JPH05208877A - Calcium phosphate ceramic porous material and its production - Google Patents

Calcium phosphate ceramic porous material and its production

Info

Publication number
JPH05208877A
JPH05208877A JP4038744A JP3874492A JPH05208877A JP H05208877 A JPH05208877 A JP H05208877A JP 4038744 A JP4038744 A JP 4038744A JP 3874492 A JP3874492 A JP 3874492A JP H05208877 A JPH05208877 A JP H05208877A
Authority
JP
Japan
Prior art keywords
calcium phosphate
pore
porous body
phosphate ceramic
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4038744A
Other languages
Japanese (ja)
Inventor
Naohisa Takano
直久 高野
Katsuyoshi Ina
克芳 伊奈
Takuji Yoshimura
卓二 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Kagaku Kogyo Co Ltd
Kanebo Ltd
Original Assignee
Taiyo Kagaku Kogyo Co Ltd
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Kagaku Kogyo Co Ltd, Kanebo Ltd filed Critical Taiyo Kagaku Kogyo Co Ltd
Priority to JP4038744A priority Critical patent/JPH05208877A/en
Publication of JPH05208877A publication Critical patent/JPH05208877A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a biologically compatible porous material by compression- molding a green material comprising a spherical pore-forming material and a calcium phosphate ceramic in a specific weight ratio and subsequently calcining the molded product at a prescribed temperature. CONSTITUTION:60-40wt.% of the powder of a calcium phosphate ceramic having excellent biological compatibility, such as Ca10(PO4)6(OH)2, and 20-60wt.% of a spherical pore-forming material such as acrylic resin foamed beads are mixed with each other and subsequently compression-molded by a dry press molding method, etc., to form a green material. The green material is degreased at approximately 500 deg.C and subsequently calcined at 800-140O deg.C in a calcination oven to produce the calcium phosphate ceramic porous material having a pore diameter of 10-100mum and an opened porosity of 40-80% and having spherically communicated pores.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は骨充填材、人工骨、人工
歯根等生体材料に適したリン酸カルシウム系セラミック
ス多孔体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a calcium phosphate ceramics porous body suitable for a bone filling material, artificial bone, artificial dental root and other biomaterials, and a method for producing the same.

【0002】[0002]

【従来の技術】リン酸カルシウム系セラミックスは脊椎
動物の骨や歯を構成する生体硬組織の主要成分である。
その為、生体親和性に優れたセラミックス材料として注
目されており、人工骨、人工歯、人工歯根、骨充填材等
生体材料への応用が活発に進められている。中でもそれ
を多孔体に仕上げたリン酸カルシウム系セラミックス多
孔体は、生体内組織とリン酸カルシウム系セラミックス
との接触面積が大きい為、生体内での活性が高く、人工
骨等に適しているとされてきた。しかしながら、従来の
リン酸カルシウム系セラミックス多孔体は、気泡剤を用
いて泡を含むリン酸カルシウム系セラミックスのスラリ
ーを濾過したケーキを硬化させ、或はそれを焼成して製
造される。更に他の方法として、発泡樹脂スポンジの表
面にリン酸カルシウム系セラミックスを付着せしめ、こ
れを焼成したりして製造される。従ってこれらのリン酸
カルシウム系セラミックス多孔体は、気孔構造が不定型
であり、得られる多孔体の強度が低い問題がある。更
に、気孔径が均一でない為、生体内に埋設した場合、リ
ン酸カルシウム系セラミックス多孔体の気孔内を血管が
効率的に成長しない。
2. Description of the Related Art Calcium phosphate-based ceramics are the main components of living hard tissues that form the bones and teeth of vertebrates.
Therefore, it has been attracting attention as a ceramic material having excellent biocompatibility, and its application to biomaterials such as artificial bones, artificial teeth, artificial tooth roots and bone fillers has been actively promoted. Among them, the calcium phosphate-based ceramics porous body obtained by finishing it into a porous body has a large contact area between the in-vivo tissue and the calcium phosphate-based ceramics, and thus has high activity in the living body and is considered suitable for artificial bones and the like. However, the conventional calcium phosphate-based ceramics porous body is manufactured by curing a cake obtained by filtering a slurry of calcium phosphate-based ceramics containing bubbles using a foaming agent, or firing the cake. As still another method, calcium phosphate ceramics is adhered to the surface of a foamed resin sponge, and this is fired to manufacture. Therefore, these calcium phosphate ceramics porous bodies have a problem that the pore structure is indefinite and the strength of the obtained porous body is low. Furthermore, since the pore diameter is not uniform, when embedded in a living body, blood vessels do not grow efficiently in the pores of the calcium phosphate ceramics porous body.

