JP3591756B2 - Production method of metal fluoride - Google Patents

Production method of metal fluoride Download PDF

Info

Publication number
JP3591756B2
JP3591756B2 JP10082097A JP10082097A JP3591756B2 JP 3591756 B2 JP3591756 B2 JP 3591756B2 JP 10082097 A JP10082097 A JP 10082097A JP 10082097 A JP10082097 A JP 10082097A JP 3591756 B2 JP3591756 B2 JP 3591756B2
Authority
JP
Japan
Prior art keywords
purity
fluoride
metal
anhydrous
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10082097A
Other languages
Japanese (ja)
Other versions
JPH10287402A (en
Inventor
健二 小林
好毅 西田
照寿 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10082097A priority Critical patent/JP3591756B2/en
Publication of JPH10287402A publication Critical patent/JPH10287402A/en
Application granted granted Critical
Publication of JP3591756B2 publication Critical patent/JP3591756B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属フッ化物、特に高純度金属フッ化物の製造方法、更に詳細には光増幅器用高純度フッ化物原料の製造方法に関する。
【0002】
【従来の技術】
ZrF、HfF、LaF、YF、ZnF、CdF、InFは光増幅器用フッ化物光ファイバの構成原料である。フッ化物光ファイバによる光増幅を阻害する要因として光ファイバ中に混入しているFe、Cu、Niなどの遷移金属の不純物及び酸素不純物が挙げられる。これらの遷移金属及び酸素は構成原料中に不純物として存在しており、フッ化物光ファイバの光増幅には遷移金属の不純物濃度が1ppb以下、酸素の不純物濃度が1ppm以下の高純度金属フッ化物の作製が不可欠である。
従来、これらのフッ化物光ファイバ原料の製造方法については、金属、酸化物、炭酸塩などを出発物質とし、金属や酸化物については、該金属や該酸化物をFガスあるいはHFガスと直接反応させ、金属フッ化物とする製造方法、炭酸塩については、該炭酸塩にフッ化水素酸を添加し、金属フッ化物の水和物を製造する方法などがある。例えば、金属、酸化物を出発物質とする例としては、ZrにFガスを190℃で反応させ、ZrFを製造する方法、ZrOにFガスを525℃で反応させ、ZrFを製造する方法、ZrOにHFガスを550℃で反応させ、ZrFを製造する方法、又は、Inを容器に入れた後、減圧し、HFガスを容器に送入し、200℃で反応させ、InFを製造する方法などがある。これらの方法で製造したZrF又はInFについては、Fガス又はHFガスを高温で取り扱う危険が伴うことが欠点である。次に、炭酸塩を出発物質とする例としては、試薬特級品のZnCOに熱フッ化水素酸を添加し、蒸発、濃縮後、ZnF・4HOとし、乾燥フッ化水素ガスにより、300℃で加熱脱水し、ZnFとする製造方法がある。この方法で作製したZnFについては、出発物質のZnCOが未溶解のためにCOが残留したり、300℃で脱水・乾燥することによって酸化物が発生し、COや酸化物がフッ化物光ファイバの損失増の要因となり、更には光増幅を阻害する欠点がある。
また、出発物質の炭酸塩の純度については、せいぜい5N(99.999%)程度であり、フッ化水素酸との反応工程では精製は行われないため、製造したZnF中の遷移金属の不純物濃度は1ppm以上、酸素の不純物濃度は10ppm以上と推定され、これについてもフッ化物光ファイバの損失増となる。更に、高純度フッ化亜鉛の製造方法として、亜鉛の水溶性塩を出発物質としてpHを調整した後、金属不純物の抽出有機試薬としてβ−ジケトンを使用して金属不純物を除去する精製法が提案されている(特願平5−49899号)が、この方法では酸素不純物の除去ができないことに問題がある。
【0003】
【発明が解決しようとする課題】
本発明の目的は、出発物質にFe、Ni、Cuなどの遷移金属の不純物及び酸素不純物を除去した金属を使用することにより、上述の欠点を解決し、金属フッ化物、特に高純度の金属フッ化物を製造する方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明を概説すれば、本発明は金属フッ化物の製造方法に関する発明であって、金属フッ化物を製造する方法において、出発物質として高純度の金属を使用し、β−ジケトン処理をすることなく、該高純度金属を、酸化剤を含むフッ化水素酸溶液内で加熱し、該高純度金属を、溶解させ、その後、該酸化剤を含むフッ化水素酸溶液を冷却し、金属フッ化物沈殿を作製し、更に該沈殿物を脱水、乾燥処理することを特徴とする。
【0005】
本発明は、従来技術のZrにFガスを190℃で反応させZrFを製造する方法、ZrOにFガスを525℃で反応させZrFを製造する方法、ZrOにHFガスを550℃で反応させZrFを製造する方法、Inを容器に入れた後、HFガスで反応させ、InFを製造する方法、ZnCOに熱フッ化水素酸を添加し、ZnF・4HOとし、乾燥HFガスにより、ZnFとする製造方法、亜鉛塩の水溶液にNaF水溶液を添加し、ZnF・4HOを生成後、脱水・加熱乾燥後、フッ化亜鉛を製造する方法、抽出有機試薬としてβ−ジケトンを添加して亜鉛を含む水溶液中の遷移金属不純物を抽出除去する精製法などの問題点を解決するために、Fe、Ni、Cuなどの遷移金属不純物、及び酸素不純物の少ない高純度金属を出発物質に使用し、酸化剤を含むフッ化水素酸で溶解後、金属フッ化物の沈殿を作製し、沈殿物の脱水・乾燥を行い、遷移金属不純物及び酸素不純物の少ない金属フッ化物、特に高純度の金属フッ化物を製造するものである。
【0006】
【発明の実施の形態】
以下、本発明を具体的に説明する。
本発明方法において原料として使用する金属の例としては、Zr、Hf、La、Y、Zn、Cd、In等が挙げられるが、中でもその用途上、高純度のZr、Hf、又はLaが有用である。高純度の程度は、6N〜7Nが好ましい。
【0007】
次に、本発明方法において、フッ化水素酸に含有させる酸化剤の例としては通常の各種の酸化剤が挙げられるが、中でも、過酸化水素水、硝酸、又は過塩素酸が好適なものである。
加熱溶解は特殊な条件を必要とせず、当該金属を加熱により溶液中に溶解できる条件であればよい。したがって、従来法におけるような高温加熱を必要としない。
次に、脱水も常用の方法でよく、操作上、吸引ろ過が好適である。
最後に、乾燥も常用の方法でよく、操作上、真空乾燥が好適である。
【0008】
以上具体的に説明したように、本発明方法において、特に高純度の金属フッ化物を製造する方法の場合には、従来技術の金属の酸化物、炭酸塩、金属塩の水溶液などを出発物質とする高純度フッ化物の製造方法とは、高純度金属を出発物質とし、酸化剤とフッ素化剤を加え、高純度の金属フッ化物を製造する点で異なる。また、抽出有機試薬としてβ−ジケトンを添加して金属不純物を除去する精製法とは製造方法に精製工程がない点が異なる。
【0009】
【実施例】
以下、本発明を実施例により更に具体的に説明するが、本発明はこれら実施例に限定されない。
【0010】
実施例1
純度:7N(99.99999%)の金属亜鉛を出発物質とする高純度無水フッ化亜鉛の製造方法について、図1に示す工程図によって説明する。高純度金属亜鉛50gを秤量し、電子工業用の30%過酸化水素水50mlとフッ化水素酸200mlと超純水200mlを加え、加熱し、溶解する。溶解後、冷却し、フッ化亜鉛沈殿物を得る。フッ化亜鉛沈殿物は、吸引ろ過で脱水し、真空乾燥を行う。図2は、フッ化亜鉛沈殿物を脱水・乾燥した物質、すなわち、ZnFのTG(熱重量分析)−DTA(示差熱分析)曲線である。また、図3は、市販品の純度99.9%のZnF・4HOのTG−DTA曲線である。
なお、図2及び図3において、横軸は温度(℃)、左縦軸はTGにおける重量減少率(%)、右縦軸はDTAにおける熱容量(μV)を意味する。
図3から、110℃付近の脱水による吸熱ピーク、872℃のZnFの融点による吸熱ピークは観察されたが、図2には、872℃のZnFの融点による吸熱ピーク以外に吸熱ピークは観察されかった。すなわち、X線回折(XRD)及び熱分析(TG−DTA)での解析結果より、作製した物質は、無水のZnFである。
【0011】
また、作製した無水のフッ化亜鉛のFe、Ni、Cu、酸素の放射化分析を行い、Fe、Ni、Cuについて1ppb、酸素について1ppmの分析結果が得られ、従来、行われていたフッ化亜鉛についてのFe、Ni、Cu不純物濃度の定量値よりも3桁、酸素不純物濃度の定量値よりも1桁ほど高純度の無水のフッ化亜鉛が作製できた。
【0012】
実施例2
純度:7N(99.99999%)の金属亜鉛を出発物質とする高純度の無水フッ化亜鉛の製造方法について、図4に示す工程図によって説明する。高純度金属亜鉛50gを秤量し、電子工業用の61%硝酸100mlとフッ化水素酸200mlと超純水200mlを加え、加熱し、溶解する。溶解後、冷却し、フッ化亜鉛沈殿物を得る。フッ化亜鉛沈殿物は、吸引ろ過で脱水し、真空乾燥を行う。乾燥後のフッ化亜鉛沈殿物のTG−DTA曲線及び赤外吸収(IR)スペクトルの解析結果には、何ら、NOxに相当するピークは観察されなかった。ZnF作製物のTG−DTA曲線は図2に示すものと同じであり、XRDの結果から、無水のZnFが作製できていることが明らかになった。
また、作製した無水のフッ化亜鉛中のFe、Ni、Cu、酸素の放射化分析を行い、Fe、Ni、Cuについて1ppb、酸素について1ppmの分析結果が得られ、従来、行われていたフッ化亜鉛についてのFe、Ni、Cu不純物濃度の定量値よりも3桁、酸素不純物濃度の定量値よりも1桁ほど高純度の無水のフッ化亜鉛が作製できた。
【0013】
実施例3
