JPH03137003A - Production of high-purity metal fluoride - Google Patents

Production of high-purity metal fluoride

Info

Publication number
JPH03137003A
JPH03137003A JP27523389A JP27523389A JPH03137003A JP H03137003 A JPH03137003 A JP H03137003A JP 27523389 A JP27523389 A JP 27523389A JP 27523389 A JP27523389 A JP 27523389A JP H03137003 A JPH03137003 A JP H03137003A
Authority
JP
Japan
Prior art keywords
metal fluoride
fluoride
metals
purity
fluorinating agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27523389A
Other languages
Japanese (ja)
Other versions
JPH0617207B2 (en
Inventor
Hiromi Kawamoto
博美 川本
Natsuya Nishimura
夏哉 西村
Akira Sakagami
晃 坂上
Yoshinori Kubota
能徳 久保田
Yasushi Kida
喜田 康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP27523389A priority Critical patent/JPH0617207B2/en
Publication of JPH03137003A publication Critical patent/JPH03137003A/en
Publication of JPH0617207B2 publication Critical patent/JPH0617207B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To improve purity by calcining the metal fluoride of alkaline and alkaline earth metals, lanthanide metals and >= 1 kinds selected from Zr, Hf, Y, In, and Al in the presence of a gaseous mixture composed of a fluorinating agent and O2. CONSTITUTION:The soluble salts, such as sulfates of the alkaline and alkaline earth metals, the lanthanide metals and >=1 kinds of the metals selected from Zr, Hf, Y, In, and Al are dissolved in water and are adjusted to 1 to 11 pH. The fluorinating agent, such as HF, is then added to the refined liquid prepd. by adding a chelate agent, such as diethyl dithiocarbamate, to this aq. soln. and filtering away the formed insoluble matter. This liquid is concentrated by heating to form the metal fluoride. After the metal fluoride is sufficiently dried, the metal fluoride is calcined at 300 to 700 deg.C while the gaseous mixture composed of the fluorinating agent of 1 to 50% concn. in the gas and the O2 of 1 to 50% similar concn. is passed therethrough. The high-purity metal fluoride is thus obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、フッ化物光ファイバー等の原料として有用な
高純度金属フッ化物の製造方法に関し、特に遷移金属不
純物、酸素および炭素の極めて少ない金属フッ化物の製
造方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing high-purity metal fluoride useful as a raw material for fluoride optical fibers, etc., and in particular to a method for producing a high-purity metal fluoride that is useful as a raw material for fluoride optical fibers. The present invention relates to a method for producing a chemical compound.

[従来技術] フッ化物光1アイバーの超低損失化を阻害する要因とし
て、光フアイバー中に混入している鉄、銅、ニッケル、
コバルト等の遷移金属および酸素が挙げられる。従来よ
り遷移金属不純物の少ない金属フッ化物を得るためには
一般的には溶媒抽出法やイオン交換法により精製ののち
フッ素化しているものであるが、酸素含有量を少なくす
るために金属フッ化物の脱水、焼成を窒素やアルゴン等
の不活性ガス雰囲気中、フッ化水素ガスを導入しておこ
なっているものである。これらの金属フッ化物は原料由
来あるいは精製過程において試薬、溶媒、イオン交換樹
脂等に起因する有機物が混入するが、このような不活性
雰囲気では炭素の脱離が十分に起こらず、焼成された金
属フッ化物中に炭素を含有することとなる。炭素含有の
金属フッ化物を用いてファイバー化をおこなった場合、
散乱の原因となり好ましくない。
[Prior art] Iron, copper, nickel,
Included are transition metals such as cobalt and oxygen. Conventionally, in order to obtain metal fluorides with less transition metal impurities, they are generally purified by solvent extraction or ion exchange methods and then fluorinated, but in order to reduce the oxygen content, metal fluorides The dehydration and calcination are carried out in an inert gas atmosphere such as nitrogen or argon by introducing hydrogen fluoride gas. These metal fluorides are contaminated with organic substances originating from raw materials or from reagents, solvents, ion exchange resins, etc. during the purification process, but in such an inert atmosphere carbon desorption does not occur sufficiently and the fired metal The fluoride will contain carbon. When fiberization is performed using carbon-containing metal fluoride,
This is not desirable as it causes scattering.

