JP3591746B2 - Method for producing zinc fluoride - Google Patents

Method for producing zinc fluoride Download PDF

Info

Publication number
JP3591746B2
JP3591746B2 JP11955696A JP11955696A JP3591746B2 JP 3591746 B2 JP3591746 B2 JP 3591746B2 JP 11955696 A JP11955696 A JP 11955696A JP 11955696 A JP11955696 A JP 11955696A JP 3591746 B2 JP3591746 B2 JP 3591746B2
Authority
JP
Japan
Prior art keywords
zinc
fluoride
precipitate
purity
zinc fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11955696A
Other languages
Japanese (ja)
Other versions
JPH09278438A (en
Inventor
健二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11955696A priority Critical patent/JP3591746B2/en
Publication of JPH09278438A publication Critical patent/JPH09278438A/en
Application granted granted Critical
Publication of JP3591746B2 publication Critical patent/JP3591746B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels

Description

【0001】
【発明の属する技術分野】
本発明は高純度金属フッ化物の製造方法、更に詳細には光増幅用フッ化物光ファイバ用高純度原料の製造方法に関する。
【0002】
【従来の技術】
InF、GaF、PbF、ZnF、SrF、LaF、YFは光増幅用フッ化物光ファイバの構成原料であり、ZnFはInF、GaF、PbFと共にInF系フッ化物光ファイバの主要組成の一つである。フッ化物光ファイバによる光増幅を阻害する要因として光ファイバ中に混入しているFe、Cu、Niなどの遷移金属の不純物及び酸素不純物が挙げられる。これらの遷移金属及び酸素は構成原料中に不純物として存在しており、フッ化物光ファイバの光増幅には遷移金属の不純物濃度が1ppb以下、酸素の不純物濃度が1ppm以下の高純度金属フッ化物の作製が不可欠である。
従来、ZnF(以下、フッ化亜鉛と略)の製造方法については、試薬特級品のZnCOに熱フッ化水素酸を添加し、蒸発、濃縮後、ZnF・4HOとし、乾燥フッ化水素ガスにより、300℃で加熱脱水し、フッ化亜鉛とする製造方法、又は、亜鉛塩の水溶液にNaF水溶液を添加し、フッ化亜鉛沈殿を生成後、ろ過、脱水・乾燥し、フッ化亜鉛とする製造方法がある。従来の方法で作製したフッ化亜鉛については、出発物質のZnCOが未溶解のためCOが残留し、これがフッ化物光ファイバの損失増の要因となり、光増幅を阻害する。
更に、出発物質の精製が行われていないためにフッ化亜鉛中の遷移金属の不純物濃度は1ppm以上、酸素の不純物濃度は10ppm以上と推定され、これについてもフッ化物光ファイバの損失増となる。また、高純度フッ化亜鉛の製造方法として、亜鉛の水溶性塩を出発物質としてpHを調整した後、金属不純物の抽出有機試薬としてβ−ジケトンを使用して金属不純物を除去する精製法が提案されている(特開平6−239604号)が、この方法では酸素不純物の除去ができないことに問題がある。
【0003】
【発明が解決しようとする課題】
本発明の目的は、上述の欠点を解決し、高純度のフッ化亜鉛を製造する方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明を概説すれば、本発明はフッ化亜鉛の製造方法に関する発明であって、フッ化亜鉛を製造する方法において、出発物質として高純度の金属亜鉛を使用し、β−ジケトンを用いる処理を行うことなく、該高純度金属亜鉛から金属亜鉛の水溶液を作製する工程、該水溶液に水酸化ナトリウム溶液を添加して水酸化亜鉛沈殿物を作製する工程、該水酸化亜鉛沈殿物を洗浄する工程、洗浄後の前記水酸化亜鉛沈殿物に、フッ素化剤として、いずれも高純度の、フッ化水素酸、あるいはフッ化水素ガス若しくはフッ素ガスを添加してフッ化亜鉛沈殿物を作製する工程、前記フッ化亜鉛沈殿物を脱水する工程、及び脱水後の前記フッ化亜鉛沈殿物を乾燥する工程、の各工程を包含することを特徴とする。
【0005】
本発明は、従来技術のZnCO3 に熱フッ化水素酸を添加する方法、又は、亜鉛塩の水溶液にNaF水溶液を添加し、ZnF2 ・4H2 Oを生成後、脱水・加熱乾燥後、フッ化亜鉛を製造する方法とは、高純度金属亜鉛を出発物質とし、水酸化ナトリウム水溶液を使用し、水酸化亜鉛を作製後に高純度フッ素化剤を加え、高純度のフッ化亜鉛を製造する点で異なる。
また、従来の抽出有機試薬としてβ−ジケトンを添加して金属不純物を除去する精製法とは製造方法に精製工程がない点が異なる。
【0006】
【発明の実施の形態】
以下、本発明を具体的に説明する。
本発明において、目的とするフッ化亜鉛を、フッ化物光ファイバアンプの出発物として使用する場合には、高純度のフッ化亜鉛を生成させる必要がある。
そのような高純度のフッ化亜鉛を得るためには、原料、試薬及び水として高純度のものを使用する必要がある。
金属亜鉛の高純度のものとしては、Fe、Ni、Cuなどの遷移金属不純物及び酸素不純物の少ないものがよく、現在6N(シックスナイン)、7N(セブンナイン)のものが市販されており、上記した程度に高純度のフッ化亜鉛を取得するためには、6N以上のものを使用することが好適である。
次に、該金属亜鉛の水溶液を作製する工程では、濃塩酸又は濃硝酸のような強酸中で加熱、溶解させることが好ましい。
【0007】
次の水酸ナトリウム溶液(好ましくは水溶液)を用いて水酸化亜鉛〔Zn(OH)〕沈殿物を作製する工程においては、前記した程度に高純度のフッ化亜鉛を取得するためには、Fe、Ni、Cuなどの遷移金属不純物が1ppbレベルの超高純度の水酸化ナトリウム水溶液を用いることが好ましい。
次の洗浄工程では、超純水で十分な洗浄を行い、Clイオン及びNaイオンを除去することが好ましい。
次のフッ化工程では、フッ素化剤として高純度のフッ化水素酸を使用するか、水酸化亜鉛の水性液中に、フッ化水素ガス又はフッ素ガスを添加して行うのが好ましい。
次に、得られたフッ化亜鉛沈殿物は、好ましくは前記水酸化亜鉛沈殿物と同様に、超純水による、又はそれにフッ化水素酸を少量加えて洗浄を行うことが好ましい。
フッ化亜鉛沈殿物の脱水・乾燥は、同時に、又は連続的若しくは不連続的に行ってよい。その工程は、真空乾燥器中における加熱による方法、フッ化水素ガス、又はフッ素ガス、あるいはそれらの混合ガス中で加熱する方法等が挙げられる。また、乾燥工程後、フッ素を含むガスで後処理してもよい。
【0008】