純度:7N(99.99999%)の金属亜鉛を出発物質とする高純度の無水フッ化亜鉛の製造方法について、図5に示す工程図によって説明する。高純度金属亜鉛50gを秤量し、高純度の精密分析用の60%過塩素酸(HClO)200mlとフッ化水素酸200mlと超純水200mlを加え、加熱し、溶解する。溶解後、冷却し、フッ化亜鉛沈殿物を得る。フッ化亜鉛沈殿物は、吸引ろ過で脱水し、真空乾燥を行う。乾燥後のフッ化亜鉛沈殿物のTG−DTA曲線及びIRスペクトルの解析結果には、何ら、HO、ClあるいはClOに相当するピークは観察されなかった。また、XRDによる解析より、乾燥後のフッ化亜鉛沈殿物はZnFであることがわかった。また、ZnF作製物のTG−DTA曲線は図2に示すものと同じである。
作製した無水のフッ化亜鉛中のFe、Ni、Cu、酸素の放射化分析を行い、Fe、Ni、Cuについて1ppb、酸素について1ppmの分析結果が得られ、従来、行われていたフッ化亜鉛についてのFe、Ni、Cu不純物濃度の定量値よりも3桁、酸素不純物濃度の定量値よりも1桁ほど高純度の無水のフッ化亜鉛が作製できた。
【0014】
実施例4
純度:6N(99.9999%)の金属ジルコニウム(以下Zrと記す)を出発物質とする高純度の無水フッ化ジルコニウム(ZrF)の製造方法について、図6に示す工程図によって説明する。高純度Zr50gを秤量し、高純度の精密分析用の60%過塩素酸(HClO)200mlとフッ化水素酸200mlと超純水200mlを加え、加熱し、溶解する。溶解後、冷却し、フッ化ジルコニウム沈殿物を得る。フッ化ジルコニウム沈殿物は、吸引ろ過で脱水後、高真空で乾燥を行う。また、XRDによる解析より、乾燥後のフッ化ジルコニウム沈殿物は無水のZrFであることがわかった。
また、6N(99.9999%)の金属ハフニウム(Hf)を出発物質とする高純度の無水のフッ化ハフニウム(HfF)の製造方法についても無水のZrF製造と同じ方法で作製できる。更に、酸化剤として硝酸又は過酸化水素水を用いても同一の無水ZrF又は無水HfFが作製できる。
作製したZrF及びHfF中のFe、Ni、Cu、酸素の放射化分析を行い、Fe、Ni、Cuについて1ppb、酸素について1ppmの分析結果が得られ、従来、行われていたZrF及びHfFについてのFe、Ni、Cu不純物濃度の定量値よりも3桁、酸素不純物濃度の定量値よりも1桁ほど高純度の無水ZrF及び無水HfFが作製できた。
【0015】
実施例5
純度:6N(99.9999%)の金属ランタン(La)を出発物質とする高純度の無水フッ化ランタンの製造方法について、図7に示す工程図によって説明する。高純度金属ランタン50gを秤量し、電子工業用の30%過酸化水素水(H)50mlとフッ化水素酸200mlと超純水200mlを加え、加熱し、溶解する。溶解後、冷却した後、フッ化ランタン沈殿物は吸引ろ過で脱水し、真空乾燥を行う。また、LaFのTG−DTA曲線からは、何ら、HOに相当するピークは観察されなかった。また、XRDでの解析結果より、真空乾燥後に作製した物質は無水のLaFであることがわかった。
また、6N(99.9999%)の金属イットリウム(Y)を出発物質とする高純度の無水フッ化イットリウム(YF)の製造方法についてもLaF製造と同じ方法で作製できる。更に、酸化剤として硝酸又は過塩素酸を用いても同一の無水LaF又は無水YFが作製できる。
作製したフッ化ランタン(LaF)とフッ化イットリウム(YF)中のFe、Ni、Cu、酸素の放射化分析を行い、Fe、Ni、Cuについて1ppb、酸素について1ppmの分析結果が得られ、従来、行われていたLaF、YFについてのFe、Ni、Cu不純物濃度の定量値よりも3桁、酸素不純物濃度の定量値よりも1桁ほど高純度の無水LaF、無水YFが作製できた。
【0016】
実施例6
純度:7N(99.99999%)の金属インジウムを出発物質とする高純度のフッ化インジウム(InF・3HO)の製造方法について、図8に示す工程図によって説明する。高純度金属インジウム50gを秤量し、高純度の電子工業用の61%硝酸(HNO)100mlとフッ化水素酸200mlと超純水200mlを加え、加熱し、溶解する。溶解後、冷却し、フッ化インジウム沈殿物を得る。沈殿物は、吸引ろ過で脱水し、真空乾燥を行う。乾燥後に作製した物質、すなわち、InF・3HOのTG−DTA曲線には、何ら、NOxに相当するピークは観察されなかった。また、XRDによる解析より、再結晶後に作製した物質はInF・3HOであることがわかった。更に、酸化剤として過酸化水素水又は過塩素酸を用いても同一のInF・3HOが作製できる。
作製したInF・3HO中のFe、Ni、Cu、酸素の放射化分析を行い、Fe、Ni、Cuについて1ppb、酸素について1ppmの分析結果が得られ、従来、行われていたInF・3HOのFe、Ni、Cu不純物濃度の定量値よりも3桁、酸素不純物濃度の定量値よりも1桁ほど高純度のInF・3HOが作製できた。
【0017】
実施例7
純度:6N(99.9999%)の金属カドミウムを出発物質とする高純度の無水フッ化カドミウムの製造方法について、図9に示す工程図によって説明する。高純度金属カドミウム50gを秤量し、高純度の精密分析用の60%過塩素酸(HClO)200mlとフッ化水素酸200mlと超純水200mlを加え、加熱し、溶解する。溶解後、冷却し、フッ化カドミウム沈殿物を得る。フッ化カドミウム沈殿物は、吸引ろ過で脱水し、真空乾燥を行う。乾燥後に作製した物質、すなわち、CdFのTG−DTA曲線及びIRスペクトルには、何ら、HO、ClあるいはClOに相当するピークは観察されなかった。また、XRDによる解析より、乾燥後に作製した物質はCdFであることがわかった。
更に、酸化剤として硝酸又は過酸化水素水を用いても同一のCdFが製造できる。
作製したフッ化カドミウム中のFe、Ni、Cu、酸素の放射化分析を行い、Fe、Ni、Cuについて1ppb、酸素について1ppmの分析結果が得られ、従来、行われていたフッ化カドミウムについてのFe、Ni、Cu不純物濃度の定量値よりも3桁、酸素不純物濃度の定量値よりも1桁ほど高純度の無水CdFが作製できた。
【0018】
【発明の効果】
以上説明したように、本発明の製造方法によれば、無水あるいは水和物を含む金属フッ化物を作製できる。特に、無水のZnF、ZrF、HfF、LaF、YF、CdFは、従来の300℃〜600℃でHFガスにより脱水・乾燥し、無水の金属フッ化物とするものに比べ、極めて簡便に無水の金属フッ化物を作製するものであるから、高温で熱処理することによって発生する酸化物を抑え、しかも、遷移金属を極低濃度にした高純度の無水フッ化物を製造することができるものである。更に、これをフッ化物光ファイバアンプの出発物質として用いることにより、増幅度の高い光ファイバアンプを製造できる利点がある。
【図面の簡単な説明】
【図1】本発明の実施例1における高純度の無水フッ化亜鉛の製造方法を示す工程図でである。
【図2】本発明の実施例1により作製したZnFのTG−DTA曲線を示すグラフである。
【図3】市販品のZnF・4HOのTG−DTA曲線を示すグラフである。
【図4】本発明の実施例2における高純度の無水フッ化亜鉛の製造方法を示す工程図である。
【図5】本発明の実施例3における高純度の無水フッ化亜鉛の製造方法を示す工程図である。
【図6】本発明の実施例4における高純度の無水フッ化ジルコニウム(ZrF)の製造方法を示す工程図である。
【図7】本発明の実施例5における高純度の無水フッ化ランタン(LaF)の製造方法を示す工程図である。
【図8】本発明の実施例6における高純度のフッ化インジウム(InF・3HO)の製造方法を示す工程図である。
【図9】本発明の実施例7における高純度の無水フッ化カドミウムの製造方法を示す工程図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a metal fluoride, particularly a high-purity metal fluoride, and more particularly to a method for producing a high-purity fluoride raw material for an optical amplifier.
[0002]
[Prior art]
ZrF 4 , HfF 4 , LaF 3 , YF 3 , ZnF 2 , CdF 2 , and InF 3 are constituent materials of a fluoride optical fiber for an optical amplifier. Factors inhibiting optical amplification by the fluoride optical fiber include impurities of transition metals such as Fe, Cu, and Ni and oxygen impurities mixed in the optical fiber. These transition metals and oxygen are present as impurities in the constituent materials. For optical amplification of the fluoride optical fiber, high-purity metal fluoride having a transition metal impurity concentration of 1 ppb or less and an oxygen impurity concentration of 1 ppm or less is used. Fabrication is essential.
