JP3933716B2 - Method for producing α-tricalcium phosphate ceramic - Google Patents
Method for producing α-tricalcium phosphate ceramic Download PDFInfo
- Publication number
- JP3933716B2 JP3933716B2 JP06669395A JP6669395A JP3933716B2 JP 3933716 B2 JP3933716 B2 JP 3933716B2 JP 06669395 A JP06669395 A JP 06669395A JP 6669395 A JP6669395 A JP 6669395A JP 3933716 B2 JP3933716 B2 JP 3933716B2
- Authority
- JP
- Japan
- Prior art keywords
- tricalcium phosphate
- ceramic
- producing
- tricalcium
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Materials For Medical Uses (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
【0001】
【産業上の利用分野】
本発明は主に骨充填剤として用いられる生体親和性に優れたα−リン酸三カルシウムセラミック及びその製造方法に関する。
【0002】
【従来の技術】
従来、骨充填剤として用いられるセラミックとしてはハイドロキシアパタイト、β−リン酸三カルシウムがある。これらのセラミックは生体活性材料として知られており、天然骨と直接結合する材料である。一般に、これらの材料を骨に埋入した場合、骨と材料界面で、生体内で形成される薄い生体アパタイト層が生じ、それを基点として新生骨が形成されるといわれている。つまり材料表面で生体アパタイト層が形成された後は材料の溶解あるいは吸収はほとんど行われないと考えられている。実際これらの材料は生体に吸収される速度は遅く、新生骨と完全に置換されることはない。
一方、α−リン酸三カルシウムは骨と材料との界面で、生体アパタイト層は生じないといわれており、ハイドロキシアパタイトやβ−リン酸三カルシウムと比べて生体内での吸収速度が速く、新生骨を形成する骨形成能も非常に高い。理想的な骨充填剤としては、高い骨形成能を持つことと、その材料が完全に消失し、骨と完全に置換してしまうことであり、従来からα−リン酸三カルシウム成形体の作成が可能であれば非常に有望な骨充填剤になりうると考えられていた。しかし、α−リン酸三カルシウムは、湿式法による合成が難しいこと、焼結時にクラックの発生が避けられないことなどの理由からこれまでセラミックの作製が困難であり、高純度のα−リン酸三カルシウムセラミック及びその製造方法は未だ提案されていない。
【0003】
【課題を解決するための手段】
上記に鑑み本発明は理想的な骨充填剤の材料として期待できる高純度のα−リン酸三カルシウムセラミックの製造を可能にしたものである。
本発明で示す高純度α−リン酸三カルシウムセラミックとは、不純物が5重量%未満で、好ましくは1重量%未満の不純物しか含有しないものを示す。図4に高純度α−リン酸三カルシウムセラミックのX線回折図を示した。
不純物としては、例えばリン酸4カルシウム、ハイドロキシアパタイト、酸化カルシウム、β−リン酸3カルシウム等を示す。
又、焼結性、強度、細孔度等を向上すべくこれにMgO,Na2O、K2O、CaF2,Al2O3、SiO2、CaO、Fe2O3、ZnO、C、SrO、BaO、TiO2、ZrO2等の周知各種添加剤を5重量%未満の範囲で添加混合したものも包含する。
【0004】
【実施例】
以下、本発明α−リン酸三カルシウムセラミックの製造方法につき詳細に説明する。本発明におけるα−リン酸三カルシウムとはリン酸三カルシウムの高温安定相であり、その化学組成はCa3(PO4)2で表される。リン酸三カルシウムにはβ相(低温相)、γ相(高圧相)そしてα相(高温相)が存在するが、組成に変化はない。α相の安定領域は1125〜1500℃である。α−リン酸三カルシウム緻密セラミックの製造方法は以下の通りである。湿式法の1例として0.5M水酸化カルシウム懸濁液にリン酸水溶液を徐々に滴下し、攪拌しながら均一に反応させて非晶質リン酸三カルシウムを得る。この非晶質リン酸三カルシウムを濾過後、60℃で乾燥したのちライカイ機で粉砕して得られる粉末を600〜1200℃で仮焼して増粘剤を均一に混和し、プレス機を用いて50〜200MP aの圧力で成形する。なお仮焼の際、600〜750℃の温度範囲では非晶質リン酸カルシウム、775〜1100℃の温度範囲ではβ−リン酸三カルシウム、1125〜1200℃の温度範囲ではα−リン酸三カルシウムとなる。