JP4090221B2 - Solid-state imaging device and manufacturing method thereof - Google Patents

Solid-state imaging device and manufacturing method thereof Download PDF

Info

Publication number
JP4090221B2
JP4090221B2 JP2001216051A JP2001216051A JP4090221B2 JP 4090221 B2 JP4090221 B2 JP 4090221B2 JP 2001216051 A JP2001216051 A JP 2001216051A JP 2001216051 A JP2001216051 A JP 2001216051A JP 4090221 B2 JP4090221 B2 JP 4090221B2
Authority
JP
Japan
Prior art keywords
electrode
semiconductor substrate
light receiving
imaging device
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001216051A
Other languages
Japanese (ja)
Other versions
JP2003031789A (en
Inventor
俊寛 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001216051A priority Critical patent/JP4090221B2/en
Publication of JP2003031789A publication Critical patent/JP2003031789A/en
Application granted granted Critical
Publication of JP4090221B2 publication Critical patent/JP4090221B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、撮像素子としてCCDなどの固体撮像素子を用いた固体撮像装置およびその製造方法に関するものである。
【0002】
【従来の技術】
従来から、固体撮像素子を用いた固体撮像装置として、固体撮像素子にCCDを用いたCCD型撮像装置が広く利用されている。
【0003】
以下、固体撮像素子としてCCDを用いた従来の固体撮像装置について説明する。
図5は従来の固体撮像装置の構成を示す平面図である。また、図6は従来の固体撮像装置の構成を示す断面図であり、図6(a)は図5のA−A’断面、図6(b)は図5のB−B’断面、図6(c)は図5のC−C’断面を、それぞれ示している。図5および図6において、21は半導体基板、22、22aは半導体基板21の表面に選択的に形成された拡散層、23は拡散層22を含む半導体基板21の表面全域に形成された酸化絶縁膜、24は第1のゲート電極、25は第2のゲート電極、26は遮光膜、27は透明樹脂あるいはカラー樹脂、28はレンズである。なお、レンズ28の形状は、各レンズ28の下面を平坦化しているために画素ごとのばらつきは抑制されている。
【0004】
以上のように構成された固体撮像装置について、その動作を以下に説明する。
被写体からの光は、レンズ28で集光され、透明(またはカラー)樹脂27を通過し、遮光膜26の開口部26aに対応する拡散層22の受光領域に入ったものだけが光電変換されたのち、その信号電荷は、第2のゲート電極25に電圧を印加することで転送領域に移動したのちに、隣接する第1のゲート電極24に電圧を印加し、その後さらに隣接する第2のゲート電極25に順次電圧を印加していくことにより、転送領域拡散層22a内を順次転送され、最終的に、被写体からの光の強度変化に対応した波形を有する電気信号として、この装置から出力される。
【0005】
【発明が解決しようとする課題】
しかしながら上記のような従来の固体撮像装置では、図6(a)のA−A’断面図中に示すように、ゲート電極を第1のゲート電極24および第2のゲート電極25による2層のポリシリコンを重ねた構造で形成しているため、拡散層22の受光領域となる遮光膜26の開口部26aに隣接する部分には、2層のゲート電極の重なりが存在する。
【0006】
そのため、遮光膜26がその重なり部分で1層分のゲート電極の膜厚分だけ高くなり、レンズ28で集光された光が阻害される所謂“けられ”の量が多くなり、特に微細化された画素においては、感度の低下が顕著になるという問題点を有していた。
【0007】
本発明は、上記従来の問題点を解決するもので、微細化された画素においても、レンズの集光効率を高めて画素の感度を向上することができ、安定して高感度な画素を得ることができる固体撮像装置およびその製造方法を提供する。
【0008】
【課題を解決するための手段】
上記の課題を解決するために本発明の固体撮像装置は、半導体基板上に形成された複数の受光領域を有し、その受光領域への入射光を光電変換した信号電荷を、前記受光領域の近傍に形成された第1の電極および第2の電極に順次電圧を印加して、前記半導体基板内の転送部領域を移動させながら、最終的に前記入射光の強度に対応して変化する波形の電気信号を出力する固体撮像装置において、前記第1の電極を、前記半導体基板上に形成された絶縁膜により、前記半導体基板と絶縁された状態で、前記半導体基板上に形成し、前記第2の電極を、前記第1の電極と電気的に絶縁された状態で、前記半導体基板上に形成し、前記第1の電極および前記第2の電極を、少なくとも転送方向における各受光領域の間では、前記第2の電極が前記第1の電極の上にあり、少なくとも前記転送方向と直交する方向における各受光領域の間では、前記第1の電極上には前記第2の電極がないように構成したことを特徴とする。
【0009】
