JP3134896B2 - Production method of high purity rare earth fluoride - Google Patents

Production method of high purity rare earth fluoride

Info

Publication number
JP3134896B2
JP3134896B2 JP04053905A JP5390592A JP3134896B2 JP 3134896 B2 JP3134896 B2 JP 3134896B2 JP 04053905 A JP04053905 A JP 04053905A JP 5390592 A JP5390592 A JP 5390592A JP 3134896 B2 JP3134896 B2 JP 3134896B2
Authority
JP
Japan
Prior art keywords
fluoride
rare earth
exchange resin
cation exchange
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04053905A
Other languages
Japanese (ja)
Other versions
JPH05254831A (en
Inventor
健二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP04053905A priority Critical patent/JP3134896B2/en
Publication of JPH05254831A publication Critical patent/JPH05254831A/en
Application granted granted Critical
Publication of JP3134896B2 publication Critical patent/JP3134896B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/253Halides
    • C01F17/265Fluorides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は超低損失のフッ化物ガラ
ス光ファイバを製造する際、構成原料として用いられる
高純度希土類フッ化物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-purity rare earth fluoride used as a raw material for producing an ultra-low loss fluoride glass optical fiber.

【0002】[0002]

【従来の技術】フッ化物ガラス光ファイバは石英光ファ
イバを凌ぐ10-2dB/km以下の伝送損失が期待されて
おり、長距離無中継が可能な伝送媒体として有望視され
ている。しかし、これまで報告されているフッ化物ガラ
ス光ファイバの損失値は1dB/km前後である。フッ化
物光ファイバの超低損失化を阻害する要因としてNd,
Prなどの希土類不純物、Fe,Co,Ni,Cuなど
の遷移金属不純物による吸収損失と酸化物不純物による
散乱損失がある。これらの不純物は出発フッ化物原料に
含まれていることが多いと考えられるため、Nd,Pr
などの希土類不純物、Fe,Co,Ni,Cuなどの遷
移金属不純物、酸化物不純物を含まない高純度フッ化物
原料の製造が望まれている。
2. Description of the Related Art Fluoride glass optical fibers are expected to have a transmission loss of 10 -2 dB / km or less more than quartz optical fibers, and are regarded as promising as transmission media capable of long-distance non-repeating. However, the fluoride glass optical fiber reported to date has a loss value of around 1 dB / km. Nd and Nd are factors that hinder ultra-low loss of fluoride optical fibers.
There are absorption loss due to rare earth impurities such as Pr, transition metal impurities such as Fe, Co, Ni and Cu, and scattering loss due to oxide impurities. Since it is considered that these impurities are often contained in the starting fluoride material, Nd, Pr
It is desired to produce a high-purity fluoride raw material containing no rare earth impurities such as, for example, transition metal impurities such as Fe, Co, Ni, and Cu, and oxide impurities.

【0003】光ファイバ用フッ化物ガラスの組成はZr
4 ,BaF2 ,LaF3 ,YF3,AlF3 ,LiF
あるいはNaFからなる。このうち、LaF3 ,YF3
などの希土類フッ化物の従来の精製法と、その欠点を述
べる。
The composition of fluoride glass for optical fibers is Zr
F 4 , BaF 2 , LaF 3 , YF 3 , AlF 3 , LiF
Or it consists of NaF. Of these, LaF 3 , YF 3
Conventional purification methods for rare earth fluorides and the like and their disadvantages are described.