この成形体を1150〜1500℃で1〜200時間焼結させ、さらに500〜1000℃/hで冷却することにより得られる。また、プレス機は一軸加圧プレス機、ホットプレス機、ラバープレス機などを用いる。α−リン酸三カルシウム多孔質セラミックの製造方法は以下の通りである。上記記載の合成方法により合成したリン酸三カルシウム粉末に増粘剤を均一に混和後、水またはエタノールを加えてスラリー状にする。これをスポンジに均一に含浸させ、上記の緻密体と同様の焼結を行うことにより得られる。上記のように高温で長時間焼結させることにより高純度のα−リン酸三カルシウムセラミックを作製することができる。また、合成条件、焼結条件などを変えることによりハイドロキシアパタイト、β−リン酸三カルシウム、リン酸四カルシウムなどの他のリン酸カルシウムを含有したものを作製することも可能である。
【0005】
実験例(1)
湿式法により合成したα−リン酸三カルシウム粉末、及びβ−リン酸三カルシウム粉末を一軸加圧プレス機を用いて直径約28mm、厚さ5mmの円板状成形体を作製し、1000〜1500℃の温度範囲で焼結させた後、粉末X線回折法により相の同定を行った。その結果、β−リン酸三カルシウム粉末からのものは1400〜1450℃の条件下で焼結させたときに高純度のα−リン酸三カルシウムセラミックが得られ、α−リン酸三カルシウム粉末からのものは1150〜1400℃の条件下で焼結させたときに高純度のα−リン酸三カルシウムセラミックが得られた。また条件次第では、表面はα相で内部はβ相であるリン酸三カルシウムセラミックの作製も可能であった。表1は、焼結温度と相との関係を示すもので、表中のα-TCP、β-TCPは出発原料粉末がそれぞれα-リン酸三カルシウム粉末、β-リン酸三カルシウム粉末である。"セラミック表面"は焼結体表面からの粉末X線回折の情報であり、"粉砕後"は焼結体の粉砕後の粉末からの情報である。
【表1】
次にα−リン酸三カルシウム粉末の成形体を、焼結温度を1400℃と一定にし、焼結時間を変えたときに得られるα型リン酸三カルシウムセラミックの相対密度を求めた。焼結時間とともに相対密度が増大し、焼結時間100時間で約95%の緻密体が得られた。
実験例(2)
湿式法により合成したα−リン酸三カルシウム粉末をホットプレス機を用いて80MP a 、1350℃の条件で加圧加熱処理を行ったところ、高純度のα−リン酸三カルシウムセラミックが得られた。
実験例(3)
湿式法により合成したα−リン酸三カルシウム粉末、β−リン酸三カルシウム粉末および非晶質リン酸カルシウム粉末に水を50wt%加えてスラリー状にし、これをポリウレタン製スポンジに含浸後乾燥させたものを焼結温度1400℃、焼結時間50時間で焼結させたところ、高純度のα型リン酸三カルシウムセラミックが得られた。これは、骨充填剤として実用上十分な強度を有していた。(図1)
実験例(4)
0 . 7mm×0 . 7mm×5mmの角柱状に切断したα−リン酸三カルシウム及びハイドロキシアパタイト緻密体を卵巣摘出手術を施した骨粗鬆症モデルラットの大腿骨内にそれぞれ埋入し、骨組織との反応を調べた。その結果、α−リン酸三カルシウムは試料の周囲に直接新生骨が形成されており、線維性結合組織の介は認められず、新生骨と材料は直接接合していた。また新生骨はほぼ試料表面を完全に覆っており、角柱状の材料が円形に変化していたことから、経時的に吸収されていく様子がうかがわれ、長期埋入時に完全に消失する可能性を示唆している。(図2)
一方、ハイドロキシアパタイトは試料の周囲に線維性結合組織が形成されており、新生骨の形成は少なかった。また埋入時の形状をそのまま保っていたことから溶解した様子はなく、長期埋入時においても吸収されることはないと考えられる。(図3)
【0006】
【発明の効果】
以上詳述の如く本発明の製造方法によれば、骨充填剤として用いられる生体親和性に優れ、骨形成能が高く、骨置換機能を有するセラミックを製造することができる。
【図面の簡単な説明】
【図1】焼結温度と相対密度との関係を示す図。
【図2】骨粗鬆症モデルラットの大腿骨中に埋入した時のα−リン酸三カルシウムセラミックの非脱灰標本写真(埋入3ヶ月)を印刷した図。
【図3】骨粗鬆症モデルラットの大腿骨中に埋入した時のハイドロキシアパタイトセラミックの非脱灰標本写真(埋入3ヶ月)を印刷した図。
【図4】製造されたα−リン酸三カルシウムセラミックのX線回折図。[0001]
[Industrial application fields]
The present invention relates to an α-tricalcium phosphate ceramic excellent in biocompatibility mainly used as a bone filler and a method for producing the same.