[問題点を解決するための手段] 本発明者らはかかる現状に鑑み鋭意検討の結果、意外に
も酸素の存在する系での処理により極めて高純度の金属
フン化物を得ることができることを見出し本発明に到達
した。すなわち本発明はアルカリ金属、アルカリ土類金
属、ランタニド金属、ジルコニウム、ハフニウム、イツ
トリウム、インジウム、アルミニウムより選ばれる少な
くとも一種類の金属のフッ化物をフッ素化剤と酸素の混
合ガスを流通させさながら300〜700℃で処理する
ことを特徴とする高純度金属フッ化物の製造方法である
。    “ 本発明の原料となる金属フッ化物の製造方法は特に限定
されないが、本発明者らが既に提案した特開昭64−4
5715号の方法が好ましい。すなわち前記金属の可溶
性塩水溶液のpHを1.0〜11に保ち、原料化合物に
対し重量で0.005%以上の量のジエチルジチオカル
バミン酸塩(DDTC) 、もしくはピロリジンジチオ
カルバミン酸アンモニウム(APDC)を添加し、生成
した沈殿を口過、除去する方法である。ここで原料の金
属可溶性塩としては、硫酸塩、水酸化物、炭酸塩、重炭
酸塩、塩化物、硝酸塩、酸塩化物等が用いられる。アル
カリ金属としてはLi、、Na、 Kが、アルカリ土類
金属としてはCa5Ba、 Mg、、Beが、ランタニ
ド金属としてはLa、 Nb。
[Means for Solving the Problems] In view of the current situation, the present inventors have conducted intensive studies and have unexpectedly discovered that metal fluorides of extremely high purity can be obtained by treatment in a system in the presence of oxygen. We have arrived at the present invention. That is, the present invention provides a fluoride of at least one metal selected from alkali metals, alkaline earth metals, lanthanide metals, zirconium, hafnium, yttrium, indium, and aluminum while flowing a mixed gas of a fluorinating agent and oxygen to This is a method for producing high-purity metal fluoride, characterized by processing at 700°C. “The method for producing metal fluoride, which is the raw material of the present invention, is not particularly limited, but
The method of No. 5715 is preferred. That is, the pH of the soluble salt aqueous solution of the metal is maintained at 1.0 to 11, and diethyldithiocarbamate (DDTC) or ammonium pyrrolidine dithiocarbamate (APDC) is added in an amount of 0.005% or more by weight based on the raw material compound. In this method, the precipitate formed is removed by filtration. Here, as the raw metal soluble salt, sulfate, hydroxide, carbonate, bicarbonate, chloride, nitrate, acid chloride, etc. are used. Alkali metals include Li, Na, and K, alkaline earth metals include Ca5Ba, Mg, and Be, and lanthanide metals include La and Nb.

Gd、、Tb、、Ybが、ジエチルジチオカルバミン酸
塩としては、ナトリウム塩、カリウム塩、アンモニウム
塩等がそれぞれ用いられる。
As the diethyldithiocarbamate of Gd, Tb, Yb, sodium salt, potassium salt, ammonium salt, etc. are used, respectively.

キレート剤として、DDTCまたはAPDCを添加する
上記金属の水溶液としては、可溶性の水溶液はもちろん
、酸化物等の不溶性化合物を酸によって溶解し、可溶性
塩にしたのちpHを調節した溶液であっても使用するこ
とができる。
As the aqueous solution of the above metal to which DDTC or APDC is added as a chelating agent, not only a soluble aqueous solution but also a solution in which an insoluble compound such as an oxide is dissolved with an acid to form a soluble salt and then the pH is adjusted can be used. can do.

キレート化剤を加えるpHの範囲は1.0〜11に保っ
ておくことが好ましい。この範囲をはずれると遷移金属
の沈殿は十分に生成せず、精製が不十分となる。このよ
うにして得た高純度の溶液を用いフッ素化するものであ
るが、フッ素化剤としてはフッ化水素酸、フッ化水素ガ
ス、フッ化アンモニウム、酸性フン化アンモニウム、フ
ッ素ガス、ハロゲン化フッ素、三フッ化窒素等が挙げら
れる。
The pH range at which the chelating agent is added is preferably maintained at 1.0 to 11. Outside this range, transition metal precipitation will not be sufficiently generated, resulting in insufficient purification. The high-purity solution obtained in this way is used for fluorination, and the fluorination agents used include hydrofluoric acid, hydrogen fluoride gas, ammonium fluoride, acidic ammonium fluoride, fluorine gas, and halogenated fluorine. , nitrogen trifluoride, and the like.