【実施例】
以下、本発明を実施例により更に具体的に説明するが、本発明はこれら実施例に限定されない。
【0009】
実施例1
純度:7N(99.99999%)の金属亜鉛を出発物質とする高純度フッ化亜鉛の製造方法について、図1の工程図によって説明する。高純度金属亜鉛50gを秤量し、電子工業用の濃塩酸200mlを加え、加熱し、溶解する。溶解後、濃度が3mol/リットルでFe、Ni、Cuの不純物濃度が1ppb以下の高純度水酸化ナトリウム溶液545mlを添加し、Zn(OH)沈殿物を作製する。Zn(OH)沈殿物は、超純水500mlを加え、5分間、かくはんし沈殿物の洗浄を十分に行い、Clイオン及びNaイオンを除去する。洗浄操作は3回繰り返す。Zn(OH)沈殿物を含む水溶液に50%高純度フッ化水素酸40mlを加え、かくはんし、ZnF・4HO沈殿物を作製する。図2は、作製したZnF・4HOのTG(熱重量分析)−DTA(示差熱分析)曲線を示す図である。また、図3は、市販品の純度99.9%のZnF・4HOのTG−DTA曲線を示す図である。図2、3共、110℃付近の脱水による吸熱ピーク、872℃のZnFの融点による吸熱ピークは観察されたが、図3にはこれ以外に410℃付近の吸熱ピークが観察された。これは、ZnFの出発物質のZnCOの一部の未溶解部がCOを発生したことによるものである。図2のTG−DTA曲線にはCO放出によるピークはない。これは、ZnFの出発物質にZnCOを用いていないからである。図2における100℃から300℃までの重量減少率は、41.0wt%、図3における100℃から300℃までの重量減少率は、35.2wt%、300℃から500℃までの重量減少率は、5.0%である。
ZnF・4HO沈澱物は超純水300mlで洗浄後、ろ過・真空脱気し、FガスとHFガスを使用し、250℃で脱水したのち、ZnFとする。また、作製したフッ化亜鉛中のFe、Ni、Cu、酸素の放射化分析を行い、Fe、Ni、Cuについて1ppb、酸素について1ppmの分析結果が得られ、従来、行われていたフッ化亜鉛についてのFe、Ni、Cu不純物濃度の定量値よりも3桁、酸素不純物濃度の定量値よりも1桁ほど高純度のフッ化亜鉛を作製することができた。
【0010】
実施例2
純度:7N(99.99999%)の金属亜鉛を出発物質とする高純度フッ化亜鉛の製造方法について、図4の工程図によって説明する。高純度金属亜鉛50gを秤量し、電子工業用の6M−塩酸400mlを加え、加熱し、溶解する。溶解後、濃度が3mol/リットルでFe、Ni、Cuの不純物濃度が1ppb以下の高純度水酸化ナトリウム溶液545mlを添加し、Zn(OH)沈殿物を作製する。Zn(OH)沈殿物は、超純水500mlを加え、5分間、かくはんし、沈殿物の洗浄を十分に行い、Clイオン及びNaイオンを除去する。洗浄操作は3回繰り返す。Zn(OH)沈殿物を含む水溶液に超純水200mlを加えた溶液中にフッ化水素ガスを流し、かくはんしながらZnF・4HO沈殿物を作製する。ZnF・4HOの沈澱物のTG−DTA曲線は図2に示すものと同じである。
ZnF・4HO沈殿物は超純水:フッ化水素酸=300ml:30mlの比で作製した希フッ化水素酸で洗浄後、ろ過・真空脱気し、HFガスを使用し、250℃で脱水したのち、ZnFとする。また、作製したフッ化亜鉛中のFe、Ni、Cu、酸素の放射化分析を行い、Fe、Ni、Cuについて1ppb、酸素について1ppmの分析結果が得られ、従来、行われていたフッ化亜鉛についてのFe、Ni、Cu不純物濃度の定量値よりも3桁、酸素不純物濃度の定量値よりも1桁ほど高純度のフッ化亜鉛を作製することができた。
【0011】
実施例3
純度:7N(99.99999%)の金属亜鉛を出発物質とする高純度フッ化亜鉛の製造方法について、図5の工程図によって説明する。高純度金属亜鉛50gを秤量し、電子工業用の高純度の濃硝酸200mlを加え、加熱し、溶解する。溶解後、濃度が3mol/リットルでFe、Ni、Cuの不純物濃度が1ppb以下の高純度水酸化ナトリウム溶液545mlを添加し、Zn(OH)沈殿物を作製する。Zn(OH)沈殿物は、超純水500mlを加え、5分間、かくはんし、沈殿物の洗浄を十分に行い、Clイオン及びNaイオンを除去する。洗浄操作は3回繰り返す。Zn(OH)沈殿物を含む水溶液に高純度の濃度50%フッ化水素酸40mlを加え、かくはんしながらZnF・4HO沈殿物を作製する。ZnF・4HO沈澱物のTG−DTA曲線は図2に示すものと同じである。
ZnF・4HO沈殿物は超純水:フッ化水素酸=300ml:30mlの比で作製した希フッ化水素酸で洗浄後、ろ過・真空脱気し、HFガスを使用し、150℃で脱水・乾燥したのち、ZnFとする。また、作製したフッ化亜鉛中のFe、Ni、Cu、酸素の放射化分析を行い、Fe、Ni、Cuについて1ppb、酸素について1ppmの分析結果が得られ、従来、行われていたフッ化亜鉛についてのFe、Ni、Cu不純物濃度の定量値より3桁、酸素不純物濃度の定量値よりも1桁ほど高純度のフッ化亜鉛を作製することができた。
【0012】
【発明の効果】
以上説明したように、本発明の製造方法によれば、遷移金属を極低濃度にした高純度のフッ化亜鉛を製造することができるものである。また、特にフッ化亜鉛(ZnF)沈殿物のフッ素ガス又はフッ化水素ガスでの乾燥処理により、酸素不純物すなわち酸化物の少ないフッ化亜鉛(ZnF)が作製できる。更に、これをフッ化物光ファイバアンプの出発物質として用いることにより、増幅度の高い光ファイバアンプを製造できる利点がある。
【図面の簡単な説明】
【図1】本発明の実施例1における高純度フッ化亜鉛の製造方法を示す工程図である。
【図2】本発明の実施例1における作製したZnF・4HOのTG−DTA曲線を示す図である。
【図3】市販品の純度99.9%のZnF・4HOのTG−DTA曲線を示す図である。
【図4】本発明の実施例2における高純度フッ化亜鉛の製造方法を示す工程図である。
【図5】本発明の実施例3における高純度フッ化亜鉛の製造方法を示す工程図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a high-purity metal fluoride, and more particularly to a method for producing a high-purity raw material for a fluoride optical fiber for optical amplification.
[0002]
[Prior art]
InF 3, GaF 3, PbF 2 , ZnF 2, SrF 2, LaF 3, YF 3 is a raw material of the optical amplification fluoride optical fiber, ZnF 2 is InF 3, GaF 3, InF 3 based fluoride with PbF 2 It is one of the main compositions of the compound optical fiber. Factors inhibiting optical amplification by the fluoride optical fiber include impurities of transition metals such as Fe, Cu, and Ni and oxygen impurities mixed in the optical fiber. These transition metals and oxygen are present as impurities in the constituent materials. For optical amplification of the fluoride optical fiber, high-purity metal fluoride having a transition metal impurity concentration of 1 ppb or less and an oxygen impurity concentration of 1 ppm or less is used. Fabrication is essential.