【0004】(1)希土類フッ化物の精製〔D.R.Gabbe,
“Purification of Ba and Rare Earth Fluorides for
Optical Fibers”Materials Science Forum,vol 5 (198
5) pp85〜90〕 ゾーン精製法により、YF3 中のPr,Ndの除去を検
討したが、出発YF3中のPr1ppm ,Nd2ppm に対
し精製YF3 中のPr1ppm 以下、Nd1ppm以下が得
られ、1ppm レベル程度の高純度化しか行えない欠点が
あった。また、LaF3 中のNd,Prのゾーン精製法
による除去についてはLaF3 の融点が1493℃と高
く、精製装置に制限を受ける欠点があった。
(1) Purification of rare earth fluorides [DRGabbe,
“Purification of Ba and Rare Earth Fluorides for
Optical Fibers ”Materials Science Forum, vol 5 (198
By 5) pp85~90] zone refining method, Pr in YF 3, has been studied in the removal of Nd, Pr1ppm in the starting YF 3, following Pr1ppm in the purified YF 3 to Nd2ppm, following is obtained Nd1ppm, 1ppm There is a drawback that only high-level purification can be performed. Also, Nd in LaF 3, the melting point of the LaF 3 for removal by zone refining method Pr high as 1493 ° C., there is a disadvantage that restricted to the purification device.

【0005】(2)LaF3 の精製〔K.J.Ewing,J.Jaga
nathan,R.M.Rourke,I.D.Aggarwal,P.Paulson,E.Beary,
“Purification and Analysis of Fluoride Raw Materi
als atSub ppb levels ”Materials Science Forum,vol
32 (1988) pp19 〜24〕は、出発物質のLa2 3 をH
NO3 に溶解後、アンモニア水を加え不純物のFe,C
o,Ni,CuをLa(OH)3 に共沈させ、残った水
溶液に(NH4 2 CO3 水溶液を添加し、La2 (C
3 3 を生成後、フッ化水素酸との反応でLaF3
する精製法である。このような精製過程で得られるLa
2 (CO3 3 は、Fe,Co,Niについては精製さ
れているが,Cuについては出発物質のLa2 3 での
10ppbに対し、20ppbとCuが汚染される欠点
があった。さらに、この精製法ではNd,Prの除去が
できないという欠点があった。
(2) Purification of LaF 3 [KJ Ewing, J. Jaga
nathan, RMRourke, IDAggarwal, P.Paulson, E.Beary,
“Purification and Analysis of Fluoride Raw Materi
als atSub ppb levels ”Materials Science Forum, vol
32 (1988) pp. 19-24] describes the conversion of La 2 O 3
After dissolving in NO 3 , ammonia water is added and impurities such as Fe and C
o, Ni, and Cu are coprecipitated with La (OH) 3, and an aqueous solution of (NH 4 ) 2 CO 3 is added to the remaining aqueous solution to obtain La 2 (C
This is a purification method in which after producing O 3 ) 3 , it is converted into LaF 3 by reaction with hydrofluoric acid. La obtained in such a purification process
2 (CO 3 ) 3 has been refined for Fe, Co and Ni, but has a drawback that Cu is contaminated with 20 ppb as opposed to 10 ppb in the starting material La 2 O 3 . Further, this purification method has a disadvantage that Nd and Pr cannot be removed.

【0006】また、希土類不純物相互の分離については
以下ような方法がある。 α−ヒドロキシイソ酪酸による核分裂生成物の希土類の
イオン交換分離〔M.M.Zeligman,Anal.Chem.,37 (1965)
pp524 〜525 〕 Y,Tb,Gd,Eu,Sm,Pm,Nd,Pr,C
e,Laの軽希土類の相互分離は、陽イオン交換樹脂の
Dowex50W−X8の100〜200メッシュを交
換カラム(内径7mm,長さ30インチ)に入れ、溶離剤
としてα−ヒドロキシイソ酪酸を用いて行なう方法であ
る。しかしながら、このような方法は、交換カラムの容
量が小さく分離できる希土類は数mg程度であり、10g
程度の希土類の分離ができないという欠点があった。
There are the following methods for separating rare earth impurities from each other. Ion exchange separation of rare earths of fission products with α-hydroxyisobutyric acid [MM Zeligman, Anal.Chem., 37 (1965)
pp524-525] Y, Tb, Gd, Eu, Sm, Pm, Nd, Pr, C
e and La are separated from each other by using a cation exchange resin Dowex 50W-X8 100-200 mesh in an exchange column (inner diameter 7 mm, length 30 inches) and α-hydroxyisobutyric acid as eluent. The way to do it. However, in such a method, the capacity of the exchange column is small, and the rare earth which can be separated is about several mg, and 10 g
There is a disadvantage that rare earths cannot be separated to a certain extent.