Conventionally, in the production method of these fluoride optical fiber raw materials, metals, oxides, carbonates, and the like are used as starting materials. For metals and oxides, the metals and the oxides are directly mixed with F 2 gas or HF gas. Regarding a production method and a carbonate which are reacted to form a metal fluoride, there is a method in which hydrofluoric acid is added to the carbonate to produce a hydrate of the metal fluoride. For example, a metal, examples of the starting material an oxide, an F 2 gas is reacted at 190 ° C. to Zr, a method of manufacturing a ZrF 4, reacted at 525 ° C. The F 2 gas to ZrO 2, the ZrF 4 A method of producing, a method of reacting HF gas with ZrO 2 at 550 ° C., or a method of producing ZrF 4 , or putting In into a container, reducing the pressure, sending HF gas into the container, and reacting at 200 ° C. , InF 3 and the like. A disadvantage of ZrF 4 or InF 3 produced by these methods is that there is a danger of handling F 2 gas or HF gas at a high temperature. Next, examples of the starting material carbonate, heat hydrofluoric acid was added to ZnCO 3 reagent special grade, evaporated, concentrated, and ZnF 2 · 4H 2 O, drying hydrogen fluoride gas, There is a production method of heating and dehydrating at 300 ° C. to obtain ZnF 2 . For ZnF 2 produced by this method, an oxide is generated by the ZnCO 3 starting materials CO 2 is or remains for undissolved, dehydrated and dried at 300 ° C., CO 2 and oxides fluoride This has the disadvantage of increasing the loss of the compound optical fiber, and further impeding the optical amplification.
As for the purity of the carbonate of the starting material is at most 5N (99.999%) or so, since the purification is in the step of the reaction with hydrofluoric acid is not performed, the impurity of the transition metal in ZnF 2 produced The concentration is estimated to be 1 ppm or more, and the impurity concentration of oxygen is estimated to be 10 ppm or more, which also increases the loss of the fluoride optical fiber. Furthermore, as a method for producing high-purity zinc fluoride, a purification method in which a pH is adjusted using a water-soluble salt of zinc as a starting material, and metal impurities are removed using β-diketone as an organic reagent for extracting metal impurities is proposed. However, this method has a problem in that oxygen impurities cannot be removed by this method.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned disadvantages by using a metal from which impurities of transition metals such as Fe, Ni, and Cu and oxygen impurities have been removed as a starting material, and to solve the above-mentioned metal fluorides, particularly high-purity metal fluorides. It is an object of the present invention to provide a method for producing a compound.
[0004]
[Means for Solving the Problems]
To summarize the present invention, the present invention relates to a method for producing a metal fluoride, and in a method for producing a metal fluoride, a high-purity metal is used as a starting material , without performing a β-diketone treatment. , the high-purity metal, and heated in a hydrofluoric acid solution containing an oxidizing agent, the high-purity metal, lysed, then cooled hydrofluoric acid solution containing the oxidizing agent, metal fluoride It is characterized in that a precipitate is produced, and the precipitate is subjected to a dehydration and drying treatment.
[0005]
The present invention relates to a method for producing a ZrF 4 by reacting F 2 gas at 190 ° C. to Zr in the prior art, a method of manufacturing a ZrF 4 was reacted at 525 ° C. The F 2 gas to ZrO 2, the HF gas into ZrO 2 method of making a ZrF 4 was reacted at 550 ° C., after putting the in the vessel, is reacted with HF gas, a method of manufacturing a InF 3, heat hydrofluoric acid was added to ZnCO 3, ZnF 2 · 4H 2 O, and a method of producing ZnF 2 by dry HF gas, a method of adding a NaF aqueous solution to an aqueous solution of a zinc salt, generating ZnF 2 .4H 2 O, dehydrating and heating and drying, and then producing zinc fluoride. In order to solve problems such as a purification method of extracting and removing transition metal impurities in an aqueous solution containing zinc by adding β-diketone as an extraction organic reagent, transition metal impurities such as Fe, Ni, and Cu, and oxygen impurities Low-purity metal is used as a starting material, dissolved in hydrofluoric acid containing an oxidizing agent, and then a precipitate of metal fluoride is prepared, and the precipitate is dehydrated and dried to reduce transition metal impurities and oxygen impurities. It is for producing metal fluorides, especially high-purity metal fluorides.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described specifically.
Examples of the metal used as a raw material in the method of the present invention include Zr, Hf, La, Y, Zn, Cd, In, and the like. Among them, high-purity Zr, Hf, or La is useful. is there. The degree of high purity is preferably 6N to 7N.
[0007]