Conventionally, as for a method for producing ZnF 2 (hereinafter abbreviated as zinc fluoride), hot hydrofluoric acid is added to ZnCO 3 , which is a special grade reagent, and the mixture is evaporated and concentrated to obtain ZnF 2 .4H 2 O. A method for producing zinc fluoride by heating and dehydrating at 300 ° C. with a hydrogen fluoride gas, or adding an aqueous solution of NaF to an aqueous solution of a zinc salt to form a zinc fluoride precipitate, followed by filtration, dehydration and drying, and There is a manufacturing method that uses zinc. The Zinc fluoride produced by the conventional methods, ZnCO 3 starting material and residual CO 2 for undissolved, which becomes a factor of increase loss of fluoride optical fiber, inhibits optical amplification.
Further, since the starting material has not been purified, the impurity concentration of the transition metal in zinc fluoride is estimated to be 1 ppm or more, and the impurity concentration of oxygen is estimated to be 10 ppm or more, which also increases the loss of the fluoride optical fiber. . Further, as a method for producing high-purity zinc fluoride, a purification method has been proposed in which a pH is adjusted using a water-soluble salt of zinc as a starting material, and then metal impurities are removed using β-diketone as an organic reagent for extracting metal impurities. However, this method has a problem in that oxygen impurities cannot be removed by this method.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned disadvantages and to provide a method for producing high-purity zinc fluoride.
[0004]
[Means for Solving the Problems]
In summary, the present invention relates to a method for producing zinc fluoride, and in the method for producing zinc fluoride, a process using high-purity metallic zinc as a starting material and using β-diketone. A step of preparing an aqueous solution of metallic zinc from the high-purity metallic zinc without performing the step, a step of adding a sodium hydroxide solution to the aqueous solution to form a zinc hydroxide precipitate, and a step of washing the zinc hydroxide precipitate A step of preparing a zinc fluoride precipitate by adding a highly pure, hydrofluoric acid, or hydrogen fluoride gas or a fluorine gas as a fluorinating agent to the zinc hydroxide precipitate after washing, The method includes a step of dehydrating the zinc fluoride precipitate and a step of drying the zinc fluoride precipitate after dehydration.
[0005]
The present invention relates to a conventional method of adding hydrofluoric acid to ZnCO 3 or a method of adding an aqueous NaF solution to an aqueous solution of a zinc salt to generate ZnF 2 .4H 2 O, followed by dehydration and heat drying, followed by drying. The method of producing zinc oxide is to use high-purity metallic zinc as a starting material, use an aqueous sodium hydroxide solution, add a high-purity fluorinating agent after preparing zinc hydroxide, and produce high-purity zinc fluoride. Different.