本発明における金属の可溶性塩は、水に不溶性のフン化
物を生成する場合が多いが、可溶性のフッ素化剤の添加
後に液を濃縮してフッ化物を析出させる。ただし、濃縮
の途中段階でフッ素化剤を添加し、反応と濃縮を同時に
おこなうこともできる。また、−旦濃縮して可溶性塩を
析出させ分離、乾燥したのちガス状のフッ素化剤と反応
させフッ化物を製造することができる。このようにして
得た金属フッ化物は、別の精製法を付加してもよい。
The soluble salts of metals used in the present invention often produce water-insoluble fluorides, but after the addition of a soluble fluorinating agent, the liquid is concentrated to precipitate the fluorides. However, it is also possible to add a fluorinating agent during the concentration process and perform the reaction and concentration at the same time. Alternatively, fluoride can be produced by first concentrating to precipitate soluble salts, separating and drying, and then reacting with a gaseous fluorinating agent. The metal fluoride thus obtained may be subjected to other purification methods.

本発明においては、このようにして製造した金属フッ化
物をさらに処理して、酸素および炭素を極めて少なくす
るものであり、先ず十分に乾燥したのち、フッ素化剤と
酸素の混合ガスを流通させながら300〜700“Cの
範囲で焼成する。
In the present invention, the metal fluoride produced in this way is further processed to extremely reduce the amount of oxygen and carbon, and after being thoroughly dried, the metal fluoride is treated while flowing a mixed gas of a fluorinating agent and oxygen. Fire in the range of 300-700"C.

フッ素化剤としては、フッ化水素、フッ素、三フッ化窒
素、ハロゲン化フッ素ガス等が挙げられ、このうち取扱
いやすさ、材質面等からフン化水素が最も好ましい。こ
のフッ素化剤の濃度はガス中濃度として1〜50%の範
囲が好ましく、この範囲未満では酸素を十分に除去する
ことができない。
Examples of the fluorinating agent include hydrogen fluoride, fluorine, nitrogen trifluoride, and halogenated fluorine gas. Among these, hydrogen fluoride is most preferred from the viewpoint of ease of handling, material quality, etc. The concentration of this fluorinating agent is preferably in the range of 1 to 50% in terms of concentration in the gas, and if it is less than this range, oxygen cannot be removed sufficiently.

またこの範囲を越えると炭素を十分に飛散させることが
できない。酸素の濃度は1〜50%の範囲が好ましく、
この範囲未満では炭素を十分に飛散させることができず
、またこの範囲を越えると酸素含有量が増大する。焼成
温度は300〜700°Cの範囲が好ましく、この範囲
未満では脱酸素が十分におこなわれず、この範囲を越え
ると酸素含有量が大となる。
Moreover, if it exceeds this range, carbon cannot be sufficiently scattered. The concentration of oxygen is preferably in the range of 1 to 50%,
If it is less than this range, carbon cannot be sufficiently scattered, and if it exceeds this range, the oxygen content will increase. The firing temperature is preferably in the range of 300 to 700°C; below this range, oxygen removal will not be sufficient, and above this range, the oxygen content will be high.

以下本発明を実施例により具体的に説明する。The present invention will be specifically explained below using examples.

実施例1 市販試薬塩化アルミ、ニウム穴水塩100gを2!ビー
カーに入れ、超純水を11加えて溶解しpHを調整した
のちピロリジンジチオカルバミン酸アンモニウムを0.
5 g加え、液を分液ロートに移しクロロホルムにて抽
出した。この精IIにフッ化水素酸を加え、加熱濃縮し
てフッ化アルミニウム三水塩の結晶を得た。結晶をロ過
後四フッ化エチレン樹脂製の乾燥炉で乾燥し、乾燥物を
白金皿に入れ白金製の炉心管を用いて高純度エアーとフ
ッ化水素ガスを各0.542 /min流通させなから
600 ’Cで2時間焼成し、高純度のフッ化アルミニ
ウムを得た。この分析結果を第1表に示した。
Example 1 100g of commercially available reagent aluminum chloride, anhydrous salt was added to 2! Pour into a beaker, add 11% of ultrapure water to dissolve and adjust the pH, and then add 0% of ammonium pyrrolidine dithiocarbamate.
5 g was added, and the liquid was transferred to a separating funnel and extracted with chloroform. Hydrofluoric acid was added to this purified II, and the mixture was heated and concentrated to obtain crystals of aluminum fluoride trihydrate. After filtering the crystals, dry them in a drying oven made of tetrafluoroethylene resin, place the dried product in a platinum dish, and use a platinum furnace tube to flow high-purity air and hydrogen fluoride gas at 0.542/min each. The aluminum fluoride was then calcined at 600'C for 2 hours to obtain high purity aluminum fluoride. The results of this analysis are shown in Table 1.

実茄例2 市販試薬酸塩化ジルコニウム500gを51ビーカーに
入れ、超純水を加え、溶解して全量を51とした。この
1g液をメンブレンフィルター(孔径0.2μm)で口
過し、不溶性の不純物を除去した。
Fruit Example 2 500 g of commercially available reagent zirconium acid chloride was placed in a 51 beaker, and ultrapure water was added to dissolve it to bring the total amount to 51. This 1 g liquid was passed through a membrane filter (pore size: 0.2 μm) to remove insoluble impurities.

次いで、内径26mm、長さ500 mmOカラムに陽
イオン交換樹脂を高さ300 mmまで充填し、口過液
を11m1 / cm/ minで通液した。イオン交
換精製された液にアンモニア水を加え水酸化物とし、口
過したのちフン化水素酸を加えて加熱濃縮後、フッ化ジ
ルコニウムの三水塩結晶を得た。この結晶を白金皿に入
れ白金性の炉心管を用い高純度エアー11/min、フ
ッ酸ガス0.5β/minで流通させながら500℃で
2時間焼成し、高純度のフッ化ジルコニウムを得た。こ
の分析結果を第1表に示した。
Next, an O column with an inner diameter of 26 mm and a length of 500 mm was filled with a cation exchange resin to a height of 300 mm, and the mouth filtrate was passed through the column at a rate of 11 ml/cm/min. Aqueous ammonia was added to the ion-exchange purified liquid to form a hydroxide, which was passed through the mouth, hydrofluoric acid was added, and the mixture was concentrated by heating to obtain trihydrate crystals of zirconium fluoride. This crystal was placed in a platinum dish and fired at 500°C for 2 hours using a platinum furnace tube while flowing high-purity air at 11/min and hydrofluoric acid gas at 0.5β/min to obtain high-purity zirconium fluoride. . The results of this analysis are shown in Table 1.

比較例1〜4 フッ酸ガスを焼成時に流通させない以外は実施例1と同
様にしたく比較例1)。高純度エアーを焼成時に流通さ
せない以外は実施例1と同様にした(比較例2)。フッ
酸ガスを焼成時に流通させない以外は実施例2と同様に
した(比較例3)。
Comparative Examples 1 to 4 Comparative Example 1) was conducted in the same manner as Example 1 except that hydrofluoric acid gas was not passed during firing. The same procedure as in Example 1 was carried out except that high-purity air was not circulated during firing (Comparative Example 2). The same procedure as Example 2 was carried out except that hydrofluoric acid gas was not passed during firing (Comparative Example 3).

高純度エアーを焼成時に流通させない以外は実施例2と
同様にした(比較例4)。これらの分析結果を第1表に
示した。
The same procedure as Example 2 was carried out except that high-purity air was not circulated during firing (Comparative Example 4). The results of these analyzes are shown in Table 1.

[発明の効果] 本発明の方法によれば、光ファイバー等の原料となる高
純度金属フッ化物を効率よく得ることができ、特に酸素
、炭素の極めて少ない金属フッ化物を得ることができる
ものである。
[Effects of the Invention] According to the method of the present invention, it is possible to efficiently obtain a high-purity metal fluoride that is a raw material for optical fibers, etc., and in particular, it is possible to obtain a metal fluoride that is extremely low in oxygen and carbon. .