Next, in the method of the present invention, examples of the oxidizing agent to be contained in hydrofluoric acid include various various oxidizing agents. Among them, aqueous hydrogen peroxide, nitric acid, or perchloric acid is preferable. is there.
Heating dissolution does not require special conditions, and may be any condition that allows the metal to be dissolved in the solution by heating. Therefore, high-temperature heating as in the conventional method is not required.
Next, dehydration may be performed by a conventional method, and suction filtration is preferable in operation.
Lastly, drying may be performed by a conventional method, and vacuum drying is preferable in operation.
[0008]
As specifically described above, in the method of the present invention, particularly in the case of a method for producing a high-purity metal fluoride, a metal oxide, a carbonate, and an aqueous solution of a metal salt of the related art are used as starting materials. This is different from the method of producing a high-purity fluoride in that a high-purity metal is used as a starting material, and an oxidizing agent and a fluorinating agent are added to produce a high-purity metal fluoride. Further, it differs from the purification method in which β-diketone is added as an extraction organic reagent to remove metal impurities in that the production method has no purification step.
[0009]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[0010]
Example 1
A method for producing high-purity anhydrous zinc fluoride using 7N (99.999999%) metallic zinc as a starting material will be described with reference to the process chart shown in FIG. 50 g of high-purity metallic zinc is weighed, and 50 ml of 30% hydrogen peroxide solution for electronic industry, 200 ml of hydrofluoric acid and 200 ml of ultrapure water are added, heated and dissolved. After dissolution, the mixture is cooled to obtain a zinc fluoride precipitate. The zinc fluoride precipitate is dehydrated by suction filtration and dried under vacuum. 2, zinc fluoride precipitate material was dehydrated and dried, i.e., ZnF 2 of TG (thermogravimetric analysis) -DTA (differential thermal analysis) is a curve. FIG. 3 is a TG-DTA curve of a commercially available ZnF 2 .4H 2 O having a purity of 99.9%.
In FIGS. 2 and 3, the horizontal axis represents temperature (° C.), the left vertical axis represents weight loss rate (%) in TG, and the right vertical axis represents heat capacity (μV) in DTA.
From FIG. 3, an endothermic peak due to dehydration around 110 ° C. and an endothermic peak due to the melting point of ZnF 2 at 872 ° C. were observed, but in FIG. 2, an endothermic peak other than the endothermic peak due to the melting point of ZnF 2 at 872 ° C. was observed. It was not done. That is, from the results of analysis by X-ray diffraction (XRD) and thermal analysis (TG-DTA), the produced substance is anhydrous ZnF 2 .
[0011]
Further, activation analysis of Fe, Ni, Cu, and oxygen of the produced anhydrous zinc fluoride was performed, and analysis results of 1 ppb for Fe, Ni, and Cu and 1 ppm for oxygen were obtained. Anhydrous zinc fluoride with a high purity of about three orders of magnitude more than the quantitative value of the impurity concentration of Fe, Ni, and Cu and about one digit than the quantitative value of the oxygen impurity concentration of zinc could be produced.
[0012]
Example 2
A method for producing high-purity anhydrous zinc fluoride using 7N (99.999999%) metallic zinc as a starting material will be described with reference to the process chart shown in FIG. 50 g of high-purity metallic zinc is weighed, 100 ml of 61% nitric acid for electronic industry, 200 ml of hydrofluoric acid and 200 ml of ultrapure water are added, heated and dissolved. After dissolution, the mixture is cooled to obtain a zinc fluoride precipitate. The zinc fluoride precipitate is dehydrated by suction filtration and dried under vacuum. In the analysis results of the TG-DTA curve and the infrared absorption (IR) spectrum of the dried zinc fluoride precipitate, no peak corresponding to NOx was observed. The TG-DTA curve of the ZnF 2 preparation was the same as that shown in FIG. 2, and the result of XRD revealed that anhydrous ZnF 2 could be prepared.
Activation analysis of Fe, Ni, Cu, and oxygen in the produced anhydrous zinc fluoride was performed, and an analysis result of 1 ppb for Fe, Ni, and Cu and 1 ppm for oxygen was obtained. Anhydrous zinc fluoride having a purity of about three orders of magnitude higher than the quantitative value of the Fe, Ni, and Cu impurity concentrations and approximately one order of magnitude higher than the quantitative value of the oxygen impurity concentration of zinc oxide was produced.
[0013]
Example 3
A method for producing high-purity anhydrous zinc fluoride using 7N (99.999999%) metallic zinc as a starting material will be described with reference to the process chart shown in FIG. 50 g of high-purity metallic zinc is weighed, and 200 ml of 60% perchloric acid (HClO 4 ), 200 ml of hydrofluoric acid, and 200 ml of ultrapure water for precision analysis of high purity are added, and heated to dissolve. After dissolution, the mixture is cooled to obtain a zinc fluoride precipitate. The zinc fluoride precipitate is dehydrated by suction filtration and dried under vacuum. In the analysis results of the TG-DTA curve and the IR spectrum of the dried zinc fluoride precipitate, no peak corresponding to H 2 O, Cl or ClO 4 was observed. XRD analysis also showed that the zinc fluoride precipitate after drying was ZnF 2 . In addition, the TG-DTA curve of the ZnF 2 product is the same as that shown in FIG.
Activation analysis of Fe, Ni, Cu, and oxygen in the produced anhydrous zinc fluoride was performed, and analysis results of 1 ppb for Fe, Ni, and Cu and 1 ppm for oxygen were obtained. Thus, anhydrous zinc fluoride having a purity of about three orders of magnitude higher than the quantitative values of the Fe, Ni, and Cu impurity concentrations and one order of magnitude higher than the quantitative values of the oxygen impurity concentrations was obtained.
[0014]
Example 4
A method for producing high-purity anhydrous zirconium fluoride (ZrF 4 ) starting from metal zirconium having a purity of 6N (99.9999%) (hereinafter referred to as Zr) will be described with reference to the process chart shown in FIG. 50 g of high-purity Zr is weighed, and 200 ml of 60% perchloric acid (HClO 4 ), 200 ml of hydrofluoric acid, and 200 ml of ultrapure water for high-purity precision analysis are added, heated and dissolved. After dissolution, the mixture is cooled to obtain a zirconium fluoride precipitate. The zirconium fluoride precipitate is dried under a high vacuum after dehydration by suction filtration. Further, analysis by XRD showed that the dried zirconium fluoride precipitate was anhydrous ZrF 4 .
Also, a method for producing high-purity anhydrous hafnium fluoride (HfF 4 ) using 6N (99.9999%) metal hafnium (Hf) as a starting material can be produced by the same method as that for producing anhydrous ZrF 4 . Furthermore, the same anhydrous ZrF 4 or anhydrous HfF 4 can be produced even if nitric acid or aqueous hydrogen peroxide is used as the oxidizing agent.
Performs Fe of ZrF 4 and HfF 4 produced, Ni, Cu, oxygen activation analysis, Fe, Ni, Cu for 1 ppb, 1 ppm results of analyzes oxygen is obtained, conventionally, ZrF 4 and has been carried out With respect to HfF 4 , anhydrous ZrF 4 and anhydrous HfF 4 having a purity higher by about three orders of magnitude than the quantitative values of the Fe, Ni, and Cu impurity concentrations and by approximately one digit than the quantitative values of the oxygen impurity concentrations were produced.
[0015]
Example 5
A method for producing high-purity anhydrous lanthanum fluoride starting from metal lanthanum (La) having a purity of 6N (99.9999%) will be described with reference to the process chart shown in FIG. 50 g of high-purity metal lanthanum is weighed, and 50 ml of 30% aqueous hydrogen peroxide (H 2 O 2 ), 200 ml of hydrofluoric acid, and 200 ml of ultrapure water for electronic industry are added, heated and dissolved. After dissolving and cooling, the lanthanum fluoride precipitate is dehydrated by suction filtration and vacuum dried. No peak corresponding to H 2 O was observed from the TG-DTA curve of LaF 3 . In addition, the result of XRD analysis revealed that the substance prepared after vacuum drying was anhydrous LaF 3 .
A method for producing high-purity anhydrous yttrium fluoride (YF 3 ) using 6N (99.9999%) metal yttrium (Y) as a starting material can be produced by the same method as that for producing LaF 3 . Further, even when nitric acid or perchloric acid is used as an oxidizing agent, the same anhydrous LaF 3 or anhydrous YF 3 can be produced.
Activation analysis of Fe, Ni, Cu, and oxygen in the produced lanthanum fluoride (LaF 3 ) and yttrium fluoride (YF 3 ) was performed, and analysis results of 1 ppb for Fe, Ni, and Cu and 1 ppm for oxygen were obtained. Conventionally, LaF 3 and YF 3 have high purity of anhydrous LaF 3 and anhydrous YF 3 which are three orders of magnitude higher than the quantitative values of Fe, Ni and Cu impurity concentrations and approximately one order of magnitude higher than the quantitative values of oxygen impurity concentrations for LaF 3 and YF 3. Was produced.
[0016]
Example 6
A method for producing high-purity indium fluoride (InF 3 .3H 2 O) starting from metal indium having a purity of 7N (99.999999%) will be described with reference to the process chart shown in FIG. 50 g of high-purity metal indium is weighed, and 100 ml of high-purity 61% nitric acid (HNO 3 ) for electronic industry, 200 ml of hydrofluoric acid and 200 ml of ultrapure water are added, heated and dissolved. After dissolution, the mixture is cooled to obtain an indium fluoride precipitate. The precipitate is dehydrated by suction filtration and dried under vacuum. No peak corresponding to NOx was observed in the TG-DTA curve of the substance prepared after drying, that is, InF 3 .3H 2 O. In addition, XRD analysis revealed that the substance produced after the recrystallization was InF 3 .3H 2 O. Furthermore, the same InF 3 .3H 2 O can be produced even if hydrogen peroxide or perchloric acid is used as the oxidizing agent.
Performs Fe of InF 3 · 3H 2 in O produced, Ni, Cu, oxygen activation analysis, Fe, Ni, Cu for 1 ppb, 1 ppm results of analyzes oxygen is obtained, conventionally, InF 3 which has performed with · 3H 2 O of Fe, Ni, 3 orders of magnitude than the quantitative value of Cu impurity concentration, InF 3 · 3H 2 O as 1 digit higher purity than quantitative value of the oxygen impurity concentration could be produced.
[0017]
Example 7
A method for producing high-purity anhydrous cadmium fluoride starting from cadmium metal having a purity of 6N (99.9999%) will be described with reference to the process chart shown in FIG. 50 g of high-purity metal cadmium is weighed, and 200 ml of 60% perchloric acid (HClO 4 ), 200 ml of hydrofluoric acid, and 200 ml of ultrapure water for precision analysis of high purity are added, and heated to dissolve. After dissolution, the mixture is cooled to obtain a cadmium fluoride precipitate. The cadmium fluoride precipitate is dehydrated by suction filtration and vacuum dried. No peak corresponding to H 2 O, Cl or ClO 4 was observed in the TG-DTA curve and IR spectrum of the substance prepared after drying, ie, CdF 2 . In addition, XRD analysis revealed that the substance prepared after drying was CdF 2 .
Furthermore, the same CdF 2 can be produced even if nitric acid or aqueous hydrogen peroxide is used as the oxidizing agent.
Activation analysis of Fe, Ni, Cu, and oxygen in the produced cadmium fluoride was performed, and an analysis result of 1 ppb for Fe, Ni, and Cu and 1 ppm for oxygen was obtained. Anhydrous CdF 2 having a purity of about three orders of magnitude higher than the quantitative values of the Fe, Ni, and Cu impurity concentrations and one order of magnitude higher than the quantitative values of the oxygen impurity concentrations was produced.
[0018]
【The invention's effect】
As described above, according to the production method of the present invention, a metal fluoride containing anhydrous or hydrate can be produced. In particular, anhydrous ZnF 2 , ZrF 4 , HfF 4 , LaF 3 , YF 3 , and CdF 2 are dehydrated and dried with conventional HF gas at 300 ° C. to 600 ° C. to obtain anhydrous metal fluoride. Since it is very easy to produce anhydrous metal fluoride, it is necessary to suppress oxides generated by heat treatment at high temperature and to produce high-purity anhydrous fluoride with an extremely low concentration of transition metal. You can do it. Further, by using this as a starting material of a fluoride optical fiber amplifier, there is an advantage that an optical fiber amplifier having a high amplification degree can be manufactured.
[Brief description of the drawings]
FIG. 1 is a process chart showing a method for producing high-purity anhydrous zinc fluoride in Example 1 of the present invention.
FIG. 2 is a graph showing a TG-DTA curve of ZnF 2 produced according to Example 1 of the present invention.
FIG. 3 is a graph showing a TG-DTA curve of a commercially available ZnF 2 .4H 2 O.
FIG. 4 is a process chart showing a method for producing high-purity anhydrous zinc fluoride in Example 2 of the present invention.
FIG. 5 is a process chart showing a method for producing high-purity anhydrous zinc fluoride in Example 3 of the present invention.
FIG. 6 is a process chart showing a method for producing high-purity anhydrous zirconium fluoride (ZrF 4 ) in Example 4 of the present invention.
FIG. 7 is a process chart showing a method for producing high-purity anhydrous lanthanum fluoride (LaF 3 ) in Example 5 of the present invention.
FIG. 8 is a process chart showing a method for producing high-purity indium fluoride (InF 3 .3H 2 O) in Example 6 of the present invention.
FIG. 9 is a process chart showing a method for producing high-purity anhydrous cadmium fluoride in Example 7 of the present invention.