【0007】[0007]

【発明が解決しようとする課題】よって、本発明におけ
る課題は、高純度のLaF3 あるいはYF3 の製造にお
いて、陽イオン交換樹脂カラムによりLaあるいはYの
水溶液に含まれているFe,Co,Ni,Cuなどの遷
移金属不純物およびNd,Prなどの希土類不純物を低
減し、純度が優れたLaF3 あるいはYF3 が容易に得
られる方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a high-purity LaF 3 or YF 3 for producing Fe, Co, Ni contained in an aqueous solution of La or Y by a cation exchange resin column. It is an object of the present invention to provide a method by which transition metal impurities such as Cu, Cu and rare earth impurities such as Nd and Pr can be reduced and LaF 3 or YF 3 having excellent purity can be easily obtained.

【0008】[0008]

【課題を解決するための手段】かかる課題は、Laある
いはYの水溶液を陽イオン交換樹脂カラムを用いて湿式
精製を行った後、LaあるいはYの溶出液にフッ素化剤
を加え、LaあるいはYのフッ化物沈殿を生成し、この
フッ化物沈殿を脱水、乾燥、焼成後、LaF3あるいは
YF3 とする方法で解決される。
The object of the present invention is to solve the problem by performing a wet purification of an aqueous solution of La or Y using a cation exchange resin column, and then adding a fluorinating agent to the eluate of La or Y to obtain La or Y. This is solved by a method in which a fluoride precipitate is formed, and the fluoride precipitate is dehydrated, dried, calcined, and then converted to LaF 3 or YF 3 .

【0009】以下、本発明を詳細に説明する。本発明の
高純度希土類フッ化物の製造方法は、LaあるいはYの
水溶液を陽イオン交換樹脂カラムを用いて湿式精製を行
った後、LaあるいはYの溶出液にフッ素化剤を加え、
LaあるいはYのフッ化物沈殿を生成し、このフッ化物
沈殿を脱水、乾燥、焼成後、LaF3 あるいはYF3
する方法である。
Hereinafter, the present invention will be described in detail. The method for producing a high-purity rare earth fluoride according to the present invention comprises the steps of wet-purifying an aqueous solution of La or Y using a cation exchange resin column, and then adding a fluorinating agent to the eluate of La or Y;
This is a method in which a fluoride precipitate of La or Y is generated, and the fluoride precipitate is dehydrated, dried, and calcined to obtain LaF 3 or YF 3 .

【0010】陽イオン交換樹脂カラムとしては、スチレ
ンジビニルベンゼン共重合体にスルホン酸基を導入して
なる強酸性陽イオン交換樹脂を充填したカラムを用いる
ことが好ましい。
As the cation exchange resin column, it is preferable to use a column filled with a strongly acidic cation exchange resin obtained by introducing a sulfonic acid group into a styrene divinylbenzene copolymer.

【0011】湿式精製は、LaあるいはYの水溶液を陽
イオン交換樹脂カラムに通し、陽イオン交換樹脂がLa
あるいはYを吸着した後、pHが3.5〜4.5である
0.2〜1.0Mのα−ヒドロキシイソ酪酸溶液を溶離
剤として用いるのが好ましい。
In the wet purification, an aqueous solution of La or Y is passed through a cation exchange resin column,
Alternatively, it is preferable to use a 0.2-1.0 M α-hydroxyisobutyric acid solution having a pH of 3.5 to 4.5 after adsorbing Y as an eluent.

【0012】フッ素化剤としては、フッ化水素酸、酸性
フッ化アンモニウム、フッ化水素ガスのいづれか1つを
用いることが好ましい。
As the fluorinating agent, it is preferable to use any one of hydrofluoric acid, ammonium acid fluoride and hydrogen fluoride gas.

【0013】LaあるいはYのフッ化物沈澱の焼成は、
酸性フッ化アンモニウムを添加し、600〜800℃に
おいて行なうのが好ましい。
The calcination of the La or Y fluoride precipitate is
It is preferable to add ammonium ammonium fluoride and carry out at 600 to 800 ° C.

【0014】本発明の高純度希土類フッ化物の製造方法
は、陽イオン交換樹脂カラムによる希土類元素の相互分
離の長所を活かし、かつ、LaあるいはYの水溶液を陽
イオン交換樹脂カラムに通し、陽イオン交換樹脂がLa
あるいはYを吸着した後、これに溶離剤を加えCr(II
I), Fe(III), Co(II),Ni(II),Cu(II)の遷移
金属不純物を溶離させ、Laの水溶液の場合は、La以
外のNd,Prを含むランタノイドを溶離させた後、L
aを溶出させ、一方、Yの水溶液の場合はYを溶出し、
ランタノイドは陽イオン交換樹脂カラムに残留させるこ
とを最も主要な特徴とする。
The method for producing a high-purity rare earth fluoride according to the present invention takes advantage of the mutual separation of rare earth elements by a cation exchange resin column and passes an aqueous solution of La or Y through a cation exchange resin column to form a cation exchange resin. Replacement resin is La
Alternatively, after adsorbing Y, an eluent is added thereto and Cr (II
Transition metal impurities of I), Fe (III), Co (II), Ni (II) and Cu (II) were eluted, and in the case of La aqueous solution, lanthanoids other than La and containing Nd and Pr were eluted. Later, L
e, while in the case of an aqueous solution of Y, elute Y
The main feature of the lanthanoid is that it remains on the cation exchange resin column.

【0015】このような高純度希土類フッ化物の製造方
法は、従来の技術ではCu以外の遷移金属不純物だけの
除去、1ppm レベルの希土類不純物の低減化だけが実施
されているのに対して、1種の精製法で遷移金属不純物
と希土類不純物の両者が容易に除去できるものである。
従って、本発明の高純度希土類フッ化物の製造方法によ
って得られる希土類フッ化物は、遷移金属不純物、La
あるいはY以外の希土類不純物の両者が大幅に低減し、
純度が向上する。
In such a method for producing a high-purity rare earth fluoride, in the prior art, only the removal of transition metal impurities other than Cu was performed, and only the reduction of rare earth impurities at the level of 1 ppm was performed. Both kinds of transition metal impurities and rare earth impurities can be easily removed by various kinds of purification methods.
Therefore, the rare earth fluoride obtained by the method for producing a high-purity rare earth fluoride of the present invention contains a transition metal impurity, La
Alternatively, both rare earth impurities other than Y are significantly reduced,
Purity is improved.

【0016】[0016]

【実施例】以下、実施例をあげて本発明を具体的に説明
する。 (実施例1)La2 3 を出発とするLaF3 の製造方
法を図面を用いて説明する。図1は本発明の高純度希土
類フッ化物の製造方法の実施に好適に用いられる陽イオ
ン交換樹脂カラムによるLaあるいはYの精製を説明す
るための図である。図1中符号1は陽イオン交換樹脂、
2は陽イオン交換樹脂1が充填されたカラム、3はフィ
ルタ、4はチューブ、5はペリスタポンプ、6は溶離
液、7は溶出液である。
The present invention will be described below in detail with reference to examples. (Example 1) the La 2 O 3 will be described with reference to the accompanying drawings the manufacturing method of LaF 3 to start. FIG. 1 is a diagram for explaining the purification of La or Y by a cation exchange resin column suitably used for carrying out the method for producing a high-purity rare earth fluoride of the present invention. 1 is a cation exchange resin,
2 is a column filled with the cation exchange resin 1, 3 is a filter, 4 is a tube, 5 is a peristaltic pump, 6 is an eluent, and 7 is an eluent.

【0017】まず、La2 3 25gを秤量後、硝酸4
0mlに溶解し、酢酸アンモニウムを添加し、pHを4.
5とした後、分析グレードの陽イオン交換樹脂1(50
W−X8)600gを充填したカラム2(内径70m/
m,長さ600m/m)にLaの水溶液を流し、上記陽
イオン交換樹脂1にLaを吸着させた。ついで、カラム
2に0.4Mのα−ヒドロキシイソ酪酸溶離液6を30
00ml流入し、遷移金属不純物およびLa以外の希土
類不純物を溶離して除去した。さらに、上記カラム2に
1.0Mのα−ヒドロキシイソ酪酸溶離液6を1000
ml流入させLaを溶出させた。ついで、Laの溶出液
7をフッ素化剤のフッ化水素酸に入れLaのフッ化物沈
殿を生成した。そして、Laのフッ化物沈殿を脱水、乾
燥させた後、酸性フッ化アンモニウムを添加し、600
℃で焼成しLaF3 を得た。このLaF3 の同定はX線
回折で行った。表1にこの実施例1で製造したLaF3
の中性子放射化分析による遷移金属不純物、Nd,Pr
の分析値を示す。
First, after weighing 25 g of La 2 O 3 ,
Dissolve in 0 ml, add ammonium acetate and adjust pH to 4.
5, and then the analytical grade cation exchange resin 1 (50
W-X8) column 2 packed with 600 g (inner diameter 70 m /
(m, 600 m / m in length), an aqueous solution of La was allowed to flow, and La was adsorbed on the cation exchange resin 1. Then, 30 ml of 0.4 M α-hydroxyisobutyric acid eluent 6 was added to column 2 for 30 minutes.
00 ml was introduced, and transition metal impurities and rare earth impurities other than La were eluted and removed. In addition, 1.0 M of α-hydroxyisobutyric acid eluent 6
ml was introduced to elute La. Next, the La eluate 7 was placed in hydrofluoric acid as a fluorinating agent to produce a La fluoride precipitate. Then, after dehydrating and drying the fluoride precipitate of La, ammonium acid fluoride is added, and
Calcination was carried out at ℃ to obtain LaF 3 . This LaF 3 was identified by X-ray diffraction. Table 1 shows that LaF 3 produced in Example 1 was used.
Metal impurities, Nd, Pr by neutron activation analysis
Shows the analytical value of.

【0018】[0018]

【表1】 [Table 1]

【0019】上記表1においてCo,Cuは各々0.1
ppb、Cr,Fe,Nd,Prは各々1ppb未満、
Niは10ppb未満であり、いずれも検出下限に近い
値まで高純度化できていることが確認できる。
In Table 1 above, Co and Cu are each 0.1%.
ppb, Cr, Fe, Nd and Pr are each less than 1 ppb,
Ni is less than 10 ppb, and it can be confirmed that all of them have been highly purified to a value close to the lower detection limit.

【0020】ついで、この実施例1で製造したLaF3
をフッ化物ガラス光ファイバ原料成分として使用した。
その結果、吸収損失の小さい良好なフッ化ガラス光ファ
イバが得られた。また、フッ素化剤として酸性フッ化ア
ンモニウムあるいはフッ化水素ガスを用いてLaのフッ
化物沈殿を生成しても上記と同様に高純度のLaF3
得られた。
Next, the LaF 3 produced in Example 1 was used.
Was used as a raw material component of a fluoride glass optical fiber.
As a result, a good fluorinated glass optical fiber having a small absorption loss was obtained. Further, even when La fluoride precipitates were formed using acidic ammonium fluoride or hydrogen fluoride gas as a fluorinating agent, high-purity LaF 3 was obtained in the same manner as described above.

【0021】(実施例2)Y2 3 を出発とするYF3
の製造方法を図1を用いて以下に説明する。Y2 3
0gを秤量後、硝酸40mlに溶解し、酢酸アンモニウ
ムを添加しpHを3.5とした。溶解したYの水溶液を分
析グレードの陽イオン交換樹脂1(50W−X8)60
0gを充填したカラム2に流し、Yを吸着させた。つい
で、カラム2に0.2Mのα−ヒドロキシイソ酪酸溶離
液6の200mlをペリスタポンプ5を使用し流入さ
せ、遷移金属不純物を溶離し廃棄した。さらに上記カラ
ム2に、0.4Mのα−ヒドロキシイソ酪酸溶離液6を
1800ml流入し、Yを溶出させた。ついで、Yの溶
出液7をフッ素化剤のフッ化水素酸に入れ、Yのフッ化
物沈殿を生成した。そして、Yのフッ化物沈殿を脱水、
乾燥し、酸性フッ化アンモニウムを添加し、800℃で
焼成し、YF3 を得た。このYF3 について遷移金属お
よび希土類不純物分析を行った結果、上記表1に示した
分析値とほぼ同様、Cr,Fe,Nd,Prは各々1p
pb以下、Co,Cuは0.1ppb以下となり、いず
れも検出下限値まで高純度化できていることを確認し
た。
[0021] (Example 2) Y 2 O 3 and a starting YF 3
The manufacturing method will be described below with reference to FIG. Y 2 O 3 2
After weighing 0 g, it was dissolved in 40 ml of nitric acid, and the pH was adjusted to 3.5 by adding ammonium acetate. The dissolved aqueous solution of Y was converted to a cation exchange resin 1 (50W-X8) 60 of analytical grade.
The solution was passed through a column 2 packed with 0 g to adsorb Y. Then, 200 ml of 0.2M α-hydroxyisobutyric acid eluent 6 was introduced into the column 2 using the peristaltic pump 5, and transition metal impurities were eluted and discarded. Further, 1800 ml of 0.4 M α-hydroxyisobutyric acid eluent 6 was introduced into the column 2 to elute Y. Next, the eluate 7 of Y was put into hydrofluoric acid as a fluorinating agent to generate a precipitate of Y fluoride. And dehydrate the fluoride precipitate of Y,
Dried, adding an acidic ammonium fluoride, and calcined at 800 ° C., to obtain a YF 3. As a result of conducting a transition metal and rare earth impurity analysis on this YF 3 , Cr, Fe, Nd, and Pr were 1 p each, almost in the same manner as the analysis values shown in Table 1 above.
pb or less and Co and Cu were 0.1 ppb or less, and it was confirmed that all of them could be highly purified to the detection lower limit.

【0022】ついで、この実施例2で製造したYF3
フッ化物ガラス光ファイバ原料成分として使用した。そ
の結果、吸収損失の小さい良好なフッ化ガラス光ファイ
バが得られた。また、フッ素化剤としてフッ化水素ガス
を用いてフッ化物沈殿を生成しても上記と同様に高純度
のYF3 が得られた。
Then, YF 3 produced in Example 2 was used as a raw material component of a fluoride glass optical fiber. As a result, a good fluorinated glass optical fiber having a small absorption loss was obtained. Even when a fluoride precipitate was formed using hydrogen fluoride gas as a fluorinating agent, high-purity YF 3 was obtained in the same manner as described above.

【0023】[0023]

【発明の効果】以上説明したように、本発明の高純度希
土類フッ化物の製造方法は、LaあるいはYの水溶液を
陽イオン交換樹脂カラムを用いて湿式精製を行った後、
LaあるいはYの溶出液にフッ素化剤を加え、Laある
いはYのフッ化物沈殿を生成し、このフッ化物沈殿を脱
水、乾燥、焼成してLaF3 あるいはYF3 とするの
で、陽イオン交換樹脂カラムと溶離剤とによって、遷移
金属不純物およびLaあるいはY以外の希土類不純物の
除去が行えるため、遷移金属不純物、希土類不純物の両
者が極めて少ない高純度希土類フッ化物が容易に得られ
る。従って、本発明の高純度希土類フッ化物の製造方法
によって得られる高純度希土類フッ化物をフッ化物ガラ
ス光ファイバ原料として用いることによって、超低損失
のフッ化物ガラス光ファイバを製造できるという利点が
ある。
As described above, the method for producing a high-purity rare earth fluoride according to the present invention comprises the steps of: wet-purifying an aqueous solution of La or Y using a cation exchange resin column;
A fluorinating agent is added to the La or Y eluate to produce a La or Y fluoride precipitate, and the fluoride precipitate is dehydrated, dried, and calcined into LaF 3 or YF 3 , so that a cation exchange resin column is used. The transition metal impurities and the rare earth impurities other than La or Y can be removed by using the eluent and the eluent, so that a high-purity rare earth fluoride containing both very little transition metal impurities and rare earth impurities can be easily obtained. Therefore, there is an advantage that an ultra-low loss fluoride glass optical fiber can be manufactured by using the high purity rare earth fluoride obtained by the method for manufacturing a high purity rare earth fluoride of the present invention as a raw material of a fluoride glass optical fiber.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の高純度希土類フッ化物の製造方法の実
施に好適に用いられる陽イオン交換樹脂カラムによるL
aあるいはYの精製を説明するための図である。
FIG. 1 shows a cation exchange resin column preferably used for carrying out the method for producing a high-purity rare earth fluoride of the present invention.
It is a figure for demonstrating refinement | purification of a or Y.

【符号の説明】[Explanation of symbols]

1 陽イオン交換樹脂 2 カラム 6 溶離液 7 溶出液 1 Cation exchange resin 2 Column 6 Eluent 7 Eluate

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01F 17/00 C22B 59/00 CA(STN)──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C01F 17/00 C22B 59/00 CA (STN)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 LaあるいはYの水溶液を陽イオン交換
樹脂カラムを用いて湿式精製を行った後、Laあるいは
Yの溶出液にフッ素化剤を加え、LaあるいはYのフッ
化物沈殿を生成し、このフッ化物沈殿を脱水、乾燥、焼
成してLaF3 あるいはYF3 とすることを特徴とする
高純度希土類フッ化物の製造方法。
An aqueous solution of La or Y is subjected to wet purification using a cation exchange resin column, and then a fluorinating agent is added to the eluate of La or Y to produce a La or Y fluoride precipitate. A method for producing a high-purity rare earth fluoride, wherein the fluoride precipitate is dehydrated, dried and fired to obtain LaF 3 or YF 3 .
【請求項2】 陽イオン交換樹脂カラムが、スチレンジ
ビニルベンゼン共重合体にスルホン酸基を導入してなる
強酸性陽イオン交換樹脂を充填したカラムであることを
特徴とする請求項1記載の高純度希土類フッ化物の製造
方法。
2. The column according to claim 1, wherein the cation exchange resin column is a column packed with a strongly acidic cation exchange resin obtained by introducing a sulfonic acid group into a styrene divinylbenzene copolymer. A method for producing a rare earth fluoride having a high purity.
【請求項3】 湿式精製が、LaあるいはYの水溶液を
陽イオン交換樹脂カラムに通し、陽イオン交換樹脂がL
aあるいはYを吸着した後、pHが3.5〜4.5である
0.2〜1.0Mのα−ヒドロキシイソ酪酸溶液を溶離
剤として用いるものであることを特徴とする請求項1記
載の高純度希土類フッ化物の製造方法。
3. In the wet purification, an aqueous solution of La or Y is passed through a cation exchange resin column, and
2. The method according to claim 1, wherein after adsorbing a or Y, a 0.2-1.0 M α-hydroxyisobutyric acid solution having a pH of 3.5 to 4.5 is used as an eluent. Production method of high purity rare earth fluoride.
【請求項4】 フッ素化剤がフッ化水素酸、酸性フッ化
アンモニウム、フッ化水素ガスのいづれか1つであるこ
とを特徴とする請求項1記載の高純度希土類フッ化物の
製造方法。
4. The method for producing a high-purity rare earth fluoride according to claim 1, wherein the fluorinating agent is any one of hydrofluoric acid, ammonium acid fluoride, and hydrogen fluoride gas.
【請求項5】 LaあるいはYのフッ化物沈澱の焼成
が、酸性フッ化アンモニウムを添加し、600〜800
℃において行なうことを特徴とする請求項1記載の高純
度希土類フッ化物の製造方法。
5. The calcination of the La or Y fluoride precipitate is carried out by adding ammonium acid fluoride,
2. The method for producing a high-purity rare-earth fluoride according to claim 1, wherein the method is carried out at a temperature of ℃.
JP04053905A 1992-03-12 1992-03-12 Production method of high purity rare earth fluoride Expired - Lifetime JP3134896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04053905A JP3134896B2 (en) 1992-03-12 1992-03-12 Production method of high purity rare earth fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04053905A JP3134896B2 (en) 1992-03-12 1992-03-12 Production method of high purity rare earth fluoride

Publications (2)

Publication Number Publication Date
JPH05254831A JPH05254831A (en) 1993-10-05
JP3134896B2 true JP3134896B2 (en) 2001-02-13

Family

ID=12955732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04053905A Expired - Lifetime JP3134896B2 (en) 1992-03-12 1992-03-12 Production method of high purity rare earth fluoride

Country Status (1)

Country Link
JP (1) JP3134896B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108264078B (en) * 2016-12-30 2020-03-27 有研稀土新材料股份有限公司 Hydrogen-containing rare earth fluoride, preparation method and application thereof
CN109694100B (en) * 2019-02-01 2021-04-02 渤海大学 Preparation of LaF by self-sacrifice template method3Method (2)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Anal.Chem.37(1965)p.524−525

Also Published As

Publication number Publication date
JPH05254831A (en) 1993-10-05

Similar Documents

Publication Publication Date Title
Moeller The chemistry of the lanthanides: Pergamon texts in inorganic chemistry
US4514367A (en) Method for separating rare earth metals
US4738834A (en) Treatment of technetium containing solutions
CN109416952B (en) Method for producing fractions of iodine radioisotopes, in particular I-131, fractions of iodine radioisotopes, in particular I-131
JP2003529517A (en) Inorganic adsorbent for extracting molybdenum-99 from irradiated uranium solution and method of using the same
JP3134896B2 (en) Production method of high purity rare earth fluoride
US2796320A (en) Solvent extraction process for purification of thorium
JP3303066B2 (en) How to purify scandium
CA2681180A1 (en) Production of thorium 228 starting from a natural thorium salt
CN115404342B (en) Carrier-free body 161 Tb preparation method
CN108423708B (en) Method for preparing thallium bromide and thallium bromide
JPS6157900B2 (en)
US2759793A (en) Separating hafnium from zirconium
US3173757A (en) Purification of strontium solutions by ion exchange
Cheng et al. Study on the separation of molybdenum-99 and recycling of uranium to water boiler reactor
JPS6158533B2 (en)
Gongyi et al. Application of extraction chromatography to the preparation of high-purity scandium oxide
JPH0617207B2 (en) Method for producing high-purity metal fluoride
US3687641A (en) Separation and recovery of americium from curium and other elements
JPH01258737A (en) Adsorbent for recovery of rare earth element in aqueous solution
CN111785407B (en) Treatment method of molybdenum-containing substance
CN117737427A (en) Method for preparing high-purity rare earth by mixed leaching ion exchange method
Arnfelt et al. Spectrophotometric determination of thorium in low-grade minerals and ores
SU1057061A1 (en) Method of chromatographic separation of yttrium from solutions containing compounds of heavy rare-earthed elements
US2901313A (en) Separation of plutonium from water insoluble fluorides derived from nitrate solutions of plutonium, uranium and fission products

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 12