Claims (1)

【特許請求の範囲】[Claims] アルカリ金属、アルカリ土類金属、ランタニド金属、ジ
ルコニウム、ハフニウム、イットリウム、インジウム、
アルミニウムより選ばれる少なくとも一種類の金属のフ
ッ化物をフッ素化剤と酸素の混合ガスを流通させさなが
ら300〜700℃で処理することを特徴とする高純度
金属フッ化物の製造方法。
Alkali metals, alkaline earth metals, lanthanide metals, zirconium, hafnium, yttrium, indium,
A method for producing a high-purity metal fluoride, which comprises treating a fluoride of at least one metal selected from aluminum at 300 to 700°C while flowing a mixed gas of a fluorinating agent and oxygen.
JP27523389A 1989-10-23 1989-10-23 Method for producing high-purity metal fluoride Expired - Lifetime JPH0617207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27523389A JPH0617207B2 (en) 1989-10-23 1989-10-23 Method for producing high-purity metal fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27523389A JPH0617207B2 (en) 1989-10-23 1989-10-23 Method for producing high-purity metal fluoride

Publications (2)

Publication Number Publication Date
JPH03137003A true JPH03137003A (en) 1991-06-11
JPH0617207B2 JPH0617207B2 (en) 1994-03-09

Family

ID=17552555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27523389A Expired - Lifetime JPH0617207B2 (en) 1989-10-23 1989-10-23 Method for producing high-purity metal fluoride

Country Status (1)

Country Link
JP (1) JPH0617207B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005316A1 (en) * 2003-07-11 2005-01-20 Honeywell Specialty Chemicals Seelze Gmbh Process for the manufacture of high purity metal fluorides
JP2007070199A (en) * 2005-09-09 2007-03-22 Japan Atomic Energy Agency Method of converting metal nitride to halide
EP1380675A4 (en) * 2001-02-08 2008-04-09 Stella Chemifa Kk Method for reducing oxygen component and carbon component in fluoride
WO2024171641A1 (en) * 2023-02-14 2024-08-22 ステラケミファ株式会社 Inorganic filler for low dielectric loss resin composition, slurry composition for low dielectric loss resin composition, low dielectric loss resin composition, molded body for high frequency apparatus, and high frequency device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1380675A4 (en) * 2001-02-08 2008-04-09 Stella Chemifa Kk Method for reducing oxygen component and carbon component in fluoride
WO2005005316A1 (en) * 2003-07-11 2005-01-20 Honeywell Specialty Chemicals Seelze Gmbh Process for the manufacture of high purity metal fluorides
JP2007070199A (en) * 2005-09-09 2007-03-22 Japan Atomic Energy Agency Method of converting metal nitride to halide
JP4724859B2 (en) * 2005-09-09 2011-07-13 独立行政法人 日本原子力研究開発機構 Method for converting metal nitride to halide
WO2024171641A1 (en) * 2023-02-14 2024-08-22 ステラケミファ株式会社 Inorganic filler for low dielectric loss resin composition, slurry composition for low dielectric loss resin composition, low dielectric loss resin composition, molded body for high frequency apparatus, and high frequency device

Also Published As

Publication number Publication date
JPH0617207B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
RU2233898C2 (en) Method of preparation of magnesium chloride solution
JP2018108923A (en) Hydrogen-containing rare earth fluoride, production method thereof and use thereof
CN110330164A (en) A kind of method of alkalinity high fluorine Sewage treatment fluorine resource and sodium resource with high salt
RU2365647C1 (en) Method of processing of raw materials containing titanium
JP3591756B2 (en) Production method of metal fluoride
JPH03137003A (en) Production of high-purity metal fluoride
JPS63239128A (en) Production of uranium oxide
JPS6191335A (en) Method for recovering platinum group metal
RU2424188C1 (en) Method of producing high-purity calcium fluoride
JPH11514962A (en) Composition containing sodium bicarbonate, its preparation and its use
GB2204861A (en) Preparation of inorganic metal compounds of ultrahigh purity
JPS5976838A (en) Selective separation of rare earth metal
RU2534323C1 (en) Metallic cobalt obtaining method
JPH0442802A (en) Production of high-purity metal fluoride
JP4051507B2 (en) Manufacturing method of high purity hydrogen peroxide solution
JP3591746B2 (en) Method for producing zinc fluoride
JP3134896B2 (en) Production method of high purity rare earth fluoride
JPH11157836A (en) Production of high purity gallium compound
JPS6374912A (en) Production of alkali metal fluoride
JPH01115820A (en) Production of niobium hydroxide of tantalum hydroxide
Robinson High purity components for fluorozirconate glass optical fibers
JPH11157835A (en) Production of high purity indium compound
JPH0617205B2 (en) Method for producing high-purity metal compound
SU1723040A1 (en) Method of potassium heptafluorotantalate synthesis
RU2106029C1 (en) Method for recovery of uranium-containing compounds