Further, it differs from the conventional purification method in which β-diketone is added as an extraction organic reagent to remove metal impurities, in that the production method has no purification step.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described specifically.
In the present invention, when the target zinc fluoride is used as a starting material for a fluoride optical fiber amplifier, it is necessary to generate high-purity zinc fluoride.
In order to obtain such high-purity zinc fluoride, it is necessary to use high-purity materials as raw materials, reagents and water.
As the high-purity metallic zinc, those having little transition metal impurities such as Fe, Ni, and Cu and oxygen impurities are preferable. Currently, 6N (six nine) and 7N (seven nine) are commercially available. In order to obtain zinc fluoride of such high purity, it is preferable to use one having 6N or more.
Next, in the step of preparing the aqueous solution of metallic zinc, it is preferable to heat and dissolve in a strong acid such as concentrated hydrochloric acid or concentrated nitric acid.
[0007]
In the next step of preparing a zinc hydroxide [Zn (OH) 2 ] precipitate using a sodium hydroxide solution (preferably an aqueous solution), in order to obtain zinc fluoride having a high purity as described above, It is preferable to use an ultra-high purity sodium hydroxide aqueous solution having a transition metal impurity of 1 ppb such as Fe, Ni, or Cu.
In the next washing step, it is preferable to perform sufficient washing with ultrapure water to remove Cl ions and Na ions.
In the next fluorination step, it is preferable to use high-purity hydrofluoric acid as a fluorinating agent or to add hydrogen fluoride gas or fluorine gas to an aqueous solution of zinc hydroxide.
Next, the obtained zinc fluoride precipitate is preferably washed with ultrapure water or by adding a small amount of hydrofluoric acid thereto, similarly to the zinc hydroxide precipitate.
The dehydration and drying of the zinc fluoride precipitate may be performed simultaneously, or continuously or discontinuously. The step includes a method of heating in a vacuum dryer, a method of heating in a hydrogen fluoride gas, a fluorine gas, or a mixed gas thereof, and the like. After the drying step, post-treatment may be performed with a gas containing fluorine.
[0008]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[0009]
Example 1
A method for producing high-purity zinc fluoride using 7N (99.999999%) metallic zinc as a starting material will be described with reference to the process diagram of FIG. 50 g of high-purity metallic zinc is weighed, and 200 ml of concentrated hydrochloric acid for electronic industry is added, heated and dissolved. After dissolution, 545 ml of a high-purity sodium hydroxide solution having a concentration of 3 mol / liter and an impurity concentration of Fe, Ni, and Cu of 1 ppb or less is added to produce a Zn (OH) 2 precipitate. To the Zn (OH) 2 precipitate, 500 ml of ultrapure water is added, and the stirred precipitate is sufficiently washed for 5 minutes to remove Cl ions and Na ions. The washing operation is repeated three times. 40 ml of 50% high-purity hydrofluoric acid is added to the aqueous solution containing the Zn (OH) 2 precipitate, and the mixture is stirred to prepare a ZnF 2 .4H 2 O precipitate. FIG. 2 is a diagram showing a TG (thermogravimetric analysis) -DTA (differential thermal analysis) curve of the produced ZnF 2 .4H 2 O. FIG. 3 is a diagram showing a TG-DTA curve of commercially available ZnF 2 .4H 2 O having a purity of 99.9%. 2 and 3, an endothermic peak due to dehydration around 110 ° C. and an endothermic peak due to the melting point of ZnF 2 at 872 ° C. were observed. In FIG. 3, an endothermic peak near 410 ° C. was also observed. This is because some undissolved portions of ZnCO 3 as a starting material of ZnF 2 generated CO 2 . The TG-DTA curve of FIG. 2 has no peak due to CO 2 release. This is because ZnCO 3 is not used as a starting material for ZnF 2 . The weight loss rate from 100 ° C. to 300 ° C. in FIG. 2 is 41.0 wt%, and the weight loss rate from 100 ° C. to 300 ° C. in FIG. 3 is 35.2 wt%, and the weight loss rate from 300 ° C. to 500 ° C. Is 5.0%.
The ZnF 2 .4H 2 O precipitate is washed with 300 ml of ultrapure water, filtered, degassed under vacuum, and dehydrated at 250 ° C. using F 2 gas and HF gas to obtain ZnF 2 . Further, activation analysis of Fe, Ni, Cu, and oxygen in the produced zinc fluoride was performed, and analysis results of 1 ppb for Fe, Ni, and Cu and 1 ppm for oxygen were obtained. As a result, it was possible to produce zinc fluoride with a purity of about three orders of magnitude higher than the quantitative values of the impurity concentrations of Fe, Ni, and Cu and one digit higher than the quantitative values of the oxygen impurity concentrations.
[0010]
Example 2
A method for producing high-purity zinc fluoride starting from metal zinc having a purity of 7N (99.999999%) will be described with reference to the process chart of FIG. 50 g of high-purity metallic zinc is weighed, 400 ml of 6M hydrochloric acid for electronics industry is added, and the mixture is heated and dissolved. After dissolution, 545 ml of a high-purity sodium hydroxide solution having a concentration of 3 mol / liter and an impurity concentration of Fe, Ni, and Cu of 1 ppb or less is added to produce a Zn (OH) 2 precipitate. To the Zn (OH) 2 precipitate, add 500 ml of ultrapure water, stir for 5 minutes, sufficiently wash the precipitate, and remove Cl ions and Na ions. The washing operation is repeated three times. Zn (OH) flowing aqueous hydrogen fluoride gas in a solution plus ultra pure water 200ml containing 2 precipitate to produce a ZnF 2 · 4H 2 O precipitate with stirring. TG-DTA curve of ZnF 2 · 4H 2 O precipitate is the same as that shown in FIG.
ZnF 2 · 4H 2 O precipitate ultrapure water: hydrofluoric acid = 300 ml: After washing with the dilute hydrofluoric acid prepared at a ratio of 30 ml, filtered, deaerated under vacuum, using HF gas, 250 ° C. After dehydration, to obtain ZnF 2 . Further, activation analysis of Fe, Ni, Cu, and oxygen in the produced zinc fluoride was performed, and analysis results of 1 ppb for Fe, Ni, and Cu and 1 ppm for oxygen were obtained. As a result, it was possible to produce zinc fluoride with a purity of about three orders of magnitude higher than the quantitative values of the impurity concentrations of Fe, Ni, and Cu and one digit higher than the quantitative values of the oxygen impurity concentrations.