【0003】[0003]

【発明が解決しようとする課題】本発明者らは既存のリ
ン酸カルシウム系セラミックスの有する上記問題点に鑑
み鋭意研究を重ねた結果本発明を完成したもので、その
目的は、生体適合性に優れたリン酸カルシウム系セラミ
ックス多孔体及びその製造方法を提供することにある。
DISCLOSURE OF THE INVENTION The present inventors completed the present invention as a result of earnest studies in view of the above problems of the existing calcium phosphate-based ceramics, and the object thereof is excellent biocompatibility. It is to provide a calcium phosphate ceramics porous body and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】上記目的は、リン酸カル
シウム系セラミックスよりなり気孔径が10〜100μ
m、開気孔率が40〜80%の球状連通気孔を有するリ
ン酸カルシウム系セラミックス多孔体、並びに球状気孔
形成材が20〜60%、リン酸カルシウム系セラミック
スが40〜80重量%からなるグリーン体を圧縮成型
し、これを800〜1400℃で焼成することを特徴と
するリン酸カルシウム系セラミックス多孔体の製造方法
によって達成される。
The above-mentioned object is made of calcium phosphate ceramics and has a pore size of 10 to 100 μm.
m, a calcium phosphate-based ceramics porous body having spherical open pores having an open porosity of 40 to 80%, and a green body composed of 20 to 60% of spherical pore forming material and 40 to 80% by weight of calcium phosphate-based ceramics is compression molded. This is achieved by a method for producing a calcium phosphate ceramics porous body, which is characterized by firing at 800 to 1400 ° C.