Claims (2)

金属フッ化物を製造する方法において、出発物質として高純度の金属を使用し、β−ジケトン処理をすることなく、該高純度金属を、酸化剤を含むフッ化水素酸溶液内で加熱し、該高純度金属を、溶解させ、その後、該酸化剤を含むフッ化水素酸溶液を冷却し、金属フッ化物沈殿を作製し、更に該沈殿物を脱水、乾燥処理することを特徴とする金属フッ化物の製造方法。A method for producing a metal fluoride, using high-purity metal as a starting material, without the β- diketone process, the high-purity metal, and heated in a hydrofluoric acid solution containing an oxidizing agent, wherein A metal fluoride characterized by dissolving a high-purity metal , then cooling the hydrofluoric acid solution containing the oxidizing agent , producing a metal fluoride precipitate, and further dehydrating and drying the precipitate. Production method of the compound. 前記金属が、高純度のZr、Hf、又はLaであることを特徴とする請求項1記載の金属フッ化物の製造方法。The method for producing a metal fluoride according to claim 1, wherein the metal is high-purity Zr, Hf, or La.
JP10082097A 1997-04-04 1997-04-04 Production method of metal fluoride Expired - Lifetime JP3591756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10082097A JP3591756B2 (en) 1997-04-04 1997-04-04 Production method of metal fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10082097A JP3591756B2 (en) 1997-04-04 1997-04-04 Production method of metal fluoride

Publications (2)

Publication Number Publication Date
JPH10287402A JPH10287402A (en) 1998-10-27
JP3591756B2 true JP3591756B2 (en) 2004-11-24

Family

ID=14283986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10082097A Expired - Lifetime JP3591756B2 (en) 1997-04-04 1997-04-04 Production method of metal fluoride

Country Status (1)

Country Link
JP (1) JP3591756B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103221560A (en) * 2010-11-19 2013-07-24 吉坤日矿日石金属株式会社 Production method for high-purity lanthanum, high-purity lanthanum, sputtering target composed of high-purity lanthanum, and metal gate film containing high-purity lanthanum as main component
CN103328663A (en) * 2011-01-21 2013-09-25 吉坤日矿日石金属株式会社 Method for producing high-purity lanthanum, high-purity lanthanum, sputtering target formed from high-purity lanthanum, and metal gate film having high-purity lanthanum as main component

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7261872B2 (en) 2002-10-28 2007-08-28 Platinum Intellectual Property, Lp Method for producing metal fluoride materials
US20040234446A1 (en) * 2002-10-28 2004-11-25 Platinum Research Organization Ltd. Process for the production of metal fluoride materials
KR100749653B1 (en) * 2003-07-25 2007-08-14 닛코킨조쿠 가부시키가이샤 Highly pure hafnium material, target thin film comprising the same and method for producing highly pure hafnium
EP2017360B1 (en) * 2003-11-19 2012-08-08 JX Nippon Mining & Metals Corporation High purity hafnium, high purity hafnium target and method of manufacturing a thin film using high purity hafnium
DE102006017582A1 (en) * 2006-04-13 2007-10-25 Humboldt-Universität Zu Berlin Process for the preparation of metal fluoride sols and gels
JP2008266196A (en) * 2007-04-19 2008-11-06 Nippon Shokubai Co Ltd Method for producing borazine compound
KR101606971B1 (en) 2011-07-06 2016-03-28 제이엑스 킨조쿠 가부시키가이샤 High-purity yttrium, process for producing high-purity yttrium, high-purity yttrium sputtering target, metal gate film deposited with high-purity yttrium sputtering target, and semiconductor element and device equipped with said metal gate film
CN103502511A (en) * 2011-09-28 2014-01-08 吉坤日矿日石金属株式会社 Process for producing high -purity lanthanum, high-purity lanthanum, sputtering target comprising high-purity lanthanum, and metal gate film comprising high-purity lanthanum as main component
WO2013169779A1 (en) 2012-05-07 2013-11-14 Board Of Regents, The University Of Texas System Synergistic mixtures of ionic liquids with other ionic liquids and/or with ashless thiophosphates for antiwear and/or friction reduction applications

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103221560A (en) * 2010-11-19 2013-07-24 吉坤日矿日石金属株式会社 Production method for high-purity lanthanum, high-purity lanthanum, sputtering target composed of high-purity lanthanum, and metal gate film containing high-purity lanthanum as main component
CN103221560B (en) * 2010-11-19 2014-09-24 吉坤日矿日石金属株式会社 Production method for high-purity lanthanum, high-purity lanthanum, sputtering target composed of high-purity lanthanum, and metal gate film containing high-purity lanthanum as main component
CN103328663A (en) * 2011-01-21 2013-09-25 吉坤日矿日石金属株式会社 Method for producing high-purity lanthanum, high-purity lanthanum, sputtering target formed from high-purity lanthanum, and metal gate film having high-purity lanthanum as main component
CN103328663B (en) * 2011-01-21 2015-11-25 吉坤日矿日石金属株式会社 The manufacture method of highly pure lanthanum, highly pure lanthanum, comprise highly pure lanthanum sputtering target and take highly pure lanthanum as the metal gate film of main component

Also Published As

Publication number Publication date
JPH10287402A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
JP3591756B2 (en) Production method of metal fluoride
EP4368575A1 (en) Method for partially reducing vanadium pentoxide using ammonia solution, and vanadium dioxide powder prepared thereby
KR102292363B1 (en) Purification method for purified potassium hexafluoromanganate and potassium hexafluoromanganate
JPS62502683A (en) chemical purification method
CN111099659B (en) Preparation method and application of pentavalent uranium
Volkovich et al. On the formation of uranium (V) species in alkali chloride melts
JP2001039713A (en) Production of zinc oxide
EP1243000A2 (en) A method of separating uranium from irradiated nuclear fuel
CN113772733B (en) Water phase preparation method of anhydrous uranyl chloride
JPH10510507A (en) Chemical processing
JPH0327390A (en) Manufacture of high purity copper alkoxido
JP3591746B2 (en) Method for producing zinc fluoride
JP2001106524A (en) Producing method of alkaline fluoride
Harmon et al. Conversion chemistry of plutonium nitrate
JP2001064015A (en) Production of fluoride of rare earth metal
JP3101708B2 (en) Method for producing lithium manganate thin film
CN109353995A (en) The preparation method of tellurium dioxide
JPH0442802A (en) Production of high-purity metal fluoride
JPH11157836A (en) Production of high purity gallium compound
WO2023193749A1 (en) Method for preparing iron phosphate dihydrate by decomplexing iron phosphate complex
JPH11157835A (en) Production of high purity indium compound
JPH05170445A (en) Production for zirconium fluoride
JPH03137003A (en) Production of high-purity metal fluoride
JP3577224B2 (en) Method for producing strontium hydrogen fluoride
JP3594102B2 (en) Method for producing indium fluoride complex salt

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040820

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term