また、本発明の固体撮像装置の製造方法は、半導体基板上に形成された複数の受光領域を有し、その受光領域への入射光を光電変換した信号電荷を、前記受光領域の近傍に形成された第1の電極および第2の電極に順次電圧を印加して、前記半導体基板内の転送部領域を移動させながら、最終的に前記入射光の強度に対応して変化する波形の電気信号を出力する固体撮像装置の製造方法であって、前記半導体基板上に絶縁膜を形成する工程と、前記第1の電極を前記絶縁膜を介して前記半導体基板上に形成する工程と、前記第2の電極を前記第1の電極と電気的に絶縁された状態で、前記半導体基板および前記第1の電極上に形成する工程と、前記第2の電極の前記第1の電極と重なる部分のうちの少なくとも前記転送方向と直交する方向における各受光領域の間の部分を除去する工程とからなる方法としたことを特徴とする。
【0010】
以上により、遮光膜の開口部に隣接するゲート電極部の重なりをなくして、その部分での遮光膜の高さを抑制し、レンズで集光された光に対して、そのけられを低減することにより、レンズの集光効率の向上を可能とすることができる。
【0011】
【発明の実施の形態】
本発明の請求項1に記載の固体撮像装置は、半導体基板上に形成された複数の受光領域を有し、その受光領域への入射光を光電変換した信号電荷を、前記受光領域の近傍に形成された第1の電極および第2の電極に順次電圧を印加して、前記半導体基板内の転送部領域を移動させながら、最終的に前記入射光の強度に対応して変化する波形の電気信号を出力する固体撮像装置において、前記第1の電極を、前記半導体基板上に形成された絶縁膜により、前記半導体基板と絶縁された状態で、前記半導体基板上に形成し、前記第2の電極を、前記第1の電極と電気的に絶縁された状態で、前記半導体基板上に形成し、前記第1の電極および前記第2の電極を、少なくとも転送方向における各受光領域の間では、前記第2の電極が前記第1の電極の上にあり、少なくとも前記転送方向と直交する方向における各受光領域の間では、前記第1の電極上には前記第2の電極がないように構成する。
【0012】
請求項2に記載の固体撮像装置は、請求項1に記載の固体撮像装置において、前記転送方向における各受光領域の間では、前記第1の電極の一部として機能する埋め込み電極が前記半導体基板内に埋め込まれた状態に構成する。
請求項3に記載の固体撮像装置の製造方法は、半導体基板上に形成された複数の受光領域を有し、その受光領域への入射光を光電変換した信号電荷を、前記受光領域の近傍に形成された第1の電極および第2の電極に順次電圧を印加して、前記半導体基板内の転送部領域を移動させながら、最終的に前記入射光の強度に対応して変化する波形の電気信号を出力する固体撮像装置の製造方法であって、前記半導体基板上に絶縁膜を形成する工程と、前記第1の電極を前記絶縁膜を介して前記半導体基板上に形成する工程と、前記第2の電極を前記第1の電極と電気的に絶縁された状態で、前記半導体基板および前記第1の電極上に形成する工程と、前記第2の電極の前記第1の電極と重なる部分のうちの少なくとも前記転送方向と直交する方向における各受光領域の間の部分を除去する工程とからなる方法とする。
【0013】
請求項4に記載の固体撮像装置の製造方法は、半導体基板上に形成された複数の受光領域を有し、その受光領域への入射光を光電変換した信号電荷を、前記受光領域の近傍に形成された第1の電極および第2の電極に順次電圧を印加して、前記半導体基板内の転送部領域を移動させながら、最終的に前記入射光の強度に対応して変化する波形の電気信号を出力する固体撮像装置の製造方法であって、前記転送方向における各受光領域の間において前記半導体基板内に前記第1の電極の一部として機能する埋め込み電極を形成する工程と、前記半導体基板上に第1の絶縁膜を形成する工程と、前記埋め込み電極上の前記絶縁膜にホールを形成する工程と、前記ホールを介して前記埋め込み電極と接続するように前記第1の絶縁膜上に前記第1の電極の一部として機能する基板上第1の電極を形成する工程と、前記第1の電極上に第2の絶縁膜を形成する工程と、前記第1の電極を覆うように電極材料を形成する工程と、前記電極材料を平坦化することによって前記第1の電極上の電極材料を除去し、前記第1の電極間に前記電極材料を残して前記第2電極を形成する工程とからなる方法とする。
【0015】
これらの構成および方法によると、遮光膜の開口部に隣接するゲート電極部の重なりをなくして、その部分での遮光膜の高さを抑制し、レンズで集光された光に対して、そのけられを低減することにより、レンズの集光効率の向上を可能とする。
【0016】
以下、本発明の実施の形態を示す固体撮像装置およびその製造方法について、図面を参照しながら具体的に説明する。
(実施の形態1)
本発明の実施の形態1の固体撮像装置およびその製造方法を説明する。
【0017】
図1は本実施の形態1の固体撮像装置の構成を示す平面図である。また、図2は本実施の形態1の固体撮像装置の構成を示す断面図であり、図2(a)は図1のA−A’断面、図2(b)は図1のB−B’断面、図2(c)は図1のC−C’断面を、それぞれ示している。図1および図2において、1は半導体基板、2、2aは半導体基板1の表面に選択的に形成された拡散層、3は拡散層2を含む半導体基板1の表面全域に形成された酸化絶縁膜、4は第1のゲート電極、5は第2のゲート電極、6は遮光膜、7は透明樹脂(あるいはカラー樹脂)、8はレンズである。
【0018】
以上のように構成された固体撮像装置の製造方法について、以下に説明する。
図3は本実施の形態1の固体撮像装置の製造方法を示す製造工程図である。本実施の形態1の固体撮像装置は、図3(c)の工程▲1▼に示すように、半導体基板1上に第1のゲート電極4および第2のゲート電極5を形成した後に、図3(c)の工程▲2▼に示すように、選択的に第1および第2のゲート電極4、5の重なり部を含む部分が開口するようにレジストパターンを形成する。
【0019】
つぎに、図3(c)の工程▲3▼に示すように、ゲート電極4、5の重なり部を含む部分を等方性エッチングにより除去する。このときのエッチング量を、第2のゲート電極5の膜厚の140%以上200%の範囲で行うことによって、所望の形状が得られる。その後、図3(c)の工程▲4▼に示すように、通常の層間絶縁膜および遮光膜6を形成する。
【0020】
以上のような構成および製造方法による固体撮像装置について、その利点を以下に説明する。