【0005】本発明の骨格部をなすリン酸カルシウム系
セラミックスは、例えば組成式、Ca10(PO4
6 (OH)2 、Ca3 (PO4 2 、CaHPO、Ca
(H2 PO4 2 、Ca10(PO4 6 O等で示される
化合物の単独体或は複合物、更に酸化カルシウムとリン
酸を主成分とするガラス又はガラスセラミックスを挙げ
る事が出来る。これらの中で生体親和性に優れるCa10
(PO4 6 (OH)2 、Ca3 (PO4 2 、Ca10
(PO4 6 Oが好ましい。特に、生体骨組織の大部分
を形成するCa10(PO4 6 (OH)2 が好ましい。
本発明に用いるリン酸カルシウム系セラミックスは、出
発原料或は製造工程である程度の微量成分を含有させる
ことが出来る。含有出来る元素としては、Ba,Mg,
Sr,Fe,Al,F,Cl等を挙げることが出来る。
本発明の気孔径及び開気孔率は、生体内に埋設後、血管
の成長、新骨の生成に不可欠な要素である。つまり、こ
の気孔の存在により血管は成長でき、新骨が生成され
る。本発明の気孔径は、血管生成に適した気孔径を取る
必要がある。気孔径は、10〜100μm、好ましくは
30〜80μmである。気孔径が10μm未満では好ま
しい血管成長は生じない。一方、100μmを越えると
多孔体の強度が低くなる。本発明の気孔は連通気孔であ
る必要がある。閉気孔では血管は成長しない。本発明の
開気孔率は40〜80%である。開気孔率が40%未満
では好ましい血管成長は生じない。一方、80%を越え
ると多孔体の強度が低くなる。本発明のリン酸カルシウ
ム系セラミックス多孔体は、球状気孔形成材とリン酸カ
ルシウム系セラミックス粉末を前以て混合し、これを圧
縮成型してグリーン体と成し、次いでこれを焼成するこ
とによって製造される。本発明の気孔形成材としては、
アクリル樹脂、エポキシ樹脂、スチレン樹脂、フェノー
ル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ナイ
ロン樹脂、ポリエステル樹脂、尿素樹脂、メラミン樹脂
等からなる球状粒子、スチレン樹脂、ポリエチレン樹脂
等からなる発泡ビーズ等を挙げることが出来る。気孔を
球状連通気孔構造とする為には、球状気孔形成材同志が
互いに接触した状態で成型する必要があり、成型方法と
しては圧縮成型法が好適である。圧縮成型法としては、
乾式プレス成型法、半乾式プレス成型法、射出成型法、
押し出し成型法等を挙げることが出来る。本発明におい
て球状気孔形成材の配合量は20〜60重量%である。
20重量%未満であると形成される気孔体積が少なく、
血管成長が不充分である。一方、60重量%を越えると
多孔体の強度が低くなる。
The calcium phosphate ceramics forming the skeleton of the present invention has, for example, a compositional formula of Ca 10 (PO 4 ).
6 (OH) 2 , Ca 3 (PO 4 ) 2 , CaHPO, Ca
Mention may be made of single or composite compounds of compounds represented by (H 2 PO 4 ) 2 , Ca 10 (PO 4 ) 6 O and the like, and further glass or glass ceramics containing calcium oxide and phosphoric acid as main components. Of these, Ca 10 has excellent biocompatibility.
(PO 4 ) 6 (OH) 2 , Ca 3 (PO 4 ) 2 , Ca 10
(PO 4 ) 6 O is preferred. In particular, Ca 10 (PO 4 ) 6 (OH) 2 which forms most of the living bone tissue is preferable.
The calcium phosphate-based ceramics used in the present invention can contain a certain amount of trace components in the starting material or the manufacturing process. Elements that can be contained include Ba, Mg,
Sr, Fe, Al, F, Cl etc. can be mentioned.
The porosity and open porosity of the present invention are essential factors for growth of blood vessels and generation of new bone after being embedded in a living body. In other words, the presence of these pores allows the blood vessels to grow and new bone is generated. The pore diameter of the present invention needs to be suitable for blood vessel formation. The pore diameter is 10 to 100 μm, preferably 30 to 80 μm. When the pore size is less than 10 μm, favorable blood vessel growth does not occur. On the other hand, when it exceeds 100 μm, the strength of the porous body becomes low. The pores of the present invention need to be continuous vents. Blood vessels do not grow in closed pores. The open porosity of the present invention is 40 to 80%. When the open porosity is less than 40%, favorable blood vessel growth does not occur. On the other hand, when it exceeds 80%, the strength of the porous body becomes low. The calcium phosphate-based ceramics porous body of the present invention is manufactured by previously mixing the spherical pore-forming material and the calcium phosphate-based ceramics powder, compression-molding this to form a green body, and then firing this. As the pore forming material of the present invention,
Examples include spherical particles made of acrylic resin, epoxy resin, styrene resin, phenol resin, polyethylene resin, polypropylene resin, nylon resin, polyester resin, urea resin, melamine resin, etc., foamed beads made of styrene resin, polyethylene resin, etc. I can. In order to make the pores have a spherical continuous vent structure, it is necessary to mold the spherical pore-forming materials in contact with each other, and the compression molding method is suitable as the molding method. As a compression molding method,
Dry press molding method, semi-dry press molding method, injection molding method,
Extrusion molding method and the like can be mentioned. In the present invention, the compounding amount of the spherical pore forming material is 20 to 60% by weight.
If it is less than 20% by weight, the pore volume formed is small,
Insufficient blood vessel growth. On the other hand, when it exceeds 60% by weight, the strength of the porous body becomes low.

