JPH01203284A - Ceramic implant and production thereof - Google Patents
Ceramic implant and production thereofInfo
- Publication number
- JPH01203284A JPH01203284A JP63027029A JP2702988A JPH01203284A JP H01203284 A JPH01203284 A JP H01203284A JP 63027029 A JP63027029 A JP 63027029A JP 2702988 A JP2702988 A JP 2702988A JP H01203284 A JPH01203284 A JP H01203284A
- Authority
- JP
- Japan
- Prior art keywords
- zirconia
- sintered body
- molded body
- hydroxyapatite
- hap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007943 implant Substances 0.000 title claims abstract description 20
- 239000000919 ceramic Substances 0.000 title claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 104
- 239000011247 coating layer Substances 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 claims abstract description 8
- 238000010335 hydrothermal treatment Methods 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 13
- 238000010304 firing Methods 0.000 claims description 8
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims description 8
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims description 8
- 239000011812 mixed powder Substances 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 15
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 abstract description 11
- 239000000843 powder Substances 0.000 abstract description 10
- 238000001354 calcination Methods 0.000 abstract 1
- 210000004746 tooth root Anatomy 0.000 abstract 1
- 239000002002 slurry Substances 0.000 description 9
- 239000011162 core material Substances 0.000 description 7
- 230000000975 bioactive effect Effects 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 229910052586 apatite Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 239000011268 mixed slurry Substances 0.000 description 2
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 2
- 238000007750 plasma spraying Methods 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 229940078499 tricalcium phosphate Drugs 0.000 description 2
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 2
- 235000019731 tricalcium phosphate Nutrition 0.000 description 2
- -1 Ca2+ ions Chemical class 0.000 description 1
- 101100283604 Caenorhabditis elegans pigk-1 gene Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Landscapes
- Materials For Medical Uses (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、ジルコニア焼結体の表面に、ヒドロキシアパ
タイト(以下、HAPと略す)とジルフェアの混合物か
らなる多孔質焼結体の被覆層を有するセラミックス製イ
ンプラント及びその製造方法に関する。Detailed Description of the Invention (Industrial Application Field) The present invention provides a coating layer of a porous sintered body made of a mixture of hydroxyapatite (hereinafter abbreviated as HAP) and zilphare on the surface of a zirconia sintered body. The present invention relates to a ceramic implant and a method for manufacturing the same.
(従来の技術)
人工歯根などの硬組織用の生体インプラント材料として
は、従来からステンレス合金、チタン合金などの金属、
及び単結晶アルミナ、アルミナ焼結体、ジルコニア焼結
体、カーボンなどのセラミックスが主に使用されておシ
、これらは生体組織と直接に結合しないために生体不活
性なインプラント材料と言われている。一方、HAP焼
結体、α型リン酸三カルシウム(以下、α−TCPと略
す)焼結体、β型リン酸三カルシウム焼結体は、いわゆ
る生体活性なインプラント材料であシ、生体組織と直接
に化学結合が起こる材料として注目されている。(Conventional technology) As biological implant materials for hard tissues such as artificial tooth roots, metals such as stainless steel alloys and titanium alloys,
Ceramics such as single-crystal alumina, alumina sintered bodies, zirconia sintered bodies, and carbon are mainly used, and these are said to be bioinert implant materials because they do not bond directly with living tissues. . On the other hand, HAP sintered bodies, α-type tricalcium phosphate (hereinafter abbreviated as α-TCP) sintered bodies, and β-type tricalcium phosphate sintered bodies are so-called bioactive implant materials. It is attracting attention as a material that directly forms chemical bonds.
また、近年では生体活性な物質を生体不活性な材料の表
面にプラズマ溶射によって被着する試みがなされている
。Furthermore, in recent years, attempts have been made to deposit bioactive substances onto the surface of bioinactive materials by plasma spraying.
(発明が解決しようとする問題点)
しかしながら、上記の生体不活性なインプラント材料を
生体内に埋入して使用しな場合には、生体組織と直接に
結合しないために、長期間経過すると緩みが発生してし
まう。一方、生体活性なインプラント材料は、前述のよ
うな緩みは発生しないが、機械的強度においては生体不
活性な材料と比較して劣っているために、生体内での使
用中に破損しやすい。(Problem to be solved by the invention) However, if the above-mentioned bioinert implant material is not implanted in a living body, it will loosen over a long period of time because it will not bond directly to living tissue. will occur. On the other hand, bioactive implant materials do not loosen as described above, but they are inferior in mechanical strength compared to bioinert materials and are therefore susceptible to breakage during use in vivo.
また、生体活性な物質を生体不活性な材料の表面にプラ
ズマ溶射によって被着したものは、プラズマ溶射表面層
と芯材との接合力が弱くて剥離しやすい。Furthermore, when a bioactive substance is deposited on the surface of a bioinactive material by plasma spraying, the bonding force between the plasma sprayed surface layer and the core material is weak and the material easily peels off.
(問題点を解決するための手段)
本発明者等は上記の点に鑑み種々検討した結果、ジルコ
ニア焼結体の表面にヒドロキシアパタイトとジルコニア
の混合物からなる多孔質焼結体の被覆層を有するセラミ
ックス製インプラントは、機械的強度が高くて生体内で
破損せず、かつ芯材と強固に接合された生体活性な表面
多孔層が生体内で生体組織と結合し、長期間の使用にも
耐え得る材料となるとの知見を得て本発明に到達した。(Means for Solving the Problems) As a result of various studies in view of the above points, the present inventors have found that a coating layer of a porous sintered body made of a mixture of hydroxyapatite and zirconia is provided on the surface of a zirconia sintered body. Ceramic implants have high mechanical strength and do not break in vivo, and the bioactive surface porous layer, which is firmly bonded to the core material, bonds with living tissue in vivo, making it durable for long-term use. The present invention was achieved based on the knowledge that it is a material that can be obtained.
すなわち、本発明の要旨は、ジルコニア焼結体の表面に
HAPとジルコニアの混合物からなる多孔質焼結体の被
覆層を有するセラミックス製インプラント及びその製造
方法に存し、更には、部分安定化ジルコニアよりなる成
形体の表面にヒドロキシアパタイトとジルコニアの混合
粉末を被着したのち焼成し、次いで水熱処理することを
特徴とするセラミックス製インプラントの製造方法に存
する。That is, the gist of the present invention resides in a ceramic implant having a coating layer of a porous sintered body made of a mixture of HAP and zirconia on the surface of a zirconia sintered body, and a method for manufacturing the same, and furthermore, The present invention relates to a method for manufacturing a ceramic implant, which comprises depositing a mixed powder of hydroxyapatite and zirconia on the surface of a molded body, followed by firing and then hydrothermal treatment.
以下、本発明の詳細な説明するに、本発明で使用する部
分安定化ジルコニア粉末としては、Ca 0% MgO
%Y20a、Gd2O3、CeO□ナトヲ安定化剤とし
て固溶したジルコニア粉末である。In the following, the present invention will be described in detail. The partially stabilized zirconia powder used in the present invention includes Ca 0% MgO
%Y20a, Gd2O3, CeO□Nato is a solid-dissolved zirconia powder as a stabilizer.
部分安定化ジルコニア粉末よりなる成形体は、プレス成
形、押出成形、鋳込成形、射出成形およびテープ成形な
ど、さまざまな成形方法によって成形されるが、好まし
くは、複雑形状の成形体の製造が可能な鋳込成形法及び
射出成形法によるのが良い。Molded bodies made of partially stabilized zirconia powder can be molded by various molding methods such as press molding, extrusion molding, cast molding, injection molding, and tape molding, but preferably molded bodies with complex shapes can be manufactured. It is preferable to use a cast molding method or an injection molding method.
本発明においてジルコニア焼結体の表面にHAPとジル
コニアの多孔質焼結体を被覆させる方法は種々有シ得よ
うが、最も好適には、上述の如くに得られた焼成前のジ
ルコニア成形体表面にHAPとジルコニア粉末を被着せ
しめ、全体を焼成し、次いで水熱処理する方法が採用さ
れる。HAPは焼成によりα−TCPに変化するが、水
熱処理により再びHAPに変化することとなる。この場
合、HAP粉末としては、Cal6−X(HPO4)X
(po4)s−)((OH)2−X ’ nH2O(
ただし、O≦X≦l)の化学式で示されるものが使用さ
れる。In the present invention, there are various methods for coating the surface of the zirconia sintered body with HAP and the porous sintered body of zirconia, but the most preferred method is to cover the surface of the zirconia molded body before firing obtained as described above. A method is adopted in which HAP and zirconia powder are applied to the material, the entire material is fired, and then hydrothermal treatment is performed. HAP changes to α-TCP by firing, but changes to HAP again by hydrothermal treatment. In this case, the HAP powder is Cal6-X(HPO4)X
(po4)s-)((OH)2-X' nH2O(
However, those shown by the chemical formula (O≦X≦l) are used.
HAPと混合されるジルコニア粉末としては、安定化剤
の含有の有無に関係なく、ジルコニアを主成分とする粉
末ならば良い。The zirconia powder to be mixed with HAP may be any powder containing zirconia as a main component, regardless of whether or not it contains a stabilizer.
HAPとジルコニアの混合割合は、HAPに対するジル
コニアの重量比率がo、oh−,2oの範囲内で選択さ
れる。よシ好ましくは、前記比率がQ、l −,2,j
になるように混合する。HAPに対するジルコニアの重
量比率がO,OSよシ小さいと、得られたインプラント
の被覆層の気孔率が小さくなって生体活性が小さくなる
とともに、芯材となるジルコニア焼結体と被覆層の熱膨
張率の大きな差によシ、焼成後の冷却時に被複層表面及
びジルコニア焼結体と被覆層の界面に多数の亀裂が発生
してしまう。The mixing ratio of HAP and zirconia is selected so that the weight ratio of zirconia to HAP is within the range of o, oh-, and 2o. Preferably, the ratio is Q,l −,2,j
Mix it so that it is mixed. If the weight ratio of zirconia to HAP is smaller than that of O and OS, the porosity of the coating layer of the resulting implant will decrease, resulting in less bioactivity, and the thermal expansion of the zirconia sintered body serving as the core material and the coating layer will decrease. Due to the large difference in the ratio, many cracks occur on the surface of the composite layer and at the interface between the zirconia sintered body and the coating layer during cooling after firing.
一方、HAPに対するジルコニアの重量比率がSOよシ
大きいと、得られたインプラントの被覆層の気孔率が小
さくなるとともにHAPの含有量が減るために、生体活
性は極めて小さくなってしまう。On the other hand, if the weight ratio of zirconia to HAP is greater than that of SO, the porosity of the coating layer of the resulting implant will decrease and the HAP content will decrease, resulting in extremely low bioactivity.
部分安定化ジルコニアよりなる成形体の表面にHAPと
ジルコニアの混合粉末を被着する方法としては、混合粉
末を成形体の表面に均一に被着する方法が選ばれる。具
体的には、HAPとジルコニアの混合粉末を水に均一に
分散させてスラリーを作シ、このスラリー中に部分安定
化ジルコニアよりなる成形体を浸漬することによシ、ス
ラリー中の水分が成形体内に吸収されると同時に混合粉
末が均一に成形体表面に被着される方法が用いられる。As a method for applying a mixed powder of HAP and zirconia to the surface of a molded body made of partially stabilized zirconia, a method is selected in which the mixed powder is uniformly applied to the surface of the molded body. Specifically, a mixed powder of HAP and zirconia is uniformly dispersed in water to create a slurry, and a molded body made of partially stabilized zirconia is immersed in this slurry, so that the moisture in the slurry is removed by molding. A method is used in which the mixed powder is uniformly applied to the surface of the molded body at the same time as it is absorbed into the body.
また、上記スラリーを成形体上に噴霧することによって
も、同様な被覆が可能である。A similar coating can also be achieved by spraying the slurry onto the molded body.
焼成は、lコ0O0C〜/!;!;0℃の温度範囲で行
う。温度が低すぎると、ジルコニア焼結体の密度と強度
が低くなってしまう。一方、温度が高すぎると、アパタ
イトとジルコニアの混合物からなる多孔質焼結体の気孔
率が低下するとともに、生成したα−TCPが溶融して
しまう。Firing is 1000C~/! ;! ; Carry out in a temperature range of 0°C. If the temperature is too low, the density and strength of the zirconia sintered body will decrease. On the other hand, if the temperature is too high, the porosity of the porous sintered body made of a mixture of apatite and zirconia will decrease, and the generated α-TCP will melt.
また、温度が高すぎると、ジルコニア焼結体の密度と強
度が低下してしまう。すなわち、焼成を適正な温度範囲
内で行うことによシ、インプラントの芯材となるジルコ
ニア焼結体の密度と強度を高くすると同時に、インプラ
ントの被覆層となる多孔質焼結体の気孔率を大きくでき
る。Furthermore, if the temperature is too high, the density and strength of the zirconia sintered body will decrease. In other words, by performing firing within an appropriate temperature range, the density and strength of the zirconia sintered body, which is the core material of the implant, can be increased, and at the same time, the porosity of the porous sintered body, which is the covering layer of the implant, can be increased. You can make it bigger.
尚、この焼成によ、9HAPよシ生じるα−TCPとジ
ルコニアは、多孔性を保ちながら強固に結合し、また、
芯材となるジルコニア焼結体と多孔質焼結体との間で両
者は強固に結合が得られるが、これらはいずれもHAP
中のCa2+イオンのジルコニア粉末及び芯材ジルコニ
アへの移動、拡散によるものと推定される。In addition, by this firing, α-TCP and zirconia produced from 9HAP are strongly bonded while maintaining porosity, and
A strong bond can be obtained between the zirconia sintered body serving as the core material and the porous sintered body, but both of these are HAP.
This is presumed to be due to the movement and diffusion of Ca2+ ions in the zirconia powder and core zirconia.
水熱処理は、60℃〜300℃の温度範囲内で実施され
ることが望ましい。温度が低すぎるとα−TCPからH
APへの反応時間が非常に長くなり、温度が高すぎると
装置が高価となるので工業的には不向きである。The hydrothermal treatment is preferably carried out within a temperature range of 60°C to 300°C. If the temperature is too low, H from α-TCP
The reaction time to AP becomes very long, and if the temperature is too high, the equipment becomes expensive, so it is not suitable for industrial use.
水熱処理に要する時間は、通常10分ないし50時間で
ある。処理時間が短すぎると、α−TCPの表面だけが
HAPになシα−TCPが完全にHAPに変化しない。The time required for hydrothermal treatment is usually 10 minutes to 50 hours. If the treatment time is too short, only the surface of α-TCP becomes HAP, and α-TCP does not completely change to HAP.
処理時間が長すぎると、ジルコニア焼結体表面が正方晶
ジルコニアから単斜晶ジルコニアに相転移し、この相転
移が進むと表面にクラックが発生し、強度が劣化してし
まう。特に、is。If the treatment time is too long, the surface of the zirconia sintered body undergoes a phase transition from tetragonal zirconia to monoclinic zirconia, and as this phase transition progresses, cracks occur on the surface and the strength deteriorates. In particular, is.
℃〜、250℃の温度範囲では相転移速度が大きいので
、処理時間を短くする。Since the phase transition rate is high in the temperature range of .degree. C. to 250.degree. C., the treatment time is shortened.
次に、本発明を実施例によシ更に詳細に説明するが本発
明はその要旨を超えない限り下記実施例において限定さ
れるものではない。Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.
実施例
内容積コSO−のジルコニア製ボールミルポットに蒸留
水、2q、6Iiと分散剤としてポリアクリル酸アンモ
ニウムのpOwt%水溶液0.63Iを入れて混合した
後、イン) IJア部分安定化ジルコニア/21..2
f!と10mφのジルコニアポールttoogを加えた
。これを振動ボールミル及び回転ボールミルで湿式粉砕
処理してジルコニアスラリーを得た。このスラリーの1
3SlにF、2wt%溶液の結合剤コ、t、ggと消泡
剤o、ost、 i ’lc添加して30分間混合した
後、ロータリーエバポレーター中でコOTorrで20
分間減圧脱泡した。このスラリーをss℃の室温下で/
、2WφX/30tmの円柱状に固形鋳込成形した。こ
れを25℃でl昼夜乾燥した後に施盤を用いて’1.!
; mφ×30mの円柱状に機械加工してジルコニア成
形体を得た。Example After putting distilled water, 2q, 6Ii and 0.63I of a pOwt% aqueous solution of ammonium polyacrylate as a dispersant into a zirconia ball mill pot with an internal volume of SO-, and mixing them, IJA partially stabilized zirconia/ 21. .. 2
f! A 10 mφ zirconia pole ttoog was added. This was wet-pulverized using a vibrating ball mill and a rotary ball mill to obtain a zirconia slurry. 1 of this slurry
F, 2 wt % solution of binders co, t, gg and antifoam agents o, ost, i'lc were added to 3Sl and mixed for 30 minutes, then heated at 20 Torr in a rotary evaporator.
Defoaming was carried out under reduced pressure for a minute. This slurry was heated at room temperature of ss℃/
, solid cast into a cylindrical shape of 2WφX/30tm. After drying this at 25°C for 1 day and night, use a platen to dry it. !
; A zirconia molded body was obtained by machining into a cylindrical shape of mφ×30 m.
次に、内容積、2!;0−のアルミナ製ボールミルポッ
トに蒸留水3 g、A flと分散剤としてポリアクリ
ル酸アンモニウムのll0wt%水溶液0.969を入
れて混合した後、ヒドロキシアパタイト粉末3509と
イツトリア部分安定化ジルコニア粉末2グ、Og及びl
0IIIIIφのジルコニアポールtIooyを加えた
。Next, the internal volume, 2! ; After mixing 3 g of distilled water, A fl, and 0.969 10 wt % aqueous solution of ammonium polyacrylate as a dispersant in a 0- alumina ball mill pot, hydroxyapatite powder 3509 and Ittria partially stabilized zirconia powder 2 were mixed. G, Og and l
A zirconia pole tIooy of 0IIIIIIφ was added.
これを振動ボールミル及び回転ボールミルで湿式粉砕処
理して、ヒドロキシアパタイトとジルコニアの混合スラ
リーを得た。このスラリーの931)にtI2wt%水
溶液の結合剤/ 3.39と消泡剤0.02g1i及び
蒸留水2/39を添加して30分間混合した後、ロータ
リーエバポレーター中で20TOrrで、20分間減圧
脱泡した。This was wet-pulverized using a vibrating ball mill and a rotating ball mill to obtain a mixed slurry of hydroxyapatite and zirconia. To this slurry (931), tI 2wt% aqueous binder/3.39, antifoaming agent 0.02g1i, and distilled water 2/39 were added and mixed for 30 minutes, followed by decompression in a rotary evaporator at 20 TOrr for 20 minutes. It bubbled.
!;Omtガラスビーカー中にヒドロキシアパタイトと
ジルコニアの混合スラリーを入れ、このスラリー中に前
記の機械加工したジルコニア成形体を長手方向の半分の
/S−だけ30秒間浸漬して、ジルコニア成形体表面に
ヒドロキシアパタイトとジルコニアの混合粉末を被着し
た。! ; Put a mixed slurry of hydroxyapatite and zirconia in an Omt glass beaker, and immerse the machined zirconia molded body in this slurry by half of the longitudinal direction /S- for 30 seconds to coat the surface of the zirconia molded body with hydroxyl. A mixed powder of apatite and zirconia was deposited.
これをコs ’Cでl昼夜乾燥した後に90℃でl昼夜
乾燥した。さらにこれを電気炉中でSOO℃まで10℃
/hで昇温してSOO℃で1時間保持して脱脂した後に
、200”C/hで昇温して1000℃で2’1時間焼
成した。This was dried in Cos'C for 1 day and night, and then at 90°C for 1 day and night. This is further heated to 10°C in an electric furnace to SOO°C.
After the temperature was raised at 200"C/h and held at SOO°C for 1 hour to degrease, the temperature was raised at 200"C/h and fired at 1000°C for 2'1 hour.
さらに、これを100℃で2q時間水熱処理した。Furthermore, this was hydrothermally treated at 100° C. for 2 q hours.
、このようにして、ジルコニア焼結体の表面にヒドロキ
シアパタイトとジルコニアの混合物からなる多孔質焼結
体の被覆層を有するセラミックス製インプラントを得た
。In this way, a ceramic implant having a coating layer of a porous sintered body made of a mixture of hydroxyapatite and zirconia on the surface of the zirconia sintered body was obtained.
(発明の効果)
以上述べた方法によれば、機械的強度が高くて生体内で
破損せず、かつ芯材と強固に接合させた生体活性な表面
多孔層を有するセラミックス製インプラントを容易に得
ることができ、従って人工歯根、人工関節、人工骨など
の生体インプラント材料として好適に利用することがで
きるO(Effects of the Invention) According to the method described above, it is possible to easily obtain a ceramic implant that has high mechanical strength, does not break in vivo, and has a bioactive surface porous layer that is firmly bonded to the core material. Therefore, it can be suitably used as a material for biological implants such as artificial tooth roots, artificial joints, and artificial bones.
Claims (2)
とジルコニアの混合物からなる多孔質焼結体の被覆層を
有するセラミックス製インプラント。(1) A ceramic implant having a coating layer of a porous sintered body made of a mixture of hydroxyapatite and zirconia on the surface of the zirconia sintered body.
ドロキシアパタイトとジルコニアの混合粉末を被着した
のち焼成し、次いで水熱処理することを特徴とするセラ
ミックス製インプラントの製造方法。(2) A method for manufacturing a ceramic implant, which comprises depositing a mixed powder of hydroxyapatite and zirconia on the surface of a molded body made of partially stabilized zirconia, followed by firing and then hydrothermal treatment.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63027029A JPH01203284A (en) | 1988-02-08 | 1988-02-08 | Ceramic implant and production thereof |
DE68917947T DE68917947T2 (en) | 1988-02-08 | 1989-02-07 | Ceramic implant and method for its manufacture. |
EP89102069A EP0328041B1 (en) | 1988-02-08 | 1989-02-07 | Ceramic implant and process for its production |
US07/307,640 US4983182A (en) | 1988-02-08 | 1989-02-08 | Ceramic implant and process for its production |
US07/596,954 US5185177A (en) | 1988-02-08 | 1990-10-15 | Producing a ceramic implant by coating a powder mixture of zirconia and either tricalcium phosphate or hydroxyapatite on a molded unsintered body of partially stabilized zirconia and then sintering the article |
US07/903,327 US5192325A (en) | 1988-02-08 | 1992-06-24 | Ceramic implant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63027029A JPH01203284A (en) | 1988-02-08 | 1988-02-08 | Ceramic implant and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01203284A true JPH01203284A (en) | 1989-08-16 |
Family
ID=12209647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63027029A Pending JPH01203284A (en) | 1988-02-08 | 1988-02-08 | Ceramic implant and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01203284A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006080684A1 (en) * | 2004-10-05 | 2006-08-03 | Lg Chem, Ltd. | Method for preparation of bioactive ceramic-coated composite |
CN109665867A (en) * | 2017-10-16 | 2019-04-23 | 辽宁爱尔创科技有限公司 | A kind of post-processing approach of zirconia ceramics backboard and its treated product |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63105764A (en) * | 1986-10-21 | 1988-05-11 | 株式会社 香蘭社 | Ceramic for living body prosthesis |
-
1988
- 1988-02-08 JP JP63027029A patent/JPH01203284A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63105764A (en) * | 1986-10-21 | 1988-05-11 | 株式会社 香蘭社 | Ceramic for living body prosthesis |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006080684A1 (en) * | 2004-10-05 | 2006-08-03 | Lg Chem, Ltd. | Method for preparation of bioactive ceramic-coated composite |
CN109665867A (en) * | 2017-10-16 | 2019-04-23 | 辽宁爱尔创科技有限公司 | A kind of post-processing approach of zirconia ceramics backboard and its treated product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4983182A (en) | Ceramic implant and process for its production | |
US5192325A (en) | Ceramic implant | |
Kim et al. | Pressureless sintering and mechanical and biological properties of fluor‐hydroxyapatite composites with zirconia | |
US5125971A (en) | Living hard tissue replacement, its preparation | |
US5344456A (en) | Materials for living hard tissue replacements | |
JPS5911843A (en) | Dental implant for mounting denture | |
JP2005519194A (en) | Method for covering a device with a ceramic layer, ceramic surface layer and coated device | |
WO2009042110A1 (en) | Bioactive graded ceramic-based structures | |
US5185177A (en) | Producing a ceramic implant by coating a powder mixture of zirconia and either tricalcium phosphate or hydroxyapatite on a molded unsintered body of partially stabilized zirconia and then sintering the article | |
JP3648968B2 (en) | Biological zirconia composite ceramic sintered body | |
JPH0148774B2 (en) | ||
Ogiso et al. | Differences in microstructural characteristics of dense HA and HA coating | |
JPH02182261A (en) | Preparation of ceramic member for living body | |
JPS63134672A (en) | Formation of calcium phosphate film and member to be implanted in living body | |
KR100424910B1 (en) | Coating process of bioactive ceramics | |
JPH01203284A (en) | Ceramic implant and production thereof | |
JPS5945384B2 (en) | Manufacturing method for high-strength biological components | |
JP2006131469A (en) | Apatite composite material coated with apatite having crystal orientation | |
Wang et al. | Mechanical and biomedical properties of hydroxyapatite-based gradient coating on α-Al2O3 ceramic substrate | |
EP0401793B1 (en) | Use of ceramic materials for living hard tissue replacements | |
JPH01203285A (en) | Ceramic implant and production thereof | |
JP3933716B2 (en) | Method for producing α-tricalcium phosphate ceramic | |
KR100492270B1 (en) | Ceramic composite implant and manufacturing method thereof | |
JPS63105764A (en) | Ceramic for living body prosthesis | |
JP2623315B2 (en) | Calcium phosphate coated ceramics and method for producing the same |