図2(a)のA−A’断面図に示すように、開口部6aに隣接する領域でけられを抑制できることによってレンズ8による光の集光率を向上できる。特に、カメラ側の絞りが開いた状態では、撮像装置の撮像面に入射する光には斜め光成分が増加するため効果が顕著にあらわれる。けられの割合を従来と比較するために、ゲート電極1層分の遮光領域の画素に対する割合で示すと、3μmピッチの画素では、従来が20%程度であったのに対して40%以上確保できる。
【0021】
以上のようにして、上記の固体撮像装置を撮像装置として構成することにより、遮光膜6の開口部6aに隣接するゲート電極部の重なりをなくして、その部分での遮光膜6の高さを抑制し、レンズ9で集光された光に対して、そのけられを低減することにより、レンズ8の集光効率の向上を可能とすることができる。
【0022】
その結果、レンズ8の集光効率を高めて画素の感度を向上することができ、安定して高感度な画素が得られる撮像装置を実現することができる。この効果は、特に微細化された画素において、顕著に現れる。
【0023】
なお、実施の形態1において、第2のゲート電極5の開口部6aでの第1のゲート電極4との重なりを全て除去したが、開口部6aに隣接する部分のみについて除去するようにしてもよい。
【0024】
また、実施の形態1において、第1のゲート電極4を形成した後に第2のゲート電極5となるポリシリコンを成長させ、このポリシリコンをCMPで平坦化し、第2のゲート電極5を形成した後にこれらの第2のゲート電極5を接続する配線を第1のゲート電極4上に形成してもよい。
(実施の形態2)
本発明の実施の形態2の固体撮像装置およびその製造方法を説明する。
【0025】
図4は本実施の形態2の固体撮像装置の構成および製造方法を示す平面図ならびに断面図である。なお、図4においては、従来構造と同様のため省略した図面となっているが、図1および図2と同様に、半導体基板1の表面に選択的に形成された拡散層2、および拡散層2を含む半導体基板1の表面全域に形成された酸化絶縁膜3を有している。図1と異なる点を以下に述べる。図4において、9は半導体基板1に埋め込まれた埋め込みゲート電極、10は埋め込みゲート電極9と酸化絶縁膜3上に形成された第1のゲート電極4とを電気的に接続するためのコンタクトホール、5は第2のゲート電極、6は遮光膜である。
【0026】
以上のように構成された固体撮像装置の製造方法について、以下に説明する。
本実施の形態2の固体撮像装置は、図4(a)の平面図および図4(b)のD−D’断面図および図4(c)のC−C’断面図に示すように、まず、図2と同様に、半導体基板1に拡散層2を選択的に形成した後に、埋め込みゲート電極9を形成しさらに酸化絶縁膜3を形成する。この後コンタクトホール10を形成する。
【0027】
次に、図4(d)の工程▲1▼に示すように、半導体基板1上に第1のゲート電極4を形成した後にポリシリコンを成長させる。そして、図4(d)の工程▲2▼に示すように、ポリシリコンをCMPで平坦化して、ポリシリコンにより第2のゲート電極5を形成した後に、図4(d)の工程▲3▼に示すように、通常の遮光膜6、および透明樹脂(あるいはカラー樹脂)、レンズを形成する。
【0028】
以上のような構成および製造方法による固体撮像装置について、その利点を以下に説明する。
図4(b)のD−D’断面図および図4(c)のC−C’断面図に示すように、開口部6aに隣接するゲート電極の重なりを全てなくすることにより、遮光膜6の高さを抑制した構成をしているとともに、二次元的に配列されたゲート電極を接続する部分(D−D’断面)においても接続部の平面積を増加させることなく高さを抑制することができるため、開口部6aをY方向だけでなくX方向にも拡大することが可能となるため、レンズの集光効率がさらに向上させることができる。
【0029】
以上のようにして、上記の固体撮像装置を撮像装置として構成することにより、遮光膜6の開口部6aに隣接するゲート電極部の重なりをなくして、その部分での遮光膜6の高さを抑制し、レンズで集光された光に対して、そのけられを低減することにより、レンズの集光効率の向上を可能とすることができる。
【0030】
その結果、レンズの集光効率を高めて画素の感度を向上することができ、安定して高感度な画素が得られる撮像装置を実現することができる。この効果は、特に微細化された画素において、顕著に現れる。
【0031】
【発明の効果】
以上のように本発明によれば、遮光膜の開口部に隣接するゲート電極部の重なりをなくして、その部分での遮光膜の高さを抑制し、レンズで集光された光に対して、そのけられを低減することにより、レンズの集光効率の向上を可能とすることができる。
【0032】
そのため、微細化された画素においても、レンズの集光効率を高めて画素の感度を向上することができ、安定して高感度な画素が得られる撮像装置を実現することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の固体撮像装置の構成を示す平面図
【図2】同実施の形態1の固体撮像装置の構成を示す断面図
【図3】同実施の形態1の固体撮像装置の製造方法を示す製造工程図
【図4】本発明の実施の形態2の固体撮像装置の構成を示す平面図および断面図ならびに製造方法を示す製造工程図
【図5】従来の固体撮像装置の構成を示す平面図
【図6】同従来例の固体撮像装置の構成を示す断面図
【符号の説明】
1、21 半導体基板
2、22 拡散層
3、23 酸化絶縁膜
4、24 第1のゲート電極
5、25 第2のゲート電極
6、26 遮光膜
7、27 透明樹脂(あるいはカラー樹脂)
8、28 レンズ
9 埋め込みゲート電極
10 コンタクトホール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid-state imaging device using a solid-state imaging device such as a CCD as an imaging device and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, as a solid-state imaging device using a solid-state imaging device, a CCD-type imaging device using a CCD as a solid-state imaging device has been widely used.
[0003]
Hereinafter, a conventional solid-state imaging device using a CCD as a solid-state imaging device will be described.
FIG. 5 is a plan view showing a configuration of a conventional solid-state imaging device. 6 is a cross-sectional view showing a configuration of a conventional solid-state imaging device. FIG. 6A is a cross-sectional view taken along line AA ′ in FIG. 5, FIG. 6B is a cross-sectional view taken along line BB ′ in FIG. 6 (c) shows the CC ′ cross section of FIG. 5 and 6, reference numeral 21 denotes a semiconductor substrate, 22 and 22 a are diffusion layers selectively formed on the surface of the semiconductor substrate 21, and 23 is an oxide insulation formed over the entire surface of the semiconductor substrate 21 including the diffusion layer 22. A film, 24 is a first gate electrode, 25 is a second gate electrode, 26 is a light-shielding film, 27 is a transparent resin or color resin, and 28 is a lens. In addition, since the shape of the lens 28 has flattened the lower surface of each lens 28, the variation for every pixel is suppressed.
[0004]
The operation of the solid-state imaging device configured as described above will be described below.
The light from the subject is collected by the lens 28, passes through the transparent (or color) resin 27, and only the light that enters the light receiving region of the diffusion layer 22 corresponding to the opening 26 a of the light shielding film 26 is photoelectrically converted. After that, the signal charge moves to the transfer region by applying a voltage to the second gate electrode 25, and then applies a voltage to the adjacent first gate electrode 24, and then further to the adjacent second gate. By sequentially applying a voltage to the electrode 25, the inside of the transfer region diffusion layer 22a is sequentially transferred, and finally outputted from this apparatus as an electric signal having a waveform corresponding to the change in the intensity of light from the subject. The
[0005]
[Problems to be solved by the invention]
However, in the conventional solid-state imaging device as described above, the gate electrode is composed of two layers of the first gate electrode 24 and the second gate electrode 25 as shown in the AA ′ cross-sectional view of FIG. Since the polysilicon is formed in an overlapping structure, there is an overlap of the two layers of gate electrodes in the portion adjacent to the opening 26a of the light shielding film 26 which becomes the light receiving region of the diffusion layer 22.
[0006]
Therefore, the light-shielding film 26 is increased by the thickness of the gate electrode for one layer at the overlapping portion, so that the amount of so-called “scratch” that obstructs the light collected by the lens 28 increases, However, the pixel has a problem in that the sensitivity is significantly lowered.
[0007]
The present invention solves the above-described conventional problems, and even in a miniaturized pixel, it is possible to improve the sensitivity of the pixel by increasing the light collection efficiency of the lens, and to obtain a stable and highly sensitive pixel. Provided are a solid-state imaging device and a manufacturing method thereof.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, a solid-state imaging device according to the present invention has a plurality of light receiving regions formed on a semiconductor substrate, and the signal charges obtained by photoelectrically converting incident light to the light receiving regions are A waveform that finally changes in accordance with the intensity of the incident light while moving the transfer portion region in the semiconductor substrate by sequentially applying a voltage to the first electrode and the second electrode formed in the vicinity. In the solid-state imaging device that outputs the electrical signal, the first electrode is formed on the semiconductor substrate in a state of being insulated from the semiconductor substrate by an insulating film formed on the semiconductor substrate, and the second electrode, the first electrode and electrically insulated state, wherein formed on a semiconductor substrate, the first electrode and the second electrode, between the light receiving region in at least the transfer direction Then, the second electrode is the Is on the first electrode, between the respective light-receiving regions in the direction perpendicular to at least the transfer direction, said on the first electrode, characterized by being configured such that there are no said second electrode.
[0009]
In addition, the solid-state imaging device manufacturing method of the present invention has a plurality of light receiving regions formed on a semiconductor substrate, and forms signal charges obtained by photoelectrically converting incident light to the light receiving regions in the vicinity of the light receiving regions. An electric signal having a waveform that finally changes in accordance with the intensity of the incident light while moving the transfer region in the semiconductor substrate by sequentially applying a voltage to the first electrode and the second electrode. A method of manufacturing a solid-state imaging device that outputs an insulating film on the semiconductor substrate; a step of forming the first electrode on the semiconductor substrate through the insulating film; Forming a second electrode on the semiconductor substrate and the first electrode in a state of being electrically insulated from the first electrode; and a portion of the second electrode overlapping the first electrode At least in a direction perpendicular to the transfer direction. Kicking is characterized in that the method comprising the step of removing the portion between the respective light-receiving regions.
[0010]
As described above, the overlap of the gate electrode portion adjacent to the opening of the light shielding film is eliminated, the height of the light shielding film at that portion is suppressed, and the vignetting is reduced with respect to the light collected by the lens. As a result, it is possible to improve the light collection efficiency of the lens.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The solid-state imaging device according to claim 1 of the present invention has a plurality of light receiving regions formed on a semiconductor substrate, and a signal charge obtained by photoelectrically converting incident light to the light receiving region is placed in the vicinity of the light receiving region. A voltage is applied to the formed first electrode and second electrode in sequence to move the transfer portion region in the semiconductor substrate, and finally, an electric wave having a waveform that changes according to the intensity of the incident light. In the solid-state imaging device that outputs a signal, the first electrode is formed on the semiconductor substrate while being insulated from the semiconductor substrate by an insulating film formed on the semiconductor substrate, and the second electrode the electrodes, the first electrode and electrically insulated state, formed on the semiconductor substrate, the first electrode and the second electrode, between the respective light-receiving regions in at least the transfer direction, The second electrode is the first electrode Is above, between the respective light-receiving regions in the direction perpendicular to at least the transfer direction, said on the first electrode configured to no the second electrode.
[0012]
The solid-state imaging device according to claim 2 is the solid-state imaging device according to claim 1, wherein a buried electrode functioning as a part of the first electrode is provided between the light receiving regions in the transfer direction. It is configured to be embedded inside.
The method for manufacturing a solid-state imaging device according to claim 3 has a plurality of light receiving regions formed on a semiconductor substrate, and a signal charge obtained by photoelectrically converting incident light to the light receiving region is placed in the vicinity of the light receiving region. A voltage is applied to the formed first electrode and second electrode in sequence to move the transfer portion region in the semiconductor substrate, and finally, an electric wave having a waveform that changes according to the intensity of the incident light. A method of manufacturing a solid-state imaging device that outputs a signal, the step of forming an insulating film on the semiconductor substrate, the step of forming the first electrode on the semiconductor substrate via the insulating film, Forming a second electrode on the semiconductor substrate and the first electrode in a state of being electrically insulated from the first electrode, and a portion overlapping the first electrode of the second electrode Direction at least orthogonal to the transfer direction A method comprising the step of removing the portions between respective light receiving areas definitive.
[0013]
The method for manufacturing a solid-state imaging device according to claim 4 has a plurality of light receiving regions formed on a semiconductor substrate, and a signal charge obtained by photoelectrically converting light incident on the light receiving region is placed in the vicinity of the light receiving region. A voltage is applied to the formed first electrode and second electrode in sequence to move the transfer portion region in the semiconductor substrate, and finally, an electric wave having a waveform that changes according to the intensity of the incident light. A method of manufacturing a solid-state imaging device that outputs a signal, the step of forming a buried electrode functioning as a part of the first electrode in the semiconductor substrate between light receiving regions in the transfer direction, and the semiconductor Forming a first insulating film on the substrate; forming a hole in the insulating film on the embedded electrode; and on the first insulating film so as to be connected to the embedded electrode through the hole. Said first Forming a first electrode on the substrate that functions as a part of the electrode; forming a second insulating film on the first electrode; and forming an electrode material so as to cover the first electrode a step of the steps of the electrode material to remove electrode material on the first electrode by flattening to form the second electrode and the remaining said electrode material between the first electrode A method consisting of
[0015]
According to these configurations and methods, the overlap of the gate electrode portion adjacent to the opening of the light shielding film is eliminated, the height of the light shielding film at that portion is suppressed, and the light collected by the lens is By reducing the vignetting, it is possible to improve the light collection efficiency of the lens.
[0016]
Hereinafter, a solid-state imaging device and a manufacturing method thereof according to an embodiment of the present invention will be specifically described with reference to the drawings.
(Embodiment 1)
A solid-state imaging device and a manufacturing method thereof according to Embodiment 1 of the present invention will be described.
[0017]
FIG. 1 is a plan view showing the configuration of the solid-state imaging device according to the first embodiment. 2 is a cross-sectional view illustrating the configuration of the solid-state imaging device according to the first embodiment. FIG. 2A is a cross-sectional view taken along the line AA ′ in FIG. 1, and FIG. 'Cross section, FIG. 2 (c) shows a CC' section in FIG. 1 and FIG. 2, 1 is a semiconductor substrate, 2 is a diffusion layer formed selectively on the surface of the semiconductor substrate 1, and 3 is an oxide insulation formed over the entire surface of the semiconductor substrate 1 including the diffusion layer 2. 4 is a first gate electrode, 5 is a second gate electrode, 6 is a light-shielding film, 7 is a transparent resin (or color resin), and 8 is a lens.
[0018]
A method for manufacturing the solid-state imaging device configured as described above will be described below.
FIG. 3 is a manufacturing process diagram illustrating a method of manufacturing the solid-state imaging device according to the first embodiment. After the first gate electrode 4 and the second gate electrode 5 are formed on the semiconductor substrate 1, as shown in step (1) of FIG. As shown in step (2) of 3 (c), a resist pattern is selectively formed so that a portion including the overlapping portion of the first and second gate electrodes 4 and 5 is opened.
[0019]
Next, as shown in step (3) in FIG. 3C, the portion including the overlapping portion of the gate electrodes 4 and 5 is removed by isotropic etching. By performing the etching amount at this time in the range of 140% to 200% of the film thickness of the second gate electrode 5, a desired shape can be obtained. Thereafter, as shown in step (4) of FIG. 3C, a normal interlayer insulating film and a light shielding film 6 are formed.
[0020]
Advantages of the solid-state imaging device having the above-described configuration and manufacturing method will be described below.
As shown in the AA ′ cross-sectional view of FIG. 2A, the light condensing rate of the lens 8 can be improved by suppressing the squeezing in the region adjacent to the opening 6a. In particular, when the diaphragm on the camera side is opened, the effect is remarkable because the oblique light component increases in the light incident on the imaging surface of the imaging device. In order to compare the loss ratio with the conventional one, the ratio of the light-shielding region for one layer of the gate electrode to the pixels in the 3 μm pitch is secured at 40% or more compared to the conventional 20%. it can.
[0021]
As described above, by configuring the solid-state imaging device as an imaging device, the gate electrode portion adjacent to the opening 6a of the light shielding film 6 is not overlapped, and the height of the light shielding film 6 at that portion is increased. It is possible to improve the light condensing efficiency of the lens 8 by suppressing and reducing the fluctuation of the light collected by the lens 9.
[0022]
As a result, the light collection efficiency of the lens 8 can be increased to improve the sensitivity of the pixels, and an imaging device that can stably obtain highly sensitive pixels can be realized. This effect is particularly prominent in a fine pixel.
[0023]
In the first embodiment, the overlap with the first gate electrode 4 in the opening 6a of the second gate electrode 5 is all removed, but only the portion adjacent to the opening 6a may be removed. Good.
[0024]
In the first embodiment, after the first gate electrode 4 is formed, polysilicon to be the second gate electrode 5 is grown, and this polysilicon is planarized by CMP to form the second gate electrode 5. A wiring for connecting these second gate electrodes 5 later may be formed on the first gate electrode 4.
(Embodiment 2)
A solid-state imaging device and a manufacturing method thereof according to Embodiment 2 of the present invention will be described.
[0025]
4A and 4B are a plan view and a cross-sectional view showing the configuration and manufacturing method of the solid-state imaging device according to the second embodiment. 4 is omitted because it is the same as the conventional structure, but similarly to FIG. 1 and FIG. 2, the diffusion layer 2 selectively formed on the surface of the semiconductor substrate 1, and the diffusion layer 2, an oxide insulating film 3 formed over the entire surface of the semiconductor substrate 1 including 2. Differences from FIG. 1 will be described below. In FIG. 4, 9 is a buried gate electrode buried in the semiconductor substrate 1, and 10 is a contact hole for electrically connecting the buried gate electrode 9 and the first gate electrode 4 formed on the oxide insulating film 3. Reference numeral 5 denotes a second gate electrode, and reference numeral 6 denotes a light shielding film.
[0026]
A method for manufacturing the solid-state imaging device configured as described above will be described below.
As shown in the plan view of FIG. 4A, the DD ′ cross-sectional view of FIG. 4B, and the CC ′ cross-sectional view of FIG. First, similarly to FIG. 2, after selectively forming the diffusion layer 2 on the semiconductor substrate 1, the buried gate electrode 9 is formed, and the oxide insulating film 3 is further formed. Thereafter, contact holes 10 are formed.
[0027]
Next, as shown in step (1) of FIG. 4D, after the first gate electrode 4 is formed on the semiconductor substrate 1, polysilicon is grown. Then, as shown in step (2) in FIG. 4 (d), the polysilicon is planarized by CMP to form the second gate electrode 5 with polysilicon, and then in step (3) in FIG. 4 (d). As shown in FIG. 2, a normal light shielding film 6, a transparent resin (or color resin), and a lens are formed.
[0028]
Advantages of the solid-state imaging device having the above-described configuration and manufacturing method will be described below.
As shown in the DD ′ cross-sectional view of FIG. 4B and the CC ′ cross-sectional view of FIG. 4C, the light-shielding film 6 is eliminated by eliminating all overlapping of the gate electrodes adjacent to the opening 6a. The height is suppressed without increasing the plane area of the connecting portion even in the portion (DD ′ cross section) where the gate electrodes arranged two-dimensionally are connected. Therefore, since the opening 6a can be expanded not only in the Y direction but also in the X direction, the light collection efficiency of the lens can be further improved.
[0029]
As described above, by configuring the solid-state imaging device as an imaging device, the gate electrode portion adjacent to the opening 6a of the light shielding film 6 is not overlapped, and the height of the light shielding film 6 at that portion is increased. It is possible to improve the condensing efficiency of the lens by suppressing and reducing the fluctuation of the light collected by the lens.
[0030]
As a result, it is possible to improve the sensitivity of the pixels by increasing the light collection efficiency of the lens, and it is possible to realize an imaging device that can stably obtain highly sensitive pixels. This effect is particularly prominent in a fine pixel.
[0031]
【The invention's effect】
As described above, according to the present invention, the overlap of the gate electrode portion adjacent to the opening of the light shielding film is eliminated, the height of the light shielding film at that portion is suppressed, and the light collected by the lens is reduced. By reducing the vignetting, it is possible to improve the light collection efficiency of the lens.
[0032]
Therefore, even in a miniaturized pixel, it is possible to improve the sensitivity of the pixel by increasing the light collection efficiency of the lens, and it is possible to realize an imaging device that can stably obtain a highly sensitive pixel.
[Brief description of the drawings]
FIG. 1 is a plan view showing the configuration of a solid-state imaging device according to Embodiment 1 of the present invention; FIG. 2 is a cross-sectional view showing the configuration of the solid-state imaging device according to Embodiment 1; Manufacturing process diagram showing manufacturing method of solid-state imaging device FIG. 4 is a plan view and cross-sectional view showing the configuration of the solid-state imaging device according to Embodiment 2 of the present invention, and manufacturing process diagram showing the manufacturing method. FIG. 6 is a plan view showing the configuration of the imaging device. FIG. 6 is a cross-sectional view showing the configuration of the solid-state imaging device of the conventional example.
1, 21 Semiconductor substrate 2, 22 Diffusion layer 3, 23 Oxide insulating film 4, 24 First gate electrode 5, 25 Second gate electrode 6, 26 Light shielding film 7, 27 Transparent resin (or color resin)
8, 28 Lens 9 Embedded gate electrode 10 Contact hole

Claims (4)

半導体基板上に形成された複数の受光領域を有し、その受光領域への入射光を光電変換した信号電荷を、前記受光領域の近傍に形成された第1の電極および第2の電極に順次電圧を印加して、前記半導体基板内の転送部領域を移動させながら、最終的に前記入射光の強度に対応して変化する波形の電気信号を出力する固体撮像装置において、前記第1の電極を、前記半導体基板上に形成された絶縁膜により、前記半導体基板と絶縁された状態で、前記半導体基板上に形成し、前記第2の電極を、前記第1の電極と電気的に絶縁された状態で、前記半導体基板上に形成し、前記第1の電極および前記第2の電極を、少なくとも転送方向における各受光領域の間では、前記第2の電極が前記第1の電極の上にあり、少なくとも前記転送方向と直交する方向における各受光領域の間では、前記第1の電極上には前記第2の電極がないように構成したことを特徴とする固体撮像装置。  A plurality of light receiving regions formed on the semiconductor substrate, and signal charges obtained by photoelectric conversion of light incident on the light receiving regions are sequentially applied to the first electrode and the second electrode formed in the vicinity of the light receiving region. In the solid-state imaging device that outputs an electric signal having a waveform that finally changes in accordance with the intensity of the incident light while applying a voltage to move the transfer portion region in the semiconductor substrate, the first electrode Is formed on the semiconductor substrate while being insulated from the semiconductor substrate by an insulating film formed on the semiconductor substrate, and the second electrode is electrically insulated from the first electrode. The first electrode and the second electrode are formed on the semiconductor substrate, and at least between the light receiving regions in the transfer direction, the second electrode is placed on the first electrode. Yes, at least orthogonal to the transfer direction Between each of the light receiving region in that direction, the solid-state imaging device, characterized in that configured so as not to the second electrode on the first electrode. 前記転送方向における各受光領域の間では、前記第1の電極の一部として機能する埋め込み電極が前記半導体基板内に埋め込まれた状態に構成したことを特徴とする請求項1に記載の固体撮像装置。  2. The solid-state imaging according to claim 1, wherein a buried electrode functioning as a part of the first electrode is buried in the semiconductor substrate between the light receiving regions in the transfer direction. apparatus. 半導体基板上に形成された複数の受光領域を有し、その受光領域への入射光を光電変換した信号電荷を、前記受光領域の近傍に形成された第1の電極および第2の電極に順次電圧を印加して、前記半導体基板内の転送部領域を移動させながら、最終的に前記入射光の強度に対応して変化する波形の電気信号を出力する固体撮像装置の製造方法であって、前記半導体基板上に絶縁膜を形成する工程と、前記第1の電極を前記絶縁膜を介して前記半導体基板上に形成する工程と、前記第2の電極を前記第1の電極と電気的に絶縁された状態で、前記半導体基板および前記第1の電極上に形成する工程と、前記第2の電極の前記第1の電極と重なる部分のうちの少なくとも前記転送方向と直交する方向における各受光領域の間の部分を除去する工程とからなる固体撮像装置の製造方法。A plurality of light receiving regions formed on a semiconductor substrate, and signal charges obtained by photoelectric conversion of light incident on the light receiving regions are sequentially applied to a first electrode and a second electrode formed in the vicinity of the light receiving region. A method of manufacturing a solid-state imaging device that outputs an electric signal having a waveform that finally changes in accordance with the intensity of the incident light while applying a voltage and moving a transfer unit region in the semiconductor substrate, Forming an insulating film on the semiconductor substrate; forming the first electrode on the semiconductor substrate through the insulating film; and electrically connecting the second electrode to the first electrode. In the insulated state, each of the light receiving processes in the direction orthogonal to the transfer direction in the step of forming on the semiconductor substrate and the first electrode and the portion of the second electrode overlapping the first electrode removing the portion between regions Method for manufacturing a solid-state imaging device comprising a. 半導体基板上に形成された複数の受光領域を有し、その受光領域への入射光を光電変換した信号電荷を、前記受光領域の近傍に形成された第1の電極および第2の電極に順次電圧を印加して、前記半導体基板内の転送部領域を移動させながら、最終的に前記入射光の強度に対応して変化する波形の電気信号を出力する固体撮像装置の製造方法であって、前記転送方向における各受光領域の間において前記半導体基板内に前記第1の電極の一部として機能する埋め込み電極を形成する工程と、前記半導体基板上に第1の絶縁膜を形成する工程と、前記埋め込み電極上の前記絶縁膜にホールを形成する工程と、前記ホールを介して前記埋め込み電極と接続するように前記第1の絶縁膜上に前記第1の電極の一部として機能する基板上第1の電極を形成する工程と、前記第1の電極上に第2の絶縁膜を形成する工程と、前記第1の電極を覆うように電極材料を形成する工程と、前記電極材料を平坦化することによって前記第1の電極上の電極材料を除去し、前記第1の電極間に前記電極材料を残して前記第2電極を形成する工程とからなる固体撮像装置の製造方法。A plurality of light receiving regions formed on a semiconductor substrate, and signal charges obtained by photoelectric conversion of light incident on the light receiving regions are sequentially applied to a first electrode and a second electrode formed in the vicinity of the light receiving region. A method of manufacturing a solid-state imaging device that outputs an electric signal having a waveform that finally changes in accordance with the intensity of the incident light while applying a voltage and moving a transfer unit region in the semiconductor substrate, Forming a buried electrode functioning as a part of the first electrode in the semiconductor substrate between the light receiving regions in the transfer direction; forming a first insulating film on the semiconductor substrate; Forming a hole in the insulating film on the buried electrode; and on a substrate functioning as a part of the first electrode on the first insulating film so as to be connected to the buried electrode through the hole. The first electrode A step of forming, a step of forming a second insulating film on the first electrode, forming an electrode material so as to cover said first electrode, said by planarizing the electrode material the electrode material on the first electrode is removed, the manufacturing method of the first said electrode material between the electrodes and remaining in the solid-state imaging device comprising the step of forming the second electrode.
JP2001216051A 2001-07-17 2001-07-17 Solid-state imaging device and manufacturing method thereof Expired - Lifetime JP4090221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001216051A JP4090221B2 (en) 2001-07-17 2001-07-17 Solid-state imaging device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001216051A JP4090221B2 (en) 2001-07-17 2001-07-17 Solid-state imaging device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003031789A JP2003031789A (en) 2003-01-31
JP4090221B2 true JP4090221B2 (en) 2008-05-28

Family

ID=19050579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001216051A Expired - Lifetime JP4090221B2 (en) 2001-07-17 2001-07-17 Solid-state imaging device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4090221B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7978654B2 (en) 2006-06-01 2011-07-12 Sharp Kabushiki Kaisha Method for connecting mobile station to base station, mobile station, base station, multi-carrier mobile communication system, and random access channel mapping method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179646A (en) 2004-12-22 2006-07-06 Matsushita Electric Ind Co Ltd Method of manufacturing solid state imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7978654B2 (en) 2006-06-01 2011-07-12 Sharp Kabushiki Kaisha Method for connecting mobile station to base station, mobile station, base station, multi-carrier mobile communication system, and random access channel mapping method

Also Published As

Publication number Publication date
JP2003031789A (en) 2003-01-31

Similar Documents

Publication Publication Date Title
RU2521224C1 (en) Image acquisition solid-state device
US20050263839A1 (en) Photoelectric converting film stack type solid-state image pickup device, and method of producing the same
US20230017757A1 (en) Image sensor and method of manufacturing same
JP2007080941A (en) Solid state imaging device and its manufacturing method
JP2007088057A (en) Solid-state imaging element and manufacturing method thereof
JP2011082386A (en) Solid-state imaging element, method for manufacturing the element, and imaging device using the element
JP2878546B2 (en) Solid-state imaging device and manufacturing method thereof
JP4090221B2 (en) Solid-state imaging device and manufacturing method thereof
JP2005503674A (en) Image sensor having recess in flattening layer and manufacturing method thereof
JP2007067212A (en) Solid-state imaging device and method of manufacturing same
US7452744B2 (en) Method of manufacturing solid image pickup apparatus
KR100856948B1 (en) Method for manufacturing of image sensor
JP2007188964A (en) Solid-state imaging device and its manufacturing method
JP2003188368A (en) Manufacturing method for solid-state imaging device
JP5207777B2 (en) Solid-state imaging device and manufacturing method thereof
JP3255116B2 (en) Solid-state imaging device and method of manufacturing the same
JP2005311208A (en) Solid-state imaging element, manufacturing method therefor, and electronic information apparatus
KR20000008283A (en) Solid pickup device and fabricating method of the same
JP2008288504A (en) Semiconductor device and manufacturing method thereof
JP2007012677A (en) Solid state image sensor and its fabrication process
JP2004342912A (en) Solid state imaging element and its manufacturing method
JP2002110959A (en) Solid-state imaging device and its manufacturing method
JP2002076322A (en) Solid-state imaging device and manufacturing method
JP2531435B2 (en) Solid-state imaging device and manufacturing method thereof
JP2006294798A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5