[0011]
Example 3
A method for producing high-purity zinc fluoride using 7N (99.999999%) metallic zinc as a starting material will be described with reference to the process chart of FIG. 50 g of high-purity metallic zinc is weighed, and 200 ml of high-purity concentrated nitric acid for electronic industry is added, heated and dissolved. After dissolution, 545 ml of a high-purity sodium hydroxide solution having a concentration of 3 mol / liter and an impurity concentration of Fe, Ni, and Cu of 1 ppb or less is added to produce a Zn (OH) 2 precipitate. To the Zn (OH) 2 precipitate, add 500 ml of ultrapure water, stir for 5 minutes, sufficiently wash the precipitate, and remove Cl ions and Na ions. The washing operation is repeated three times. 40 ml of high-purity 50% hydrofluoric acid is added to the aqueous solution containing the Zn (OH) 2 precipitate, and a ZnF 2 .4H 2 O precipitate is produced with stirring. TG-DTA curve of ZnF 2 · 4H 2 O precipitate is the same as that shown in FIG.
ZnF 2 · 4H 2 O precipitate ultrapure water: hydrofluoric acid = 300 ml: After washing with the dilute hydrofluoric acid prepared at a ratio of 30 ml, filtered, deaerated under vacuum, using HF gas, 0.99 ° C. After dehydration and drying, ZnF 2 is obtained. Further, activation analysis of Fe, Ni, Cu, and oxygen in the produced zinc fluoride was performed, and analysis results of 1 ppb for Fe, Ni, and Cu and 1 ppm for oxygen were obtained. As a result, it was possible to produce zinc fluoride with a high purity about three orders of magnitude from the quantitative values of the Fe, Ni, and Cu impurity concentrations and about one digit from the quantitative values of the oxygen impurity concentrations.
[0012]
【The invention's effect】
As described above, according to the production method of the present invention, it is possible to produce high-purity zinc fluoride having a transition metal at an extremely low concentration. Further, in particular zinc fluoride (ZnF 2) precipitates drying treatment with fluorine gas or hydrogen fluoride gas, less oxygen impurities ie oxide zinc fluoride (ZnF 2) can be produced. Further, by using this as a starting material of a fluoride optical fiber amplifier, there is an advantage that an optical fiber amplifier having a high amplification degree can be manufactured.
[Brief description of the drawings]
FIG. 1 is a process chart showing a method for producing high-purity zinc fluoride in Example 1 of the present invention.
FIG. 2 is a diagram showing a TG-DTA curve of ZnF 2 .4H 2 O manufactured in Example 1 of the present invention.
FIG. 3 is a view showing a TG-DTA curve of a commercially available product having a purity of 99.9% of ZnF 2 .4H 2 O.
FIG. 4 is a process chart showing a method for producing high-purity zinc fluoride in Example 2 of the present invention.
FIG. 5 is a process chart showing a method for producing high-purity zinc fluoride in Example 3 of the present invention.

Claims (1)

フッ化亜鉛を製造する方法において、出発物質として高純度の金属亜鉛を使用し、β−ジケトンを用いる処理を行うことなく、該高純度金属亜鉛から金属亜鉛の水溶液を作製する工程、該水溶液に水酸化ナトリウム溶液を添加して水酸化亜鉛沈殿物を作製する工程、該水酸化亜鉛沈殿物を洗浄する工程、洗浄後の前記水酸化亜鉛沈殿物に、フッ素化剤として、いずれも高純度の、フッ化水素酸、あるいはフッ化水素ガス若しくはフッ素ガスを添加してフッ化亜鉛沈殿物を作製する工程、前記フッ化亜鉛沈殿物を脱水する工程、及び脱水後の前記フッ化亜鉛沈殿物を乾燥する工程、の各工程を包含することを特徴とするフッ化亜鉛の製造方法。 In a method for producing zinc fluoride, a step of preparing an aqueous solution of metallic zinc from the high-purity metallic zinc, using high-purity metallic zinc as a starting material, without performing a treatment using β-diketone , A step of preparing a zinc hydroxide precipitate by adding a sodium hydroxide solution, a step of washing the zinc hydroxide precipitate, and to the zinc hydroxide precipitate after the washing, as a fluorinating agent , both of high purity , hydrofluoric acid, or the step of producing a zinc fluoride precipitate by addition of hydrogen fluoride gas or fluorine gas, a step of dehydrating the zinc fluoride precipitate, and the zinc fluoride precipitate after dehydration A method for producing zinc fluoride, comprising the steps of drying.
JP11955696A 1996-04-18 1996-04-18 Method for producing zinc fluoride Expired - Lifetime JP3591746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11955696A JP3591746B2 (en) 1996-04-18 1996-04-18 Method for producing zinc fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11955696A JP3591746B2 (en) 1996-04-18 1996-04-18 Method for producing zinc fluoride

Publications (2)

Publication Number Publication Date
JPH09278438A JPH09278438A (en) 1997-10-28
JP3591746B2 true JP3591746B2 (en) 2004-11-24

Family

ID=14764248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11955696A Expired - Lifetime JP3591746B2 (en) 1996-04-18 1996-04-18 Method for producing zinc fluoride

Country Status (1)

Country Link
JP (1) JP3591746B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109439928A (en) * 2018-11-12 2019-03-08 云南科力新材料股份有限公司 The production method of de-magging Novel environment-friendlymaterial material in a kind of Zinc Hydrometallurgy Process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109439928A (en) * 2018-11-12 2019-03-08 云南科力新材料股份有限公司 The production method of de-magging Novel environment-friendlymaterial material in a kind of Zinc Hydrometallurgy Process

Also Published As

Publication number Publication date
JPH09278438A (en) 1997-10-28

Similar Documents

Publication Publication Date Title
JPS6241721A (en) Method of recovering iron oxide
JP3591756B2 (en) Production method of metal fluoride
JP2023502146A (en) Method for preparing battery grade Ni-Co-Mn mixture and battery grade Mn solution
JP3591746B2 (en) Method for producing zinc fluoride
RU2102507C1 (en) Aqueous solution for leaching precious metals (versions)
JP3299291B2 (en) Method for obtaining a metal hydroxide having a low fluoride content
CN112661196A (en) Purification method of ferric trichloride
JPS62502683A (en) chemical purification method
JP3788185B2 (en) Method for recovering cerium from a solution containing chromium and cerium
CN103667706B (en) The separating and purifying method of gold in a kind of plation waste material
JP2000319016A (en) Production of gold sodium sulfite solution
US4965055A (en) Preparation of ultra-pure metal halides
JP2963905B2 (en) Method for producing high-purity metal fluoride
JPH0725613A (en) Production of cuprous chloride
JPS63235435A (en) Manufacture of metallic tantalum
CN105776307B (en) The pre-treating method that a kind of rare earth oxide isolates and purifies
JP3379204B2 (en) Method for producing iron-based inorganic coagulant
JP3594102B2 (en) Method for producing indium fluoride complex salt
JP4815082B2 (en) Treatment method of iron-containing sulfuric acid solution
JPH11236218A (en) Recovering method of silver sulfate
JP2004051477A (en) Method for manufacturing iron hydroxide, iron oxide hydrate or iron oxide from filtered salt of recovered diluted acid
JP3385565B2 (en) Production method of lead fluoride
JP3412334B2 (en) Method for producing high purity metal fluoride
CN107619938A (en) It is a kind of from preparation method that silver-colored ruthenium is purified in ruthenium compound tail washings
JPH03137003A (en) Production of high-purity metal fluoride

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040820

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070903

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term