【0006】本発明においてリン酸カルシウム系セラミ
ックスの配合量は40〜80重量%である。このリン酸
カルシウム系セラミックスの配合量と球状気孔形成材の
配合量は表裏一体の関係にある。即ち、リン酸カルシウ
ム系セラミックスの配合量が40重量%未満であると強
度が低くなり、一方、80重量%を越えると血管成長が
不充分である。本発明では、グリーン体中の球状気孔形
成材が連続して接触する事により、初めて球状連通気孔
が形成出来る。気孔径は、球状気孔の「ネック部」の直
径により規定される。従って用いる球状気孔形成材の直
径は、最終製品の気孔径の3〜6倍のものを選定するの
がよい。しかしながら、成型時の圧縮力や焼成時の収縮
等により一概に決定されるものではなく、製造条件に合
わせて適宜選定されるものである。グリーン体は次いで
焼成される。焼成方法は、公知の電気炉、ガス炉等の装
置を用いて実施出来る。通常先ず、500℃程度の低温
で脱脂し、気孔形成材を熱分解により除去せしめるのが
よい。次いで焼成を行なうが、焼成温度は800〜14
00℃、好ましくは1000〜1300℃である。80
0℃未満であると得られる多孔体の強度が低く、140
0℃を越えるとリン酸カルシウム系セラミックスの溶融
や分解が生じる。このように本発明のリン酸カルシウム
系セラミックスは球状気孔とする事により通常の不定型
気孔に比べて得られる焼成体の強度の向上が計れる。更
に、予め厳密な寸法形状に制御された気孔形成材を選定
して用いるので、気孔径及びその分布を生体適合性が優
れるように厳密に制御出来る。又、開気孔率はリン酸カ
ルシウム系セラミックスと球状気孔形成材との混合比、
或は焼成温度等によって適宜制御出来る。本発明のリン
酸カルシウム系セラミックス多孔体は顆粒状、或はブロ
ック状等使用部位の形状、形態に合わせて適宜使用出来
る。又、得られたリン酸カルシウム系セラミックス多孔
体を後加工により適宜形状に賦型出来る。
In the present invention, the compounding amount of the calcium phosphate ceramics is 40 to 80% by weight. The compounding amount of the calcium phosphate ceramics and the compounding amount of the spherical pore-forming material have a one-sided relationship. That is, if the compounding amount of the calcium phosphate ceramics is less than 40% by weight, the strength becomes low, whereas if it exceeds 80% by weight, blood vessel growth is insufficient. In the present invention, the continuous spherical pores can be formed only when the spherical pore-forming material in the green body is in continuous contact. Pore size is defined by the diameter of the "neck" of the spherical porosity. Therefore, it is preferable that the diameter of the spherical pore forming material used is 3 to 6 times the pore diameter of the final product. However, it is not unconditionally determined by the compressive force at the time of molding, shrinkage at the time of firing, etc., but is appropriately selected according to the manufacturing conditions. The green body is then fired. The firing method can be carried out using a known device such as an electric furnace or a gas furnace. First, it is preferable to first degrease at a low temperature of about 500 ° C. to remove the pore-forming material by thermal decomposition. Next, firing is performed, but the firing temperature is 800 to 14
The temperature is 00 ° C, preferably 1000 to 1300 ° C. 80
When the temperature is lower than 0 ° C, the strength of the obtained porous body is low,
If it exceeds 0 ° C, the calcium phosphate-based ceramics is melted or decomposed. As described above, the calcium phosphate-based ceramics of the present invention having spherical pores can improve the strength of the fired body obtained as compared with ordinary irregular-shaped pores. Furthermore, since the pore-forming material whose strict size and shape are controlled is selected and used in advance, the pore diameter and its distribution can be strictly controlled so that biocompatibility is excellent. Further, the open porosity is the mixing ratio of the calcium phosphate ceramics and the spherical pore forming material,
Alternatively, it can be appropriately controlled by the firing temperature and the like. The calcium phosphate-based ceramics porous body of the present invention can be appropriately used according to the shape and form of the site of use, such as a granular form or a block form. Further, the obtained calcium phosphate-based ceramics porous body can be shaped into an appropriate shape by post-processing.

【0007】[0007]

【発明の効果】本発明のリン酸カルシウム系セラミック
ス多孔体及びその製造方法により生体適合性に優れたリ
ン酸カルシウム系セラミックス多孔体を提供出来る。
The calcium phosphate-based ceramics porous body and the method for producing the same of the present invention can provide a calcium phosphate-based ceramics porous body having excellent biocompatibility.

【0008】(実施例1)所定量の水酸化カルシウムの
懸濁液にリン酸溶液を滴下し、高速攪拌下で反応させ、
更に80℃で10時間熟成し、濾過及び200℃で乾燥
してヒドロキシアパタイトのケーキ状物を得た。次い
で、得られたヒドロキシアパタイトのケーキ状物を50
0℃で焼成し、粉砕してヒドロキシアパタイト粉末を得
た。ヒドロキシアパタイト粉末とアクリル性樹脂ビーズ
を重量比で65:35で混合し、これを乾式プレス成型
しグリーン体を得た。グリーン体をガス焼成炉に設置
し、500℃で4時間脱脂した後、引き続き1100℃
で1時間焼成してリン酸カルシウム系セラミックス多孔
体を作製した。尚ここで気孔径は使用する樹脂ビーズの
大きさを変化させて表1に示すように調整した。尚、こ
こで気孔径及び開気孔率は水銀圧入法で求めた。又、生
体適合性及び曲げ強度については以下に示す基準に従っ
て評価した。
Example 1 A phosphoric acid solution was added dropwise to a suspension of a predetermined amount of calcium hydroxide, and the mixture was reacted under high speed stirring,
Further, it was aged at 80 ° C. for 10 hours, filtered and dried at 200 ° C. to obtain a hydroxyapatite cake. Then, the obtained hydroxyapatite cake is 50
The hydroxyapatite powder was obtained by firing at 0 ° C. and pulverizing. Hydroxyapatite powder and acrylic resin beads were mixed at a weight ratio of 65:35, and this was dry press-molded to obtain a green body. Place the green body in a gas firing furnace and degrease it at 500 ° C for 4 hours, then continue at 1100 ° C.
And baked for 1 hour to prepare a calcium phosphate ceramics porous body. Here, the pore diameter was adjusted as shown in Table 1 by changing the size of the resin beads used. Here, the pore diameter and open porosity were determined by the mercury porosimetry method. The biocompatibility and bending strength were evaluated according to the following criteria.

【0009】〔生体適合性〕得られたリン酸カルシウム
系セラミックス多孔体を粉砕し、次いで整粒して300
〜800μmの顆粒と成し、犬の顎骨欠損部に埋設し、
40日後その生体適合性を観察した。 生体適合性評価基準 ○:気孔内に血管が生成し、新骨の生成が顕著に認めら
れる。 △:気孔内に僅かに血管が生成し、新骨の生成が認めら
れる。 ×:血管は生成せず、新骨は顆粒の外周に僅かに生成す
る。
[Biocompatibility] The obtained calcium phosphate-based ceramics porous body is crushed and then sized to 300
~ 800μm granules, embedded in the dog's jawbone defect,
The biocompatibility was observed after 40 days. Biocompatibility evaluation criteria ◯: Blood vessels are formed in the pores, and new bone is remarkably formed. Δ: Slight blood vessels are generated in the pores, and new bone is recognized. X: No blood vessel is formed, and new bone is slightly formed on the outer periphery of the granule.

【0010】〔曲げ強度〕得られたリン酸カルシウム系
セラミックス多孔体を5×10×60mmの短冊状に加
工し、室温にて3点曲げ試験を実施し、次式に示す計算
式より曲げ強度を算出した。尚、ここでスパンは40m
m、クロスヘッドスピードは0.5mm/minで行っ
た。 σ3 = 3PL/2bh2 P:荷重
L:スパン b:試験片の幅 h:試験片の厚さ 尚、単位はkg/cm2
[Bending Strength] The obtained calcium phosphate-based ceramics porous body was processed into a strip of 5 × 10 × 60 mm, a three-point bending test was carried out at room temperature, and the bending strength was calculated from the following formula. did. The span here is 40m.
m, and the crosshead speed was 0.5 mm / min. σ 3 = 3PL / 2bh 2 P: load
L: span b: width of test piece h: thickness of test piece The unit is kg / cm 2 .

【表1】 以上の結果から本発明のリン酸カルシウム系セラミック
ス多孔体の気孔径は10〜100μm、好ましくは30
〜80μmであることがわかる。
[Table 1] From the above results, the pore size of the calcium phosphate-based ceramics porous body of the present invention is 10 to 100 μm, preferably 30
It can be seen that it is ˜80 μm.

【0011】(実施例2)ヒドロキシアパタイト粉末と
直径200μmの樹脂ビーズの混合比を表2に示す値と
し、焼成温度を1200℃とする以外は全て実施例1と
同様にしてリン酸カルシウム系セラミックス多孔体を作
製し、評価した。
Example 2 A calcium phosphate ceramics porous body was prepared in the same manner as in Example 1 except that the mixing ratio of hydroxyapatite powder and resin beads having a diameter of 200 μm was set to the value shown in Table 2 and the firing temperature was 1200 ° C. Was prepared and evaluated.

【表2】 以上の結果から開気孔率が、40〜80%であると好適
な結果が得られることがわかる。
[Table 2] From the above results, it can be seen that suitable results are obtained when the open porosity is 40 to 80%.

【0012】(実施例3)実施例1の表1No.4の組
成を用い、焼成温度を表3に示す以外は全て実施例1に
準じてリン酸カルシウム系セラミックス多孔体を作製し
た。
(Example 3) Table 1 No. 1 of Example 1 A calcium phosphate-based ceramics porous body was produced in accordance with Example 1 except that the composition of 4 was used and the firing temperature was shown in Table 3.

【表3】 尚、No.19試料は、ガラス相の生成が観察され、更
にX線回折による分析でヒドロキシアパタイトが著しく
分解していることが判った。
[Table 3] Incidentally, No. In 19 samples, formation of a glass phase was observed, and further, analysis by X-ray diffraction revealed that hydroxyapatite was significantly decomposed.

【0013】(比較例1)実施例1に示すNo.4組成
のヒドロキシアパタイト粉体、樹脂ビーズを水及び水溶
性有機バインダーと共にボールミル分散し、流動性を有
するスラリーを作製した。スラリーを石膏型に流し込
み、鋳込み成型を行い、60×60×10mmのグリー
ン体を得た。グリーン体を実施例1に準じてリン酸カル
シウム系セラミックス多孔体及び顆粒を作製し評価した
所、気孔径75μm、開気孔率28%、生体適合性は
×、曲げ強度は20kg/cm2 であった。電子顕微鏡
で微細構造を観察した所、その気孔は球状であるが閉気
孔構造が主であった。
(Comparative Example 1) No. 1 shown in Example 1. Hydroxyapatite powder having four compositions and resin beads were ball mill dispersed together with water and a water-soluble organic binder to prepare a fluid slurry. The slurry was poured into a gypsum mold and cast-molded to obtain a green body of 60 × 60 × 10 mm. When the green body was prepared and evaluated according to Example 1 to prepare a calcium phosphate ceramics porous body and granules, the pore size was 75 μm, the open porosity was 28%, the biocompatibility was ×, and the bending strength was 20 kg / cm 2 . When the fine structure was observed with an electron microscope, the pores were spherical, but the closed pore structure was mainly.

【0014】(比較例2)実施例1に示すNo.4組成
の樹脂ビーズに変えて、平均粒径を400μmに分級し
たウレタン樹脂を粉砕した不定型ビーズを用いて実施例
1に準じてリン酸カルシウム系セラミックス多孔体及び
顆粒を作製した所、気孔径85μm、開気孔率59%、
生体適合性は○、曲げ強度は7kg/cm2 であった。
電子顕微鏡で微細構造を観察した所その気孔は連通であ
るが球状を呈していなかった。
(Comparative Example 2) No. 1 shown in Example 1. A calcium phosphate-based ceramics porous body and granules were produced in accordance with Example 1 by using amorphous beads obtained by pulverizing urethane resin whose average particle size was classified to 400 μm instead of resin beads having a composition of 4 and having a pore diameter of 85 μm, Open porosity 59%,
The biocompatibility was good, and the bending strength was 7 kg / cm 2 .
Observation of the fine structure with an electron microscope revealed that the pores were continuous but not spherical.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リン酸カルシウム系セラミックスよりな
り、気孔径が10〜100μm、開気孔率が40〜80
%の球状連通気孔を有するリン酸カルシウム系セラミッ
クス多孔体。
1. A calcium phosphate ceramics having a pore size of 10 to 100 μm and an open porosity of 40 to 80.
% Of calcium phosphate ceramics having spherical open pores.
【請求項2】 球状気孔形成材が20〜60重量%、リ
ン酸カルシウム系セラミックスが60〜40重量%から
なるグリーン体を圧縮成型し、これを800〜1400
℃で焼成することを特徴とするリン酸カルシウム系セラ
ミックス多孔体の製造方法。
2. A green body comprising 20 to 60% by weight of a spherical pore-forming material and 60 to 40% by weight of calcium phosphate ceramics is compression-molded, which is 800 to 1400.
A method for producing a calcium phosphate-based ceramics porous body, which comprises firing at ℃.
JP4038744A 1992-01-28 1992-01-28 Calcium phosphate ceramic porous material and its production Pending JPH05208877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4038744A JPH05208877A (en) 1992-01-28 1992-01-28 Calcium phosphate ceramic porous material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4038744A JPH05208877A (en) 1992-01-28 1992-01-28 Calcium phosphate ceramic porous material and its production

Publications (1)

Publication Number Publication Date
JPH05208877A true JPH05208877A (en) 1993-08-20

Family

ID=12533827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4038744A Pending JPH05208877A (en) 1992-01-28 1992-01-28 Calcium phosphate ceramic porous material and its production

Country Status (1)

Country Link
JP (1) JPH05208877A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002113090A (en) * 2000-10-12 2002-04-16 Toshiba Ceramics Co Ltd Ceramic porous member for organism
JP2013079172A (en) * 2011-10-04 2013-05-02 Hoya Corp Ceramic porous body and method for producing ceramic porous body
CN106904958A (en) * 2017-04-07 2017-06-30 重庆大学 Preparation method of HA porous ceramics with suitable porosity and mechanical strength and products thereof
US10286102B2 (en) 2010-05-11 2019-05-14 Howmedica Osteonics Corp Organophosphorous, multivalent metal compounds, and polymer adhesive interpenetrating network compositions and methods
JP2020196649A (en) * 2019-06-04 2020-12-10 学校法人千葉工業大学 Porous ceramics and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002113090A (en) * 2000-10-12 2002-04-16 Toshiba Ceramics Co Ltd Ceramic porous member for organism
US10286102B2 (en) 2010-05-11 2019-05-14 Howmedica Osteonics Corp Organophosphorous, multivalent metal compounds, and polymer adhesive interpenetrating network compositions and methods
JP2013079172A (en) * 2011-10-04 2013-05-02 Hoya Corp Ceramic porous body and method for producing ceramic porous body
CN106904958A (en) * 2017-04-07 2017-06-30 重庆大学 Preparation method of HA porous ceramics with suitable porosity and mechanical strength and products thereof
CN106904958B (en) * 2017-04-07 2020-07-14 重庆大学 Preparation method of HA porous ceramic with proper porosity and mechanical strength and product thereof
JP2020196649A (en) * 2019-06-04 2020-12-10 学校法人千葉工業大学 Porous ceramics and method for producing the same

Similar Documents

Publication Publication Date Title
US4113500A (en) Sintered apatite body
US7553362B2 (en) High strength biological cement composition and using the same
US4149894A (en) Process for producing an apatite powder having improved sinterability
EP0263489B1 (en) Granular inorganic moldings and a process for production thereof
EP0705802A1 (en) TYPE $g(a) TRICALCIUM PHOSPHATE CERAMIC AND PROCESS FOR PRODUCING THE SAME
RU2005140093A (en) INORGANIC REBORABLE BONE REPLACEMENT MATERIAL
Swain et al. Fabrication of porous hydroxyapatite scaffold via polyethylene glycol-polyvinyl alcohol hydrogel state
JP2008541958A (en) Modeled product
WO2021039892A1 (en) Medical calcium carbonate composition, related medical compositions, and production methods therefor
WO2004112856A1 (en) Medical bone prosthetic material and process for producing the same
KR20150028976A (en) The scaffold composition for regeneration of hard tissue having magnesium phosphate, scaffold for regeneration of hard tissue comprising the same and preparation methods thereof
JPH05208877A (en) Calcium phosphate ceramic porous material and its production
KR101647951B1 (en) Artificial bones containing nano TCP by wet chemical method and preparation method thereof
Swain Processing of porous hydroxyapatite scaffold
JP3231135B2 (en) Biological implant material and method for producing the same
KR101517691B1 (en) Fabrication method of Porous Calcium Phosphate Ceramics
JPH067148A (en) Carrier for culturing cell and method for culturing cell
JP3668530B2 (en) Method for producing tetracalcium phosphate
JP6832646B2 (en) Apatite ceramics and their manufacturing method
JP3933716B2 (en) Method for producing α-tricalcium phosphate ceramic
CN115974543B (en) Bionic acidic amorphous calcium iron phosphate nanoparticle as well as preparation method and application thereof
JP2506826B2 (en) Granular inorganic molded body and method for producing the same
JPS61127658A (en) Manufacture of porous calcium phosphate ceramics
RU2771017C1 (en) Method for producing bioactive ceramics based on zirconium dioxide
JPH06245992A (en) Precursor for production of artificial bone and production of artificial bone