JPH03137079A - Ceramics body coated with calcium phosphate and production thereof - Google Patents

Ceramics body coated with calcium phosphate and production thereof

Info

Publication number
JPH03137079A
JPH03137079A JP1272191A JP27219189A JPH03137079A JP H03137079 A JPH03137079 A JP H03137079A JP 1272191 A JP1272191 A JP 1272191A JP 27219189 A JP27219189 A JP 27219189A JP H03137079 A JPH03137079 A JP H03137079A
Authority
JP
Japan
Prior art keywords
hydroxyapatite
coating layer
phosphate
ratio
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1272191A
Other languages
Japanese (ja)
Other versions
JPH0774109B2 (en
Inventor
Masaji Tsuzuki
正詞 都築
Eiji Miyata
宮田 英次
Masaaki Hattori
昌晃 服部
Kazunori Miura
三浦 一則
Kazuo Kondo
和夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP1272191A priority Critical patent/JPH0774109B2/en
Publication of JPH03137079A publication Critical patent/JPH03137079A/en
Publication of JPH0774109B2 publication Critical patent/JPH0774109B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To improve the bioaffinity and the balance of coating layer by forming a calcined coating layer contg. hydroxyl apatite and Ca3(PO4)2 on the surface of a ceramics sintered body. CONSTITUTION:An aq. slurry mixture contg. the hydroxyl apatite and Mg(PO3)3 at 50/1 to 50/3 weight ratios and a binder (e.g.: CMC) is applied on the surface of the ceramics sintered body and is dried; thereafter, the coating is calcined at 1,000 to 1,350 deg.C. The calcined coating layer contg. the hydroxyl apatite and the Ca3(PO4)2 at 4/1 to 1/5 weight ratios and having 10 to 300mum thickness is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、生体親和性及び被覆層の密着性に優れかつ両
者のバランスに優れたリン酸カルシウム被覆セラミック
ス体及びその製造方法に関し、人工骨、人工歯根、人工
関節等の医用セラミックス等に利用される。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a calcium phosphate-coated ceramic body that has excellent biocompatibility and adhesion of a coating layer and has an excellent balance between the two, and a method for manufacturing the same. Used for medical ceramics such as tooth roots and artificial joints.

〔従来の技術〕[Conventional technology]

従来、アルミナ焼結体、ジルコニア焼結体等のセラミッ
クス体は、機械的強度特性に優れている上に、生体に対
して毒性が少ないので、人工骨等の生体用セラミックス
として利用が進みつつあるしかし、これらの材料は生体
組織に対して不活性であるために、新生骨との結合能が
なく、維持安定性を欠いている。
Traditionally, ceramic bodies such as alumina sintered bodies and zirconia sintered bodies have excellent mechanical strength characteristics and are less toxic to living bodies, so they are increasingly being used as biomedical ceramics such as artificial bones. However, since these materials are inert to living tissue, they do not have the ability to bond with new bone and lack maintenance stability.

一方、水酸アパタイトやリン酸三カルシウム等のリン酸
カルシウム化合物は、骨、歯等の生体無機質の主成分で
あるので、生体に対する無毒性、骨との結合性、新生骨
への置換性等優れた生体適合性を有する。しかし、リン
酸カルシウム化合物からは高強度焼結体は得られておら
ず、実用に耐えられない。このためアルミナ焼結体、ジ
ルコニア焼結体等の高強度セラミックス焼結体の表面に
リン酸カルシウムを被覆した複合材が求められている。
On the other hand, calcium phosphate compounds such as hydroxyapatite and tricalcium phosphate are the main components of biological minerals such as bones and teeth, so they have excellent properties such as non-toxicity to living organisms, ability to bond with bones, and ability to replace new bone. Biocompatible. However, high-strength sintered bodies have not been obtained from calcium phosphate compounds and cannot be put to practical use. For this reason, there is a need for a composite material in which the surface of a high-strength ceramic sintered body, such as an alumina sintered body or a zirconia sintered body, is coated with calcium phosphate.

高強度セラミックス焼結体にリン酸カルシウムを被覆す
る方法としては、溶射法及びスパッタリング法が知られ
ている。
A thermal spraying method and a sputtering method are known as methods for coating a high-strength ceramic sintered body with calcium phosphate.

また、特開昭53−118411号公報には、以下の陶
材及びその製造方法が開示されている。
Furthermore, Japanese Patent Application Laid-open No. 118411/1983 discloses the following porcelain material and its manufacturing method.

即ち、これはrAflz Oy等で構成されたセラミッ
クスの表面にアパタイトを被覆してなる陶材、及びAl
2O,等で構成されたセラミックスの表面にアパタイト
の粉末を付与し、次いでこれを焼成するアパタイト被覆
陶材の製造方法」である。
That is, this is a porcelain material made by coating apatite on the surface of a ceramic made of rAflz Oy, etc., and
A method for producing apatite-coated porcelain material in which apatite powder is applied to the surface of a ceramic made of 2O, etc., and then fired.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記溶射法は被覆粉末を高温の火炎中に入れ高速で焼結
体に吹きつける方法である。しかし、β−リン酸三カル
シウムを溶射すると高温型のα相への転移を起こし、水
酸アパタイトを溶射すると分解して別の結晶相を生じ、
所望のリン酸カルシウム化合物を被覆することができな
い。前記スパッタリング法は、高真空下で行う必要があ
るので生産性が低くコスト高を招く。
The thermal spraying method is a method in which coating powder is placed in a high-temperature flame and sprayed onto a sintered body at high speed. However, when β-tricalcium phosphate is thermally sprayed, it causes a transition to a high-temperature α phase, and when hydroxyapatite is thermally sprayed, it decomposes to form another crystalline phase.
The desired calcium phosphate compound cannot be coated. The sputtering method needs to be performed under high vacuum, resulting in low productivity and high costs.

また、前記陶材のアパタイトは、指でこすると容易にセ
ラミックスの表面が剥がれてしまう。
Furthermore, the ceramic surface of the porcelain apatite easily peels off when rubbed with fingers.

本発明は、前記従来の問題点を解決したものであり、生
体親和性及び密着性に優れたリン酸カルシウム被覆セラ
ミックス体(本被覆体という)及びその製造方法を提供
することを目的とする。
The present invention solves the above-mentioned conventional problems, and aims to provide a calcium phosphate-coated ceramic body (referred to as the main coated body) having excellent biocompatibility and adhesion, and a method for manufacturing the same.

〔課ごを解決するための手段〕[Means for resolving issues]

本第1発明の本被覆体は、セラミックス焼結体と、水酸
アパタイト/リン酸三カルシウムの重量比が4/1〜1
15である焼成被覆層とからなることを特徴とする。本
第2発明の本被覆体の製造方法は、セラミックス焼結体
の表面に、前記両化合物粉末を含む混合スラリーを塗布
し、その後、1100〜1350℃の温度で焼成して水
酸アパタイトが残存する焼成被覆層を形成することを特
徴とする。
The present coated body of the first invention has a weight ratio of ceramic sintered body and hydroxyapatite/tricalcium phosphate of 4/1 to 1.
15 and a fired coating layer. The method for manufacturing the coated body according to the second aspect of the present invention is to apply a mixed slurry containing the above-mentioned compound powders to the surface of the ceramic sintered body, and then to sinter it at a temperature of 1100 to 1350°C so that hydroxyapatite remains. It is characterized by forming a fired coating layer.

前記セラミックス焼結体の形状、大きさ、材料等は、目
的、用途により種々選択される。例えば、この材料とし
ては、十分な機械的強度を有するものが好ましく、部分
安定化ジルコニア、アルミナ、炭化珪素、窒化珪素又は
これらの複合焼結体等とすることができる。
The shape, size, material, etc. of the ceramic sintered body are variously selected depending on the purpose and use. For example, this material preferably has sufficient mechanical strength, and may be partially stabilized zirconia, alumina, silicon carbide, silicon nitride, or a composite sintered body thereof.

前記水酸アパタイトは一般式Ca。、(PO,)−(D
H)−で表される。焼成被覆層を前記所定比とするのは
4/1を越えると被覆強度(密着住)が低く、115未
満となると、水酸アバタイ) +[が少なくなり生体親
和性が低下するからである。尚、この被覆層には、X線
回折にて測定できないようなマグネシウム成分等を含む
非晶質性化合物等も含まれる。
The hydroxyapatite has the general formula Ca. , (PO,)-(D
H)-. The reason why the fired coating layer is set to the above-mentioned predetermined ratio is that if it exceeds 4/1, the coating strength (adherence) will be low, and if it is less than 115, the hydroxyl abatai) will decrease and the biocompatibility will decrease. Note that this coating layer also contains an amorphous compound containing a magnesium component etc. that cannot be measured by X-ray diffraction.

また、原料の前記リン酸マグネシウムは、〔Mg (P
Os)2〕の化学組成として所定比になるように計算し
たものである。この原料粉末としては、第1リン酸マグ
ネシウム粉末を用い後工程で加熱脱水してもよいし、こ
の粉末を仮焼して脱水したCM g (P O3)2 
E粉末として用いてもよい。
Further, the raw material magnesium phosphate is [Mg (P
Os)2] is calculated to have a predetermined chemical composition. As this raw material powder, monomagnesium phosphate powder may be used and heated and dehydrated in a subsequent process, or CM g (P O3)2 obtained by calcining and dehydrating this powder
It may also be used as E powder.

この原料の水酸アパタイト/リン酸マグネシウムの重量
比を50/1〜5015さするのは、50/(1未満)
では主に水酸アパタイト/リン酸三カルシウムの重量比
が4/1を越える可能性が高くなり、50/ (5を越
える)と水酸アパタイトがリン酸マグネシウムと反応し
て水酸アパタイト相がほとんど又は全て消失し、リン酸
三カルンウム相がほとんど又はそれのみとなってしまう
からである。この比の範囲内であれば、水酸アパタイト
が消費し尽くされて全てリン酸三カルシウムとなること
はなく、水酸アパタイトの形態で残存するので、生体親
和性に優れかつ安定な結晶層が得られるからである。
The weight ratio of hydroxyapatite/magnesium phosphate of this raw material is 50/1 to 5015, which is 50/(less than 1)
In this case, there is a high possibility that the weight ratio of hydroxyapatite/tricalcium phosphate exceeds 4/1, and when it exceeds 50/(more than 5), hydroxyapatite reacts with magnesium phosphate to form a hydroxyapatite phase. This is because most or all of the phase disappears, leaving only the tricarium phosphate phase. If this ratio is within this range, hydroxyapatite will not be completely consumed and become tricalcium phosphate, but will remain in the form of hydroxyapatite, resulting in a stable crystal layer with excellent biocompatibility. Because you can get it.

尚、この原料比の範囲内では、焼成被覆層の水酸アパタ
イト/リン酸三カルシウムの比は、通常、前記のように
4/1〜115になるが、焼成条件等によってはこの比
がある程度変動しうるので、本第2発明では、この4/
1〜115の範囲内に限らず、水酸アパタイトが残存す
ればよい。
In addition, within this raw material ratio range, the ratio of hydroxyapatite/tricalcium phosphate in the fired coating layer is usually 4/1 to 115 as described above, but depending on the firing conditions, etc., this ratio may vary to some extent. Since this may vary, in the second invention, this 4/
It is not limited to a range of 1 to 115, as long as hydroxyapatite remains.

前記焼成被覆層の厚さは、特に限定されず、目的、用途
に応じて種々選択され、通常、lO〜300μm程度で
ある。また、焼結体の全表面を被覆してもよいし、その
一部を被覆してもよい。また、この被覆層は、水酸アパ
タイト及びリン酸三カルシウムを含む層であればよく、
この両化合物の生成比が異なった層が2以上からなる複
層であってもよい。即ち、焼結体接合面から表面までの
間で水酸アパタイトとリン酸マグネシウムとの混合比を
変えて被覆することもできる。例えば、焼結体表面に5
0/3比の両粉末を塗布し、次いでその表面に50/1
のものを塗布してその後焼成することもできるし、1層
の焼成被覆層を形成した後、他混合比のもので塗布して
焼成して全体として2層とすることもできるし、50/
3.50/2.50/lの各比からなる混合物で塗布し
て3層とすることもできる。
The thickness of the fired coating layer is not particularly limited, and is variously selected depending on the purpose and use, and is usually about 10 to 300 μm. Further, the entire surface of the sintered body may be coated, or a portion thereof may be coated. Further, this coating layer may be a layer containing hydroxyapatite and tricalcium phosphate,
It may be a multi-layer consisting of two or more layers in which the production ratios of both compounds are different. That is, the coating can be performed by changing the mixing ratio of hydroxyapatite and magnesium phosphate between the joint surface and the surface of the sintered body. For example, 5 on the surface of the sintered body.
Apply both powders in 0/3 ratio and then 50/1 on the surface.
It is also possible to apply one layer and then fire it, or after forming one fired coating layer, it is possible to apply it with another mixture ratio and fire it to make two layers as a whole.
It is also possible to apply a mixture of 3.50/2.50/l to form three layers.

混合スラリーの塗布方法としては、スプレー法、浸漬法
等の公知の方法とすることができる。このスラリーには
、カルボキシメチルセルロース等のバインダを含有させ
ることもできる。
As a method for applying the mixed slurry, known methods such as a spray method and a dipping method can be used. This slurry can also contain a binder such as carboxymethyl cellulose.

また、焼成温度を1100℃以上とするのは、リン酸マ
グネシウムの融点以上とし、リン酸マグネシウム液相が
セラミックス焼結体と被覆層間及び被覆層のリン酸カル
シウム粒子間に浸透し、これが冷却され固相となること
により、密着強度の強い被覆層を形成できるからである
。更に、これを1350℃未満とするのは、この温度以
上でリン酸カルシウムの分解が生じるからである。
In addition, the firing temperature is set to 1100°C or higher, which is higher than the melting point of magnesium phosphate, so that the liquid phase of magnesium phosphate penetrates between the ceramic sintered body and the coating layer and between the calcium phosphate particles in the coating layer, and is cooled and becomes a solid phase. This is because a coating layer with strong adhesion strength can be formed. Furthermore, the reason why this temperature is set to be lower than 1350°C is that calcium phosphate decomposes above this temperature.

〔作用〕[Effect]

本被覆体の焼成被覆層は水酸アパタイトを有するので、
本セラミックス体は生体活性で生体親和性に優れる。ま
た、この被覆層はリン酸マグネシウムが水酸アパタイト
と反応して生成されたものであり、更に、リン酸マグネ
シウム液相がセラミックス焼結体と被覆層間及び被覆層
のリン酸カルシウム粒子間に浸透し、これが冷却されて
被覆層が形成されるため、密着強度が強い。
Since the fired coating layer of this coating has hydroxyapatite,
This ceramic body is bioactive and has excellent biocompatibility. In addition, this coating layer is generated by the reaction of magnesium phosphate with hydroxyapatite, and furthermore, the magnesium phosphate liquid phase penetrates between the ceramic sintered body and the coating layer and between the calcium phosphate particles of the coating layer. Since this is cooled and a coating layer is formed, the adhesion strength is strong.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 本実施例は、水酸アパタイト/リン酸マグネシウムが5
0/3重量比の混合スラリーを用いたものである。まず
、水酸アパタイト粉末(HAP単相、湿式法で合成した
ものを仮焼により結晶水を除いた粉末)と、第1リン酸
マグネシウム粉末(林純薬工業@J製)を800℃、3
時間で仮焼したリン酸マグネシウム粉末(化学式; M
g (P C)s)2、図中、MPという)とを、重量
比で50=3となるように秤量した。次いで、これに少
量のカルボキシメチルセルロース及び前記粉末と等重量
の水を加え、24時間混合して適度の粘性を示す水性混
合スラリーを調製した。
Example 1 In this example, hydroxyapatite/magnesium phosphate was
A mixed slurry having a weight ratio of 0/3 was used. First, hydroxyapatite powder (HAP single phase, a powder synthesized by the wet method and the water of crystallization removed by calcination) and monomagnesium phosphate powder (Hayashi Pure Chemical Industries @J) were heated at 800°C for 30 minutes.
Magnesium phosphate powder (chemical formula; M
g (PC)s)2 (referred to as MP in the figure) were weighed so that the weight ratio was 50=3. Next, a small amount of carboxymethylcellulose and water equal in weight to the powder were added thereto and mixed for 24 hours to prepare an aqueous mixed slurry exhibiting appropriate viscosity.

このスラリーを150℃に加熱したY203 K分安定
化Z r O2焼結体(23,5X8X4.5mm)の
表面にスプレー法により吹き付けて、塗布層を形成させ
、これを1200℃、2時間で焼成し、焼成被覆層(平
均膜厚;約100μm)を形成して本被覆体を得た。
This slurry was sprayed onto the surface of a Y203 K-stabilized Z r O2 sintered body (23.5 x 8 x 4.5 mm) heated to 150°C to form a coating layer, which was then baked at 1200°C for 2 hours. Then, a fired coating layer (average thickness: approximately 100 μm) was formed to obtain the present coated body.

この本被覆体の表面の焼成被覆層は、X線回折で調べた
結果、第1図(B)に示すように、水酸アパタイト (
HAP)とβ−リン酸三カルシウム(β−TCP)であ
ることが確認された。この両者の割合はX線強度比法に
よれば1:1であった。この被覆層を金属針で引っ掻い
ても被覆層は剥離しなかった。
As a result of examining the fired coating layer on the surface of this main coating by X-ray diffraction, as shown in Figure 1 (B), hydroxyapatite (
HAP) and β-tricalcium phosphate (β-TCP). The ratio between the two was 1:1 according to the X-ray intensity ratio method. Even when this coating layer was scratched with a metal needle, the coating layer did not peel off.

実施例2 本実施例は前比が50/lの混合スラリーを用いたこと
以外は実施例1と同様にして実施した。
Example 2 This example was carried out in the same manner as in Example 1 except that a mixed slurry with a pre-ratio of 50/l was used.

このX線回折の結果は、同図(C)に示すように、水酸
アパタイトが多いがβ−リン酸三カルシウムも存在し、
水酸アパタイト/β−リン酸三カルシウムの比はX線強
度比で371であった。また、この被覆層を前記と同様
に金属針で引っ掻いた所、やや剥離した程度であり、十
分な密着性を示した。
As shown in the same figure (C), the result of this X-ray diffraction shows that although there is a lot of hydroxyapatite, β-tricalcium phosphate is also present.
The ratio of hydroxyapatite/β-tricalcium phosphate was 371 in terms of X-ray intensity ratio. Further, when this coating layer was scratched with a metal needle in the same manner as above, only slight peeling occurred, indicating sufficient adhesion.

実施例3 本実施例は前比が5010.8の混合スラリーを用いた
こと以外は実施例1と同様にして実施した。このX線回
折の結果は図示しないが、水酸アパタイト/β−リン酸
三カルシウムの比はX線強度比で471であった。この
被覆層も、実施例2と同様にほぼ十分な密着性を示した
Example 3 This example was carried out in the same manner as Example 1 except that a mixed slurry having a pre-ratio of 5010.8 was used. Although the results of this X-ray diffraction are not shown, the ratio of hydroxyapatite/β-tricalcium phosphate was 471 in terms of X-ray intensity ratio. This coating layer also showed almost sufficient adhesion as in Example 2.

実施例4 本実施例は前比が5015の混合スラリーを用いたこと
以外は実施例1と同様にして実施した。
Example 4 This example was carried out in the same manner as in Example 1 except that a mixed slurry with a pre-ratio of 5015 was used.

このX線回折の結果も図示しないが、水酸アパタイト/
β−リン酸三カルシウムの比はX線強度比で115であ
った。この被覆層は、実施例1と同様に金属針で引っ掻
いても剥離しない。
The results of this X-ray diffraction are also not shown, but hydroxyapatite/
The ratio of β-tricalcium phosphate was 115 in terms of X-ray intensity ratio. As in Example 1, this coating layer does not peel off even if scratched with a metal needle.

比較例1 本比較例は前比が50/10のスラリーを用いたこと以
外は実施例1と同様にして実施した。このX線結果は同
図(A)に示すように、水酸アパタイトが全く消失して
おり、全てβ−リン酸三カルシウムであった。尚、被覆
層は金属針にて剥離せず、密着性は大変良好であった。
Comparative Example 1 This comparative example was carried out in the same manner as in Example 1, except that a slurry having a ratio of 50/10 was used. As shown in the same figure (A), the X-ray results showed that hydroxyapatite had completely disappeared, and it was all β-tricalcium phosphate. The coating layer did not peel off with a metal needle, and its adhesion was very good.

比較例2 本比較例は、水酸アパタイトのみのスラリーを用いて同
様にして形成した被覆層をX線回折すると、同1ffl
 (DJに示すように水酸アパタイトのみのピークを示
し、リン酸三カルシウムの存在は確認できなかった。こ
の被覆層は焼結体との密着性が悪いので、金属針にて容
易に剥がれてしまった。
Comparative Example 2 In this comparative example, X-ray diffraction of a coating layer formed in the same manner using a slurry of only hydroxyapatite revealed the same 1ffl.
(As shown in DJ, only the peak of hydroxyapatite was shown, and the presence of tricalcium phosphate could not be confirmed. This coating layer has poor adhesion to the sintered body, so it can be easily peeled off with a metal needle. Oops.

比較例3 本比較例は、2層塗布後焼成して被覆したものである。Comparative example 3 In this comparative example, two layers were coated and then baked.

即ち、まず、前記リン酸マグネシウム粉末のみを前記と
同様に塗布し、更にこの上に前言己水酸アパタイト粉末
のみを塗布し、同様に焼成して、焼成被覆層を形成した
。このX線回折の結果は、第2図に示すように水酸アパ
タイトが全く消失しており、全てβ−リン酸三カルシウ
ムであっ比較例4 本比較例も、2層塗布後焼成して被覆したものである。
That is, first, only the above-mentioned magnesium phosphate powder was applied in the same manner as above, and further, only the above-mentioned hydroxyapatite powder was applied thereon and fired in the same manner to form a fired coating layer. As shown in Figure 2, the results of this X-ray diffraction showed that hydroxyapatite had completely disappeared, and it was all β-tricalcium phosphate.Comparative Example 4 This comparative example was also coated by applying two layers and firing. This is what I did.

即ち、まず、前記リン酸マグネシウム粉末のみを前記と
同様に塗布し、更にこの上に前記水酸アパタイト粉末と
リン酸マグネシウム粉末との重量比50:1の混合スラ
リーを塗布し、焼成して被覆層を形成した。このX線回
折の結果は、第3図に示すようにリン酸アパタイトが全
く消失しており、全てβ−リン酸三カルシウムであった
That is, first, only the magnesium phosphate powder is applied in the same manner as above, and then a mixed slurry of the hydroxyapatite powder and magnesium phosphate powder in a weight ratio of 50:1 is applied thereon, and the mixture is fired and coated. formed a layer. As shown in FIG. 3, the results of this X-ray diffraction showed that phosphate apatite had completely disappeared, and it was all β-tricalcium phosphate.

実施例の効果 以上より、前記原料比が50/1〜5015の場合は水
酸アパタイト及びリン酸三カルシウムが存在し、その比
が4/1〜115であるので、接合強度を維持できると
ともに生体親和性もよい。
Effects of Examples From the above, when the raw material ratio is 50/1 to 5015, hydroxyapatite and tricalcium phosphate are present, and since the ratio is 4/1 to 115, bonding strength can be maintained and biological Good affinity.

しかし、その原料比が50/(5を越える)場合は、被
覆層の密着性は良くなる傾向にあるが、水酸アパタイト
がほとんど又は全くなくなる。即ち、この原料比が50
15では水酸アパタイトが115と少なくなり、原料比
50/10(比較例1)ではそれが全くない。従って、
この原料比が50/(5を越える)と水酸アパタイト/
リン酸三カルシウム比が115未満となり、生体親和性
が十分に良いとはいえない。
However, when the raw material ratio is 50/(more than 5), the adhesion of the coating layer tends to improve, but there is little or no hydroxyapatite. That is, this raw material ratio is 50
When the raw material ratio was 50/10 (Comparative Example 1), there was no hydroxyapatite at all. Therefore,
This raw material ratio is 50/(more than 5) and hydroxyapatite/
The tricalcium phosphate ratio is less than 115, and the biocompatibility cannot be said to be sufficiently good.

一方、この原料比が50/1の場合It IJン酸三カ
ルシウムの生成が4/1と少ないので、この原料比がこ
れよりも小さい場合は、これがほとんど又は全くなくな
り、被覆層の密着性が良くテニい。
On the other hand, when this raw material ratio is 50/1, the production of ItIJ tricalcium phosphate is as small as 4/1, so when this raw material ratio is smaller than this, this will be almost completely eliminated and the adhesion of the coating layer will be reduced. Good tenni.

例えば、このリン酸三カルシウムが全くない場合(比較
例2)は、被覆層が容易に剥離した0また、本実施例は
水酸アパタイトとリン酸マグネシウムの混合粉末を使用
するものであるが、比較例3.4のように、リン酸マグ
ネシウムのみの塗布層を形成させて2塗布層とする場合
は、いずれも焼成後に水酸アパタイトが完全に消失する
For example, in the case where this tricalcium phosphate was not present at all (Comparative Example 2), the coating layer was easily peeled off.Also, in this example, a mixed powder of hydroxyapatite and magnesium phosphate was used; As in Comparative Example 3.4, when a coating layer of only magnesium phosphate is formed to form two coating layers, the hydroxyapatite completely disappears after firing in both cases.

従って、本実施例では、両粉末の組成割合を変えてそれ
を塗布して焼成するのみで、容易に、水酸アパタイトと
リン酸三カルシウムの生成割合を所望値に設定でき、か
つ生体親和性及び密着性に浸れた被覆層を形成できる。
Therefore, in this example, the production ratio of hydroxyapatite and tricalcium phosphate can be easily set to a desired value by simply applying and firing the composition ratios of both powders, and the biocompatibility can be easily set. and can form a coating layer with excellent adhesion.

〔発明の効果〕〔Effect of the invention〕

本発明の本被覆体は、前記作用を有するので、生体親和
性及び密着性に優れ、即ち密着性を低下させずに生体親
和性を維持し、そのため両者のバランスが極めてよい。
Since the covering of the present invention has the above-mentioned effects, it has excellent biocompatibility and adhesion, that is, it maintains biocompatibility without reducing adhesion, and therefore has an extremely good balance between the two.

従って、本被覆体は、人工骨、人工歯根等の医用セラミ
ックスに好適である。特に、セラミックス焼結体として
ジルコニア、アルミナ等の高強度セラミックスを用いれ
ば、この本被覆体自身の強度は極めて大きく、前記医用
セラミックスとして最適である。
Therefore, this covering is suitable for medical ceramics such as artificial bones and artificial tooth roots. In particular, if a high-strength ceramic such as zirconia or alumina is used as the ceramic sintered body, the strength of the present covering body itself is extremely high, making it optimal as the medical ceramic.

更に、本製造方法によれば、前記有用な本被覆体を製造
でき、しかもこれを高生産性をもって安価に製造でき、
また、単に混合割合を変えるだけで、水酸アパタイトと
リン酸三カルシウムの比を適宜変えることができる。更
に、本製造方法は、リン酸マグネシウム塗布層と水酸ア
パタイト塗布層を別個に形成する必要もなく混合スラリ
ー〇塗布のみで足りるので、大変便宜かつ有用である。
Furthermore, according to the present manufacturing method, the useful main covering body can be manufactured, and it can be manufactured at low cost with high productivity,
Furthermore, simply by changing the mixing ratio, the ratio of hydroxyapatite to tricalcium phosphate can be changed as appropriate. Furthermore, this manufacturing method is very convenient and useful because it is not necessary to separately form a magnesium phosphate coating layer and a hydroxyapatite coating layer, and only coating the mixed slurry 〇 is sufficient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A>は比較例1に係わる被覆層のX線回折の結
果を示すグラフ、第1cN(B)は実施例1に係わる被
覆層のX線回折の結果を示すグラフ、第1図(C)は実
施例2に係わる被覆層のX線回折の結果を示すグラフ、
第1図(D)は比較例2に係わる被覆層のX線回折の結
果を示すグラフ、第2図は比較例3に係わる被覆層のX
線回折の結果を示すグラフ、第3図は比較例4に係わる
被覆層のX線回折の結果を示すグラフである。
FIG. 1 (A> is a graph showing the results of X-ray diffraction of the coating layer according to Comparative Example 1, 1cN (B) is a graph showing the results of X-ray diffraction of the coating layer according to Example 1, FIG. (C) is a graph showing the results of X-ray diffraction of the coating layer according to Example 2,
FIG. 1(D) is a graph showing the results of X-ray diffraction of the coating layer related to Comparative Example 2, and FIG. 2 is a graph showing the X-ray diffraction results of the coating layer related to Comparative Example 3.
Graph showing the results of ray diffraction. FIG. 3 is a graph showing the results of X-ray diffraction of the coating layer according to Comparative Example 4.

Claims (2)

【特許請求の範囲】[Claims] (1)セラミックス焼結体と、該焼結体表面に形成され
水酸アパタイト及びリン酸三カルシウムを含む焼成被覆
層とからなり、前記水酸アパタイトとリン酸三カルシウ
ムの重量比(水酸アパタイト/リン酸三カルシウム)が
4/1〜1/5であることを特徴とするリン酸カルシウ
ム被覆セラミックス体。
(1) Consisting of a ceramic sintered body and a fired coating layer formed on the surface of the sintered body and containing hydroxyapatite and tricalcium phosphate, the weight ratio of the hydroxyapatite to tricalcium phosphate (hydroxyapatite /tricalcium phosphate) is 4/1 to 1/5.
(2)セラミックス焼結体の表面に、水酸アパタイト/
リン酸マグネシウム〔Mg(PO_3)_2〕の重量比
が50/1〜50/5である前記両化合物粉末を含む混
合スラリーを塗布し、その後、1100〜1350℃の
温度で焼成して水酸アパタイトが残存する焼成被覆層を
形成することを特徴とするリン酸カルシウム被覆セラミ
ックス体の製造方法。
(2) Hydroxyapatite/
A mixed slurry containing powders of both the above compounds in which the weight ratio of magnesium phosphate [Mg(PO_3)_2] is 50/1 to 50/5 is applied, and then fired at a temperature of 1100 to 1350°C to form hydroxyapatite. 1. A method for producing a calcium phosphate-coated ceramic body, which comprises forming a fired coating layer in which remains.
JP1272191A 1989-10-19 1989-10-19 Calcium phosphate coated ceramic body Expired - Fee Related JPH0774109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1272191A JPH0774109B2 (en) 1989-10-19 1989-10-19 Calcium phosphate coated ceramic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1272191A JPH0774109B2 (en) 1989-10-19 1989-10-19 Calcium phosphate coated ceramic body

Publications (2)

Publication Number Publication Date
JPH03137079A true JPH03137079A (en) 1991-06-11
JPH0774109B2 JPH0774109B2 (en) 1995-08-09

Family

ID=17510358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1272191A Expired - Fee Related JPH0774109B2 (en) 1989-10-19 1989-10-19 Calcium phosphate coated ceramic body

Country Status (1)

Country Link
JP (1) JPH0774109B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114569800A (en) * 2022-01-24 2022-06-03 苏州卓恰医疗科技有限公司 Bioactive ceramic composite magnesium-based metal intramedullary nail and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297284A (en) * 1986-06-17 1987-12-24 永井 教之 Manufacture of ceramic composite material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297284A (en) * 1986-06-17 1987-12-24 永井 教之 Manufacture of ceramic composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114569800A (en) * 2022-01-24 2022-06-03 苏州卓恰医疗科技有限公司 Bioactive ceramic composite magnesium-based metal intramedullary nail and preparation method thereof

Also Published As

Publication number Publication date
JPH0774109B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
US4988362A (en) Composition for coating bioceramics, method for coating bioceramics therewith, and composite bioceramics produced therewith
US5071434A (en) Biologically active surface ceramic and process for producing the same
US4223412A (en) Implants for bones, joints or tooth roots
US5344456A (en) Materials for living hard tissue replacements
JP2000513615A (en) Bioactive surface layer for bone graft
US5077079A (en) Method for formation of calcium phosphate compound coating on surface of ceramic article
JPH0148774B2 (en)
JPH0763503B2 (en) Calcium phosphate coating forming method and bioimplant
JPS5945384B2 (en) Manufacturing method for high-strength biological components
JPH03137079A (en) Ceramics body coated with calcium phosphate and production thereof
Inagaki et al. Formation of highly oriented hydroxyapatite in hydroxyapatite/titanium composite coating by radio-frequency thermal plasma spraying
JP2623315B2 (en) Calcium phosphate coated ceramics and method for producing the same
JPS62297284A (en) Manufacture of ceramic composite material
JP4282799B2 (en) Process for producing β-tricalcium phosphate coating
JPS59112908A (en) Preparation of member having high strength for organism
Aizawa et al. Formation of porous calcium phosphate films on partially stabilized zirconia substrates by the spray-pyrolysis technique
JPH0660069B2 (en) Apatite coating composite material and manufacturing method thereof
RU2158189C1 (en) Method of applying hydroxyapatite coatings
JP2989852B2 (en) Calcium phosphate coating
JPH0244275B2 (en)
JPH0597551A (en) Calcium phosphate ceramic and its production
JPS60203263A (en) Production of ceramic body for implant
JPH01203284A (en) Ceramic implant and production thereof
JPS63201076A (en) Calcium phosphate coating process
JPH072181B2 (en) Method for producing biomaterial coated with hydroxyapatite

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees