場合について示したが、H2の代わりにシ
ラン(SiHa)を用いても同様にタングステン膜12
を形成することができる。この場合の反応室14の温度
は300℃程度に保てばよい。
In addition, in the selective CVD method shown in the above embodiment, the case where WF and H2 were used was shown, but even if silane (SiHa) is used instead of H2, the tungsten film 12
can be formed. In this case, the temperature of the reaction chamber 14 may be maintained at about 300°C.

また、第1図の実施例の構成においては、信号電荷を読
み出すための素子として、MOSFETを用いる場合に
ついて述べたが、CCDを用いる積層型固体撮像装置で
あってもよく、同様な作用、効果を奏し得る。
Furthermore, in the configuration of the embodiment shown in FIG. 1, a case has been described in which a MOSFET is used as an element for reading out signal charges, but a stacked solid-state imaging device using a CCD may also be used, and similar functions and effects can be obtained. can be played.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、アルミニウム配線を高融
点金属で被覆したことにより、アルミニウムの光電変換
膜への拡散を防止することができ、光電変換膜の劣化を
なくすことができる効果がある。
As explained above, the present invention has the effect of being able to prevent aluminum from diffusing into the photoelectric conversion film and eliminating deterioration of the photoelectric conversion film by coating the aluminum wiring with a high melting point metal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による固体撮像装置の一実施例の製造工
程を示す断面図、第2図は第1図の実施例のタングステ
ン膜を選択的に形成するためのCVD装置の概略を示す
構成図、第3図は従来の積層型固体撮像装置を示す断面
図である。 1・・・半導体基板、2・・・ソース領域、3・・・ド
レイン領域、4・・・ゲート電極、5・・・絶縁膜、6
・・・ソース電極配線、7,7a・・・アルミニウム配
線、8・・・層間絶縁膜、9・・・光電変換膜、10・
・・透明導電膜、11・・・入射光、12・・・高融点
金属。
FIG. 1 is a cross-sectional view showing the manufacturing process of an embodiment of the solid-state imaging device according to the present invention, and FIG. 2 is a schematic configuration of a CVD apparatus for selectively forming the tungsten film of the embodiment of FIG. 1. 3 are cross-sectional views showing a conventional stacked solid-state imaging device. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Source region, 3... Drain region, 4... Gate electrode, 5... Insulating film, 6
... Source electrode wiring, 7, 7a... Aluminum wiring, 8... Interlayer insulating film, 9... Photoelectric conversion film, 10.
...Transparent conductive film, 11... Incident light, 12... High melting point metal.

Claims (1)

【特許請求の範囲】[Claims]  信号電荷蓄積部と信号電荷読出し部とが形成された固
体撮像素子基板上に光電変換部が積層された固体撮像装
置において、前記信号電荷蓄積部と光電変換部とをつな
ぐ配線上に高融点金属を積層して前記高融点金属で前記
配線を被覆したことを特徴とする固体撮像装置。
In a solid-state imaging device in which a photoelectric conversion section is stacked on a solid-state imaging device substrate on which a signal charge storage section and a signal charge readout section are formed, a high melting point metal is provided on the wiring connecting the signal charge storage section and the photoelectric conversion section. A solid-state imaging device characterized in that the wiring is covered with the high melting point metal by laminating the above.
JP1279243A 1989-10-25 1989-10-25 Solid-state image pickup device Pending JPH03139885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1279243A JPH03139885A (en) 1989-10-25 1989-10-25 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1279243A JPH03139885A (en) 1989-10-25 1989-10-25 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPH03139885A true JPH03139885A (en) 1991-06-14

Family

ID=17608437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1279243A Pending JPH03139885A (en) 1989-10-25 1989-10-25 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPH03139885A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161390A (en) * 2002-01-11 2010-07-22 Crosstek Capital Llc Image sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152280A (en) * 1980-04-25 1981-11-25 Hitachi Ltd Light receiving surface
JPS5994971A (en) * 1983-11-02 1984-05-31 Hitachi Ltd Solid-state image pickup device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152280A (en) * 1980-04-25 1981-11-25 Hitachi Ltd Light receiving surface
JPS5994971A (en) * 1983-11-02 1984-05-31 Hitachi Ltd Solid-state image pickup device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161390A (en) * 2002-01-11 2010-07-22 Crosstek Capital Llc Image sensor

Similar Documents

Publication Publication Date Title
US20190386056A1 (en) Semiconductor device and manufacturing method
US7679187B2 (en) Bonding pad structure for back illuminated optoelectronic device and fabricating method thereof
US20100304520A1 (en) Method for manufacturing semiconductor device
JPH05134111A (en) Solid image pick-up apparatus
US7973347B2 (en) Complementary metal oxide silicon image sensor and method of fabricating the same
US20050263676A1 (en) Complementary metal oxide semiconductor image sensor and method for fabricating the same
TW201143059A (en) Method for manufacturing a solid-state image capturing element
JPH10223881A (en) Semiconductor device and its manufacture
JPS5812481A (en) Solidstate image pickup element
US6472255B1 (en) Solid-state imaging device and method of its production
JPH03139885A (en) Solid-state image pickup device
US20090166692A1 (en) Cmos image sensor and method for manufacturing the same
KR20040019995A (en) Method of fabricating a solid-state imaging device
JPS6258550B2 (en)
JP2003224256A (en) Photoelectric conversion device, solid-state image pickup device, and manufacturing method for the same
JPH01291460A (en) Solid-stage image sensing device
KR20000008283A (en) Solid pickup device and fabricating method of the same
JPH051081Y2 (en)
JP4090221B2 (en) Solid-state imaging device and manufacturing method thereof
JPH10321828A (en) Manufacture of solid-state image pickup device
KR100776154B1 (en) Method for manufacturing of semiconductor device
JPH03238863A (en) Solid state image sensing element and manufacture thereof
JPS5892262A (en) Semiconductor device
TW501228B (en) Method of preventing CMOS sensors from occurring leakage current
JPH07161957A (en) Solid-state image pick-up device and its manufacture