[0002]
[Prior art]
Conventional ceramics used as bone fillers include hydroxyapatite and β-tricalcium phosphate. These ceramics are known as bioactive materials and are materials that directly bond to natural bone. In general, when these materials are embedded in bone, it is said that a thin biological apatite layer formed in the living body is formed at the interface between the bone and the material, and new bone is formed based on the thin biological apatite layer. That is, it is considered that the material is hardly dissolved or absorbed after the bioapatite layer is formed on the material surface. In fact, these materials are slowly absorbed by the body and are not completely replaced by new bone.
On the other hand, α-tricalcium phosphate is said to have no biological apatite layer at the interface between bone and material, and has a faster absorption rate in vivo than hydroxyapatite and β-tricalcium phosphate. The ability to form bone is very high. As an ideal bone filler, it has high bone forming ability and the material is completely lost and completely replaced with bone. It was thought that could be a very promising bone filler if possible. However, α-tricalcium phosphate has been difficult to produce ceramics because of the difficulty in synthesis by a wet method and the inevitable generation of cracks during sintering. A tricalcium ceramic and its manufacturing method have not yet been proposed.
[0003]
[Means for Solving the Problems]
In view of the above, the present invention makes it possible to produce a high-purity α-tricalcium phosphate ceramic that can be expected as an ideal bone filler material.
The high-purity α-tricalcium phosphate ceramic shown in the present invention refers to those containing less than 5% by weight of impurities and preferably less than 1% by weight of impurities. FIG. 4 shows an X-ray diffraction pattern of the high purity α-tricalcium phosphate ceramic.
Examples of the impurity include tetracalcium phosphate, hydroxyapatite, calcium oxide, and β-tricalcium phosphate.
In order to improve the sinterability, strength, porosity, etc., MgO, Na 2 O, K 2 O, CaF 2 , Al 2 O 3 , SiO 2 , CaO, Fe 2 O 3 , ZnO, C, Also included is a mixture in which various known additives such as SrO, BaO, TiO 2 , ZrO 2 and the like are added and mixed in the range of less than 5% by weight.
[0004]
【Example】
Hereinafter, the production method of the α-tricalcium phosphate ceramic of the present invention will be described in detail. The α-tricalcium phosphate in the present invention is a high-temperature stable phase of tricalcium phosphate, and its chemical composition is represented by Ca 3 (PO 4 ) 2 . Tricalcium phosphate has a β phase (low temperature phase), a γ phase (high pressure phase), and an α phase (high temperature phase), but there is no change in composition. The stable region of the α phase is 1125 to 1500 ° C. The production method of the α -tricalcium phosphate dense ceramic is as follows. As an example of the wet method, an aqueous phosphoric acid solution is gradually added dropwise to a 0.5 M calcium hydroxide suspension, and the mixture is reacted uniformly with stirring to obtain amorphous tricalcium phosphate. The amorphous tricalcium phosphate is filtered, dried at 60 ° C., and then pulverized with a raikai machine. The powder obtained is calcined at 600 to 1200 ° C., and the thickener is uniformly mixed. molded at a pressure of 50 to 200 m P a Te. During calcination , amorphous calcium phosphate is obtained in the temperature range of 600 to 750 ° C., β-tricalcium phosphate is obtained in the temperature range of 775 to 1100 ° C., and α-tricalcium phosphate is produced in the temperature range of 1125 to 1200 ° C. . This molded body is obtained by sintering at 1150 to 1500 ° C. for 1 to 200 hours and further cooling at 500 to 1000 ° C./h . Moreover, a uniaxial press machine, a hot press machine, a rubber press machine, etc. are used for a press machine. The production method of the α-tricalcium phosphate porous ceramic is as follows. A thickener is uniformly mixed in the tricalcium phosphate powder synthesized by the synthesis method described above, and then water or ethanol is added to form a slurry. This can be obtained by uniformly impregnating this into a sponge and performing the same sintering as the above dense body. A high-purity α-tricalcium phosphate ceramic can be produced by sintering at a high temperature for a long time as described above. Moreover, it is also possible to produce those containing other calcium phosphates such as hydroxyapatite, β-tricalcium phosphate, and tetracalcium phosphate by changing the synthesis conditions, sintering conditions, and the like.
[0005]
Experimental example (1)
A disk-shaped molded body having a diameter of about 28 mm and a thickness of 5 mm is prepared from α-tricalcium phosphate powder and β-tricalcium phosphate powder synthesized by a wet method using a uniaxial pressure press machine, and is 1000 to 1500. After sintering in the temperature range of ° C., the phase was identified by powder X-ray diffraction method. As a result, a high purity α-tricalcium phosphate ceramic was obtained from β -tricalcium phosphate powder when sintered under conditions of 1400 to 1450 ° C., and from α -tricalcium phosphate powder. No. 1 gave a high purity α-tricalcium phosphate ceramic when sintered at 1150-1400 ° C. Depending on conditions, it was possible to produce a tricalcium phosphate ceramic whose surface was α phase and inside was β phase. Table 1 shows the relationship between the sintering temperature and the phase. Α-TCP and β-TCP in the table are α-tricalcium phosphate powder and β-tricalcium phosphate powder, respectively. . “Ceramic surface” is information of powder X-ray diffraction from the surface of the sintered body, and “after grinding” is information from the powder after grinding of the sintered body.
[Table 1]
Next, the relative density of the α-type tricalcium phosphate ceramic obtained by changing the sintering time of the compact of α-tricalcium phosphate powder at a constant sintering temperature of 1400 ° C. was determined. The relative density increased with the sintering time, and a dense body of about 95% was obtained after the sintering time of 100 hours.
Experimental example (2)
When synthesized α- tricalcium phosphate powder was pressurized and heat-treated under conditions of 80MP a, 1350 ℃ using a hot press machine by a wet method, tricalcium ceramic high purity α- phosphate was obtained .
Experimental example (3)
50 wt% of water was added to α-tricalcium phosphate powder, β-tricalcium phosphate powder and amorphous calcium phosphate powder synthesized by a wet method to form a slurry, which was impregnated into a polyurethane sponge and dried. When sintering was performed at a sintering temperature of 1400 ° C. and a sintering time of 50 hours, a high-purity α-type tricalcium phosphate ceramic was obtained. This had a practically sufficient strength as a bone filler. (Figure 1)
Experimental example (4)
0. 7mm × 0. 7mm × cut into 5mm prismatic α- tricalcium phosphate and hydroxyapatite dense body was embedded respectively into the femoral bone of an osteoporosis model rats ovariectomized, with the bone tissue The reaction was examined. As a result, α-tricalcium phosphate had new bone formed directly around the sample, no intervening fibrous connective tissue was observed, and the new bone and the material were directly joined. In addition, the new bone almost completely covers the sample surface, and the prismatic material has changed into a circle, so it seems that it is absorbed over time, and can be completely lost during long-term implantation. Suggests sex. (Figure 2)
On the other hand, in hydroxyapatite, fibrous connective tissue was formed around the sample, and there was little formation of new bone. Moreover, since the shape at the time of embedding was kept as it was, it did not seem to melt | dissolve and it is thought that it is not absorbed even at the time of long-term embedding. (Figure 3)
[0006]
【The invention's effect】
As described above in detail, according to the production method of the present invention, it is possible to produce a ceramic having excellent biocompatibility used as a bone filler, high bone forming ability, and having a bone replacement function.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between sintering temperature and relative density.
FIG. 2 is a diagram showing a printed non-decalcified specimen photograph (3 months of implantation) of α-tricalcium phosphate ceramic when implanted in the femur of an osteoporosis model rat.
FIG. 3 shows a printed non-decalcified specimen photograph (3 months of implantation) of hydroxyapatite ceramic when implanted in the femur of an osteoporosis model rat.
FIG. 4 is an X-ray diffraction pattern of the produced α-tricalcium phosphate ceramic.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06669395A JP3933716B2 (en) | 1994-03-02 | 1995-03-02 | Method for producing α-tricalcium phosphate ceramic |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5479094 | 1994-03-02 | ||
JP6-54790 | 1994-03-02 | ||
JP06669395A JP3933716B2 (en) | 1994-03-02 | 1995-03-02 | Method for producing α-tricalcium phosphate ceramic |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07291723A JPH07291723A (en) | 1995-11-07 |
JP3933716B2 true JP3933716B2 (en) | 2007-06-20 |
Family
ID=26395602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06669395A Expired - Lifetime JP3933716B2 (en) | 1994-03-02 | 1995-03-02 | Method for producing α-tricalcium phosphate ceramic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3933716B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6949251B2 (en) * | 2001-03-02 | 2005-09-27 | Stryker Corporation | Porous β-tricalcium phosphate granules for regeneration of bone tissue |
KR100460685B1 (en) * | 2002-04-10 | 2004-12-09 | 재단법인서울대학교산학협력재단 | Artificial Bone by Calcium Phosphate Compounds And Method Thereof |
JP5232484B2 (en) * | 2008-01-31 | 2013-07-10 | 日本特殊陶業株式会社 | Biological implant |
CN116813370B (en) * | 2023-07-05 | 2024-04-12 | 深圳大洲医学科技有限公司 | Biological ceramic rod and preparation method and application thereof |
-
1995
- 1995-03-02 JP JP06669395A patent/JP3933716B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07291723A (en) | 1995-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bohner et al. | β-tricalcium phosphate for bone substitution: Synthesis and properties | |
Vallet-Regí et al. | Ceramics as bone repair materials | |
WO1995023775A1 (en) | TYPE α TRICALCIUM PHOSPHATE CERAMIC AND PROCESS FOR PRODUCING THE SAME | |
US5462722A (en) | Calcium phosphate calcium sulfate composite implant material | |
KR100573293B1 (en) | Method for making apatite ceramics, in particular for biological use | |
US4149893A (en) | Orthopedic and dental implant ceramic composition and process for preparing same | |
EP0353476B1 (en) | Biomedical material and method for making the same | |
Tancred et al. | A quantitative study of the sintering and mechanical properties of hydroxyapatite/phosphate glass composites | |
JPH04504403A (en) | Synthetic ceramic materials and their manufacturing methods | |
JP2002535225A (en) | Inorganic green body and method for its production and use | |
Tayyebi et al. | A review of synthesis and properties of hydroxyapatite/alumina nano composite powder | |
JP3933716B2 (en) | Method for producing α-tricalcium phosphate ceramic | |
JP6035627B2 (en) | Biomaterial composed of β-type tricalcium phosphate | |
JPH0720486B2 (en) | Calcium phosphate-based bioprosthetic material and method for producing the same | |
JP6109773B2 (en) | Biomaterial ceramic sintered body and method for producing the same | |
JPH0214866A (en) | Solution of calcium phosphate compound ceramic precursor and production thereof | |
Jain | Processing of hydroxyapatite by biomimetic process | |
CN106904954B (en) | A kind of biologically active ceramic material, preparation method and applications | |
JPH0588623B2 (en) | ||
JP2898331B2 (en) | Bioactive implant material | |
JP2638619B2 (en) | Self-curing high-strength composite biomaterial and its manufacturing method | |
KR100446701B1 (en) | Bioceramic composition | |
Awasthi | Study on Structural Properties of Hydroxyapatite-Zirconia Composites | |
KR100563714B1 (en) | Inorganic bone cement with high strength | |
JPH0337171A (en) | Production of composite ceramic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050628 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050829 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060117 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060320 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060817 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070314 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110330 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120330 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130330 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130330 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140330 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |