JPH03134444A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH03134444A
JPH03134444A JP1274396A JP27439689A JPH03134444A JP H03134444 A JPH03134444 A JP H03134444A JP 1274396 A JP1274396 A JP 1274396A JP 27439689 A JP27439689 A JP 27439689A JP H03134444 A JPH03134444 A JP H03134444A
Authority
JP
Japan
Prior art keywords
control device
flow rate
rate control
indoor
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1274396A
Other languages
Japanese (ja)
Other versions
JPH0752043B2 (en
Inventor
Shigeo Takada
茂生 高田
Setsu Nakamura
中村 節
Shuichi Tani
秀一 谷
Tomohiko Kasai
智彦 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1274396A priority Critical patent/JPH0752043B2/en
Publication of JPH03134444A publication Critical patent/JPH03134444A/en
Publication of JPH0752043B2 publication Critical patent/JPH0752043B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Abstract

PURPOSE:To extend a function by closing a valve device and a second flow rate control device by a driving unit upon operation interruption. CONSTITUTION:A title device comprises a branch part 10 including valve devices 8a, 8b each for switchably connecting one sides of a plurality of indoor side heat exchangers 5 to connection pipings 6b-6d or connection pipings 7b-7d, a branch part 11 connected via a flow rate control device 9 to the other sides of the plurality of the indoor side heat exchangers 5 and connected via a flow rate control device 13 to connection pipings 7b-7d, and a driving device 22 for driving the valve devices 8a, 8b and the flow rate control device 13. Upon operation interruption, the valve devices 8a, 8b and the flow rate control device 13 are closed by the driving device 22. Hereby, cooling and heating are optionally performed, i.e., cooling in the one indoor machines and heating in the other indoor machines are simultaneously performed. Further, there is eliminated inclusion of a big volume of a refrigerant into the compressor upon the operation interruption, and there is prevented fluid back operation from an accumulator.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、熱源機1台に対して複数台の室内機を接続
する多室型ヒートポンプ式空気調和装置に関するもので
、特に各室内機毎に冷暖房を選択的に、かつ1方の室内
機では冷房、他方の室内機では暖房を同時に行うことが
できる空気調和装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a multi-room heat pump type air conditioner in which a plurality of indoor units are connected to one heat source unit, and in particular, the invention relates to a multi-room heat pump type air conditioner that connects a plurality of indoor units to one heat source unit. The present invention relates to an air conditioner that can perform heating and cooling selectively, and can simultaneously perform cooling with one indoor unit and heating with the other indoor unit.

〔従来の技術〕[Conventional technology]

従来、熱源機1台に対して複数台の室内機をガス管と液
管の2本の配管で接続し、冷暖房運転をするヒートポン
プ式空気調和装置が一般的であり、各室内機は全て暖房
、または全て冷房を行うように形成されている。
Conventionally, heat pump air conditioners have been common, in which multiple indoor units are connected to one heat source unit using two pipes, a gas pipe and a liquid pipe, and each indoor unit performs heating and cooling operation. , or all configured to provide cooling.

〔発明が解決しようとする課題] 従来の多室型と一トポンプ式空気調和装置は以上のよう
に構成されているので、全ての室内機が、暖房または冷
房にしか運転しないため、冷房が必要な場所で暖房が行
われたり、逆に暖房が必要な場所で冷房が行われる様な
問題があった。
[Problem to be solved by the invention] Conventional multi-room type and one-pump type air conditioners are configured as described above, so all indoor units operate only for heating or cooling, so cooling is not necessary. There was a problem in that heating was performed in places where heating was required, and cooling was performed in places that required heating.

特に、大規模なビルに据え付けた場合、インテリア部と
ペリメータ部、または一般事務室とコンピュータールー
ム等のOA化された部屋では、空調の負荷が著しく異な
るため、特に問題となっている。
In particular, when installed in a large building, the air conditioning load is significantly different between the interior and perimeter areas, or between general offices and computer rooms, which poses a particular problem.

この発明は、上記のような問題点を解決するため釦なさ
れたもので、熱源機1台に対して複数台の室内機を接続
し、各室内機毎に冷暖房を選択的に、かつ一方の室内機
では冷房、他方の室内機では暖房を同時に行うことがで
きる様にして、大規模なビルに据え付けた場合、インテ
リア部とペリメータ部、または一般事務室とコンピュー
タ・ルーム等のOA化された部屋で、空調の負荷が著し
異なっても、それぞれに対応できる多室型と一トポンプ
式空気調和装置を得ることを目的とする。
This invention was developed in order to solve the above-mentioned problems. Multiple indoor units are connected to one heat source unit, and each indoor unit can selectively perform air conditioning and heating. The indoor unit can perform cooling and the other indoor unit can perform heating at the same time, and when installed in a large building, it can be used to open the interior and perimeter areas, or general offices and computer rooms, etc. To provide a multi-room type and one-pump type air conditioner capable of handling each room even if the air conditioning loads differ significantly in each room.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、圧縮機、4方弁、熱源機側熱交換器、アキ
二人レータ等よりなる1台の熱源機と、室内側熱交換器
、第1の流量制御装置等からなる複数台の室内機とを、
第1・第2の接続配管を介して接続したものにおいて、
上記複数台の室内側熱交換器の一方を上記第1の接続配
管または第2の接続配管に切り替え可能に接続する弁装
置を有する第1の分岐部と、上記複数台の室内側熱交換
器の他方に第1の流量制御装置を介して接続され、かつ
第2の流量制御装置を介して第2の接続配管に接続して
なる第2の分岐部と、上記弁装置及び第2の流量制御装
置を駆動する駆動装置とを備え、運転停止時には、上記
駆動装置により上記弁装置及び上記第2の流量制御装置
を閉路させるようにしたことを特徴とするものである。
This invention consists of one heat source machine consisting of a compressor, a four-way valve, a heat exchanger on the heat source side, a two-person rotor, etc., and a plurality of units consisting of an indoor heat exchanger, a first flow rate control device, etc. With the indoor unit,
In those connected via the first and second connection pipes,
a first branching section having a valve device that connects one of the plurality of indoor heat exchangers to the first connection pipe or the second connection pipe; and the plurality of indoor heat exchangers. a second branch section connected to the other of the valve device via the first flow rate control device and connected to the second connection pipe via the second flow rate control device; A drive device that drives a control device is provided, and the drive device closes the valve device and the second flow rate control device when the operation is stopped.

〔代用〕〔substitute〕

この発明において、冷暖房同時運転における暖房主体の
場合は、高圧ガス冷媒を第1の接続配管、第1の分岐部
から暖房しようとしている各室内機に導入して暖房を行
い、その後、冷媒は第2の分岐部から一部は、冷房しよ
うとしている室内機に流入して冷房を行い第1の分岐部
から第2の接続配管に流入する。一方、残妙の冷媒は、
第2の流量制御装置を通って冷房室内機を通った冷媒と
合流して第2の接続配管に流入し、熱源機に戻る。
In this invention, when heating is the main component in simultaneous cooling and heating operation, high-pressure gas refrigerant is introduced from the first connecting pipe and the first branch into each indoor unit to be heated, and then the refrigerant is A portion of the air from the second branch flows into the indoor unit to be cooled, performs cooling, and flows from the first branch into the second connection pipe. On the other hand, Zanmyo's refrigerant is
It passes through the second flow rate control device, joins with the refrigerant that has passed through the cooling indoor unit, flows into the second connection pipe, and returns to the heat source device.

また、冷房主体の場合は、高圧ガス冷媒を熱源機側熱交
換器で任意量熱交換し二相状態として第2の接続配管か
らガス状の冷媒を第1の分岐部を介して暖房しようとす
る室内機に導入して暖房を行い第2の分岐部に流入する
。一方、液状の残りの冷媒は第2の流量制御装置を通っ
て第2の分岐部で暖房しようとする室内機を通った冷媒
と合流して暖房しようとする各室内機に流入して冷房を
行い、その後に第1の分岐部から第1の接続配管を通っ
て熱源機に導かれ再び圧縮機に戻る。
In addition, in the case of mainly cooling, the high-pressure gas refrigerant is exchanged with an arbitrary amount of heat in the heat exchanger on the heat source equipment side to create a two-phase state, and the gaseous refrigerant is supplied from the second connection pipe to the first branch for heating. The air is introduced into the indoor unit for heating, and then flows into the second branch. On the other hand, the remaining liquid refrigerant passes through the second flow rate control device, joins with the refrigerant that has passed through the indoor units that are intended to heat at the second branch, and flows into each indoor unit that is intended to heat, thereby cooling the units. After that, the heat source is guided from the first branch through the first connection pipe to the heat source machine and returns to the compressor.

更に、暖房運転のみの場合、冷媒は熱源機より第1の接
続配管、第1の分岐部を通り、各室内機に導入され、暖
房して第2の分岐部から第2の接続配管を通り熱源機に
戻る。
Furthermore, in the case of only heating operation, the refrigerant is introduced from the heat source device through the first connection pipe and the first branch, into each indoor unit, heated, and then passed through the second connection pipe from the second branch. Return to the heat source machine.

そして、冷房運転のみの場合、冷媒は熱源機より第2の
接続配管、第2の分岐部を通り、各室内機に導入され、
冷房して第1の分岐部から第1の接続配管を通り熱源機
に戻る。
In the case of only cooling operation, the refrigerant is introduced into each indoor unit from the heat source device through the second connection pipe and the second branch,
It is cooled and returns to the heat source device from the first branch through the first connection pipe.

また、運転停止時には、第1の分岐部の弁装置及び第2
の分岐部の第2の流量制御装置を閉状態にすることによ
り、熱源機側と室内機側を分離遮断し、室内機側で相当
量の冷媒を保持することによって熱源機側への過剰な冷
媒戻りを防止し、次起動時の圧縮機の液バツク運転を未
然に防ぐ。
In addition, when the operation is stopped, the valve device of the first branch and the second
By closing the second flow control device of the branch part, the heat source machine side and the indoor unit side are separated and cut off, and a considerable amount of refrigerant is held on the indoor unit side, thereby preventing excessive flow to the heat source machine side. Prevents refrigerant from returning and prevents compressor liquid back operation at next startup.

〔実施例j 以下、この発明の実施例について説明する。[Example j Examples of the present invention will be described below.

第1図はこの発明の一実施例の空気調和装置の冷媒系を
中心とする全体構成図である。また、第2図乃至第4図
は第1図の一実施例における冷暖房運転時の動作状態を
示したもので、第2図は冷房または暖房のみの運転動作
状態図、第3図及び第4図は冷暖房同時運転の動作を示
すもので、第3図は暖房主体(暖房運転容量が冷房運転
容量よ抄大きい場合)を、第4図は冷房主体(冷房運転
容量が暖房運転容量より大きい場合)を示す運転動作状
態図である。そして、第5図は第1図の一実施例におけ
る運転停止時の状態図である。
FIG. 1 is an overall configuration diagram centered on the refrigerant system of an air conditioner according to an embodiment of the present invention. In addition, FIGS. 2 to 4 show operating states during cooling/heating operation in the embodiment shown in FIG. 1, FIG. The figures show the operation of simultaneous cooling and heating operation. Figure 3 shows heating-dominant operation (when heating operation capacity is larger than cooling operation capacity), and Figure 4 shows cooling-dominant operation (when cooling operation capacity is larger than heating operation capacity). ) is an operation state diagram showing the operation state. FIG. 5 is a state diagram when the operation is stopped in one embodiment of FIG. 1.

なお、この実施例では熱源機1台に室内機3台を接続し
た場合について説明するが、2台以上の室内機を接続し
た場合はすべて同様である。
In this embodiment, a case will be described in which three indoor units are connected to one heat source device, but the same applies to cases in which two or more indoor units are connected.

また、図中閉状態の弁装置及び流量制御装置は黒く塗っ
て区別するようにしている。
Further, in the figure, the valve device and flow control device in the closed state are painted black to distinguish them.

第1図において、(A)は熱源機、(B)・(C)・■
)は後述するように互いに並列接続された室内機でそれ
ぞれ同じ構成となっている。(ト))は後述するように
第1の分岐部、第2の流量制御装置、第2の分岐部、気
液分離装置を内蔵した中継機。(1)は圧縮機、(2)
は熱源機の冷媒流通方向を切換える4方弁、(3)は熱
源機側熱交換器、(4)はアキュムレータで、上記機R
(1)〜(3)と接続され熱源機(A)を構成する。
In Figure 1, (A) is a heat source device, (B), (C), ■
) are indoor units that are connected in parallel to each other and have the same configuration, as will be described later. (G)) is a relay machine incorporating a first branch part, a second flow rate control device, a second branch part, and a gas-liquid separation device, as described later. (1) is a compressor, (2)
is a four-way valve that switches the refrigerant flow direction of the heat source machine, (3) is a heat exchanger on the heat source machine side, and (4) is an accumulator.
(1) to (3) are connected to constitute a heat source device (A).

(5)は3台の室内側熱交換器、(6)は熱源機(A)
の4方弁(2)と中継機(g)を接続する第1の接続配
管、(6a)(6b) 、  (6c)はそれぞれ室内
機(8)、 (C1,CD)の室内側熱交換器(5)と
中継機(ト))を接続し、41の接続配管(6)に対応
する室内機側の第1の接続配管、(7)は熱源機(A)
の熱源機側熱交換器(3)と中継機(E)を接続する第
2の接続配管、(7b) 、  (7c) 、  (7
d)はそれぞれ室内a!1(B)・(C)・ω)の室内
側熱交換器(5)と中継機(E)を接続し第2の接続配
管(7)に対応する室内機側の第2の接続配管、(8a
)は室内側の第1の接続配管(sb) 、  (6c)
 、  (sa)と第1の接続配管(6)を接続する開
閉弁、(8b)は室内機側の第1の接続配管(6b)(
be) +  (6d)と第2の接続配管(7)を接続
する開閉弁、(9)は室内側熱交換器(5)K近接して
接続され室内側熱交換器(5)の出口側の冷房時はスー
パーと一ト量、暖房時はオプクール量により制御される
第1の流量制御装置で、室内機側の第2の接続配管(7
b ) 、  (7c) 、  (7d)に接続される
!、(10)は室内機側の第1の接続配管(6a) 、
  (6c) 、  (6d)と、第1の接続配管(6
)を接続する開閉弁(8a)、室内側の第1の接続配管
(6b) 、  (6c) 、  (6d)と第2の接
続配管(7)を接続する開閉弁(8b)よりなる第1の
分岐部、(11)は室内機側の第2の接続配管(7b)
 、  (7c) 、 (7d)と第2の接続配管(7
)よりなる第2の分岐部、(12)は第2の接続配管(
7)の途中に設けられた気液分離装置で、その気相部は
第1の分岐部(10)の開閉弁(8b)に接続され、そ
の液相部は、開閉自在な第2の流量制御装置(13)を
介して第2の分岐部(11)に接続されている。
(5) is three indoor heat exchangers, (6) is heat source equipment (A)
The first connection pipe connects the four-way valve (2) and the repeater (g), (6a), (6b), and (6c) are the indoor heat exchangers of the indoor unit (8) and (C1, CD), respectively. (5) and the repeater (g)), the first connection pipe on the indoor unit side corresponding to the connection pipe (6) of 41, (7) is the heat source machine (A)
second connection piping connecting the heat source machine side heat exchanger (3) and the repeater (E), (7b), (7c), (7
d) are each indoor a! 1 (B), (C), ω), a second connection pipe on the indoor unit side that connects the indoor heat exchanger (5) and the repeater (E) and corresponds to the second connection pipe (7); (8a
) is the first connection pipe on the indoor side (sb), (6c)
, (sa) is the on-off valve that connects the first connection pipe (6), (8b) is the first connection pipe (6b) on the indoor unit side (
be) + An on-off valve connecting (6d) and the second connection pipe (7), (9) is connected adjacent to the indoor heat exchanger (5) K and is connected to the outlet side of the indoor heat exchanger (5). The first flow control device is controlled by the super coolant amount during cooling and by the opcool amount during heating, and the second connecting pipe (7
b), (7c), (7d) are connected! , (10) is the first connection pipe (6a) on the indoor unit side,
(6c), (6d) and the first connection pipe (6
), and a first on-off valve (8b) that connects the first connection pipes (6b), (6c), (6d) on the indoor side and the second connection pipe (7). branch part, (11) is the second connection pipe (7b) on the indoor unit side
, (7c), (7d) and the second connection pipe (7
), (12) is the second connecting pipe (
7), the gas phase part of which is connected to the on-off valve (8b) of the first branch part (10), and the liquid phase part of which is connected to a second flow rate that can be opened and closed. It is connected to the second branch (11) via a control device (13).

このように構成されたこの発明の実施例について説明す
る。
An embodiment of the invention configured in this manner will be described.

まず、第2図を用いて冷房運転のみの場合について説明
する。
First, the case of only cooling operation will be explained using FIG.

すなわち、同図において、4方弁(2)は実線で示すよ
うに圧縮機(1)と熱源機側熱交換器(3)を接続し、
また第1の接続配管(6)とアキュムレータ(4)を接
続する冷房側の動作状態とし、同図に実線矢印で示すよ
うに圧縮機(1)より吐出された高温高圧冷媒ガスは4
方弁(2)を通り、熱源機側熱交換器(3)で熱交換し
て凝縮液化された後、第2の接続配管(7)、気液分離
装置(12)、第2の流量制御装置(13)の順に通り
、更に第2の分岐部(11)、室内機側の第2の接続配
管(7b) 、  (7a) 、  (7d)を通り、
各室内機(B)・(C)・ω)に流入する。そして、各
室内機(B)・<C>・ω)K流入した冷媒は、各室内
側熱交換器(5)出口のスーパーヒート量により制御さ
れる第1の流量制御装置(9) Kより低圧まで減圧さ
れて室内側熱交換器(5)で、室内空気と熱交換して蒸
発しガス化され室内を冷房する。そして、このガス状態
となった冷媒は、室内機側の第1の接続配管(6b) 
、  (6a) 。
That is, in the same figure, the four-way valve (2) connects the compressor (1) and the heat source machine side heat exchanger (3) as shown by the solid line,
In addition, the cooling side that connects the first connection pipe (6) and the accumulator (4) is in an operating state, and as shown by the solid arrow in the figure, the high temperature and high pressure refrigerant gas discharged from the compressor (1) is
After passing through the direction valve (2) and being condensed and liquefied by heat exchange in the heat source equipment side heat exchanger (3), the second connection pipe (7), the gas-liquid separation device (12), and the second flow rate control It passes through the device (13) in this order, and further passes through the second branch part (11), the second connection pipes (7b), (7a), and (7d) on the indoor unit side,
It flows into each indoor unit (B), (C), and ω). Then, the refrigerant flowing into each indoor unit (B), <C>, ω)K is passed through the first flow rate control device (9) K, which is controlled by the amount of superheat at the outlet of each indoor heat exchanger (5). The pressure is reduced to a low pressure, and in the indoor heat exchanger (5), heat is exchanged with the indoor air, and the air is evaporated and gasified to cool the room. Then, this refrigerant in a gas state is transferred to the first connection pipe (6b) on the indoor unit side.
, (6a).

(6d)、開閉弁(8a)、第1の分岐部(10)、第
1の接続配管(6)、熱源機の4方弁(2)、アキュム
レータ(4)を経て圧縮機(1)に吸入される循環サイ
クルを構成し、冷房運転を行う。この時、開閉弁(8a
)は開路、開閉弁(8b)は閉路されている。
(6d), the on-off valve (8a), the first branch part (10), the first connection pipe (6), the four-way valve of the heat source machine (2), and the accumulator (4) to the compressor (1). It forms a circulation cycle for intake air and performs cooling operation. At this time, open/close valve (8a
) is open, and the on-off valve (8b) is closed.

次に、第2図を用いて暖房運転のみの場合について説明
する。
Next, the case of only heating operation will be described using FIG. 2.

すなわち、同図において4方弁(2)は点線で示すよう
に圧縮機(1)と第1の接続配管(6)を接続し、また
熱源機側熱交換器(3)とアキュムレータ(4)を接続
する暖房側の動作状態とし、同図に点線矢印で示すよう
に圧縮機(1)より吐出された高温高圧冷媒ガスは、4
方弁(2)を通り、第1の接続配管(6)、第1の分岐
部Cl0)、開閉弁(8a)、室内機側の第1の接続配
管(6h)、  (6c)、  (6d)の順に通り、
各室内機(B)・(C)・(D)に流入し、室内空気と
熱交換して凝縮液化し、室内を暖房する。そして、この
液状態となった冷媒は、各室内側熱交換器(5)出口の
サブクール量により制御される第1の流量制御装置1t
(9)を通り、室内機側の第2の接続配管(7b)  
(7c) 、  (7d)から第2の分岐部(11)に
流入して合流し、更に第2の流量制御装置(13)を通
り、ここで第1の流量制御装置(9)又は第2の流量制
御装置(13)のどちらか一方で低圧の二相状態まで減
圧される。そして、低圧まで減圧された冷媒は、気液分
離装置(12)、第2の接続配管(7)を経て熱源機(
A)の熱源機側熱交換器(3)に流入し熱交換して蒸発
し、ガス状態となった冷媒は、熱源機の4方弁(2)、
アキュムレータ(4)を経て圧縮機(1)に吸入される
循環サイクルを構成し、暖房運転を行うつこの時、開閉
弁(8a)及び(8b)は、上述した冷房運転のみの場
合と同様に開閉されている。
That is, in the figure, the four-way valve (2) connects the compressor (1) and the first connecting pipe (6) as shown by the dotted line, and also connects the heat exchanger (3) on the heat source side and the accumulator (4). As shown by the dotted arrow in the figure, the high temperature and high pressure refrigerant gas discharged from the compressor (1) is
Passing through the direction valve (2), the first connection pipe (6), the first branch part Cl0), the on-off valve (8a), and the first connection pipe on the indoor unit side (6h), (6c), (6d ),
It flows into each indoor unit (B), (C), and (D), exchanges heat with indoor air, condenses and liquefies, and heats the room. The refrigerant in a liquid state is then transferred to the first flow rate control device 1t, which is controlled by the subcooling amount at the outlet of each indoor heat exchanger (5).
(9) and the second connection pipe (7b) on the indoor unit side
(7c) and (7d) flow into the second branch (11), merge, and further pass through the second flow control device (13), where they flow into the first flow control device (9) or the second flow control device (13). The pressure is reduced to a low pressure two-phase state by either one of the flow rate control devices (13). The refrigerant reduced to a low pressure then passes through the gas-liquid separator (12) and the second connection pipe (7) to the heat source device (
The refrigerant that flows into the heat exchanger (3) on the heat source machine side of A), undergoes heat exchange, evaporates, and becomes a gas state is transferred to the four-way valve (2) of the heat source machine,
When performing a heating operation by configuring a circulation cycle in which air is sucked into the compressor (1) via the accumulator (4), the on-off valves (8a) and (8b) are operated in the same way as in the case of only the cooling operation described above. It is opened and closed.

次に、冷暖房同時運転における暖房主体の場合について
第3図を用いて説明する。ここで、室内機(B)・(C
)を暖房、の)を冷房とする。
Next, a case in which heating is the main component in simultaneous cooling and heating operation will be described using FIG. 3. Here, indoor units (B) and (C
) is for heating, and ) is for cooling.

すなわち、同図において4方弁(2)は点線で示すよう
に圧縮機(1)と第1の接続配管(6)を接続し、また
熱源機側熱交換器(3)とアキュムレータ(4)を接続
する暖房側の動乍状態とし、同図に点線矢印で示すよう
に圧縮機(1)より吐出された高温高圧冷媒ガスは、第
1の接続配管(6)を通して中継機(E)へ送られ、そ
して第1の分岐部(10)、開閉弁(8a)、室内機側
の第1の接続配管(6b)、  (6c)、の順に通り
、暖房しようとする各室内機(B)・(C)に流入し、
室内側熱交換11(5)で室内空気と熱交換して凝縮液
化し、室内を暖房する。そして、この凝縮液化した冷媒
は、各室内側熱交換器(5)出口のサブクール量により
制御されほぼ全開状態の第1の流量制御装置(9)を通
り、少し減圧されて第2の分岐部(11)に流入する。
That is, in the figure, the four-way valve (2) connects the compressor (1) and the first connecting pipe (6) as shown by the dotted line, and also connects the heat exchanger (3) on the heat source side and the accumulator (4). As shown by the dotted line arrow in the same figure, the high-temperature, high-pressure refrigerant gas discharged from the compressor (1) passes through the first connection pipe (6) to the repeater (E). and passes through the first branch part (10), the on-off valve (8a), and the first connection pipes (6b) and (6c) on the indoor unit side, in this order, to each indoor unit (B) to be heated.・Flows into (C),
It exchanges heat with indoor air in the indoor heat exchanger 11 (5), condenses and liquefies it, and heats the room. Then, this condensed and liquefied refrigerant passes through the first flow rate control device (9) which is controlled by the subcooling amount at the outlet of each indoor heat exchanger (5) and is in an almost fully open state, and is slightly depressurized and then sent to the second branch. (11).

モして、この冷媒の一部は、室内機側の第2の接続配管
(7d)を通り冷房しようとする室内機CD)K入り、
室内側熱交換器(5)出口のスーパーと一ト量により制
御される第1の流量制御装@(9)に入り減圧された後
に室内側熱交換器(5)K入って熱交換して蒸発しガス
状態となって室内を冷房し、開閉弁(8b)を介して気
液分離装置(12)に流入する。
Then, a part of this refrigerant passes through the second connection pipe (7d) on the indoor unit side and enters the indoor unit CD) K to be cooled.
After entering the first flow rate control device @ (9) controlled by the flow rate at the outlet of the indoor heat exchanger (5) and being depressurized, it enters the indoor heat exchanger (5) K for heat exchange. It evaporates into a gas state, cools the room, and flows into the gas-liquid separator (12) via the on-off valve (8b).

一方、他の冷媒は第2の分岐部(11)、第2の接続配
管の開閉自在な高圧・低圧値によって制御される第2の
流量制御装置、 (13)を通って気液分離装置(12
)に流入し、冷房しようとする室内機の)を連つた冷媒
と合流して第2の接続配管(力に流入し、熱源機(A)
の熱源機側熱交換器(3)に流入し熱交換して蒸発しガ
ス状態となる。そして、その冷媒は、熱源機の4方弁(
2)、アキュムレータ(4)を経て圧縮機(1)に吸入
される循環サイクルを構成し、暖房主体運転を行う。こ
の時、暖房しようとする室内機(B)・(C)に接続さ
れた開閉弁(8a)は開路、(8b)は閉路されており
、冷房しようとする室内機(D)に接続される開閉弁(
8a)は閉路、(8b)は開路されている。
On the other hand, other refrigerants pass through the second branch part (11), the second flow rate control device controlled by the high and low pressure values that can be opened and closed in the second connection pipe, and the gas-liquid separation device (13). 12
) of the indoor unit to be cooled, the refrigerant flows into the second connection pipe (the heat source unit (A)
It flows into the heat exchanger (3) on the heat source side, exchanges heat, and evaporates into a gas state. The refrigerant then flows through the heat source machine's four-way valve (
2) A circulation cycle is configured in which air is sucked into the compressor (1) via the accumulator (4), and heating-based operation is performed. At this time, the on-off valves (8a) connected to the indoor units (B) and (C) that are to be heated are open, and the valves (8b) are closed, and are connected to the indoor unit (D) that is to be cooled. On-off valve (
8a) is a closed circuit, and (8b) is an open circuit.

次に、冷暖房同時運転における冷房主体の場合について
第4図を用いて説明する。ここで、室内機(B)・(C
)を冷房、CD)を暖房とする。
Next, a case in which air conditioning is mainly used in simultaneous heating and cooling operation will be described using FIG. 4. Here, indoor units (B) and (C
) is for cooling, and CD) is for heating.

すなわち、同図において、4方弁C;2)は実線で示す
ように圧縮機(1)と熱源機側熱交換器(3)を接続し
、また第1の接続配管(6)とアキュムレータ(4)を
接続する冷房側の動作状態とし、同図に実線矢印で示す
ように圧縮機(1)より吐出された高温高圧冷媒ガスは
、熱源側熱交換器(3)で任意量を熱交換して二相の高
温高圧状態となり、第2の接続配管(7)により、中継
機(E)の気液分離装置(12)へ送られる。
That is, in the same figure, the four-way valve C; 2) connects the compressor (1) and the heat source equipment side heat exchanger (3) as shown by the solid line, and also connects the first connection pipe (6) and the accumulator ( 4) is connected to the air conditioner, and as shown by the solid arrow in the figure, the high-temperature, high-pressure refrigerant gas discharged from the compressor (1) is heat-exchanged in an arbitrary amount by the heat exchanger (3) on the heat source side. It becomes a two-phase high temperature and high pressure state, and is sent to the gas-liquid separator (12) of the repeater (E) through the second connection pipe (7).

そして、ここで、ガス状冷媒と液状冷媒に分離され、分
離されたガス状冷1tl−第1の分岐部(lO)、開閉
弁(8b)、室内機側の第1の接続配管(6d)、の順
に通り、暖房しようとする室内機(D)に流入し、室内
側熱交換器(5〕で室内空気と熱交換して凝縮液化し、
室内を暖房する。更に、室内側熱交換器(5)出口のサ
ブクール量により制御されほぼ全開状態の第1の流量制
御装置(9)を通り、少し減圧されて第2の分岐部(1
1)に流入する。
And here, the gaseous refrigerant is separated into the gaseous refrigerant and the liquid refrigerant, and the separated gaseous refrigerant 1tl - the first branch part (lO), the on-off valve (8b), and the first connection pipe on the indoor unit side (6d) , flows into the indoor unit (D) to be heated, exchanges heat with indoor air in the indoor heat exchanger (5), condenses and liquefies,
Heat the room. Furthermore, it passes through the first flow control device (9) which is controlled by the subcooling amount at the outlet of the indoor heat exchanger (5) and is in an almost fully open state, and is slightly depressurized and flows into the second branch part (1
1).

一方、残りの液状冷媒は、第2の接続配管の開閉自在な
高圧・低圧値によって制御される第2の流量制御装置(
13)を通って第2の分岐部(11)に流入し、暖房し
ようとする室内機CD)を通った冷媒と合流する。そし
て、第2の分岐部(11)、室内機側の第2の接続配管
(rb)、  (7c)、の順に通り各室内機(B)・
(C)に流入する。そして、各室内機(B)・(C)に
流入した冷媒は、各室内側熱交換器(5)出口のスーパ
ーヒート量により制御される第1の流量制御装@(9)
により低圧まで減圧されて、室内空気と熱交換して蒸発
しガス化され室内を冷房する。更に、このガス状態とな
った冷媒は、室内機側の第1の接続配管(sb) 、 
 (6b)、開閉弁(8a)、第1の分岐部(10)、
第1の接続配管(6)、熱源機の4方弁(2)、アキュ
ムレータ(4)を経て圧縮機(1)に吸入される遁環サ
イクルを構成し、冷房主体運転を行う。この時、室内機
(B)・(C)・CD)に接続された開閉弁(8a)及
び(8b)は暖房主体運転と同様に開閉されている。
On the other hand, the remaining liquid refrigerant is controlled by the second flow rate control device (
13) and flows into the second branch part (11), where it joins with the refrigerant that has passed through the indoor unit CD) to be heated. Then, each indoor unit (B) passes through the second branch part (11), the second connection pipe (rb) on the indoor unit side, (7c), and so on.
(C). The refrigerant flowing into each indoor unit (B) and (C) is controlled by the amount of superheat at the outlet of each indoor heat exchanger (5) via a first flow rate control device @(9).
The pressure is reduced to low pressure, and it exchanges heat with the indoor air and evaporates into gas, cooling the room. Furthermore, this refrigerant in a gas state is transferred to the first connection pipe (sb) on the indoor unit side,
(6b), on-off valve (8a), first branch part (10),
The air is sucked into the compressor (1) through the first connecting pipe (6), the four-way valve (2) of the heat source device, and the accumulator (4) to form a closed loop cycle, and performs cooling-based operation. At this time, the on-off valves (8a) and (8b) connected to the indoor units (B), (C), and CD) are opened and closed in the same manner as in the heating-based operation.

更に、第5図を用いて運転停止時の状態について説明す
る。
Furthermore, the state when the operation is stopped will be explained using FIG. 5.

すなわち、運転停止時には同図に示すように第1の分岐
部の開閉弁(88)及び(8b)を共に閉路としさらに
第2の流量制御装置(13)も全閉状態とすることによ
り、熱源機(AJ側と室内機ω)、 (C1,■)側を
分離遮断し、室内機(3)、(C1,の)側に相当量の
冷媒を保持することによって、熱源機(A)側への過剰
な冷媒戻りを防止し、次起動時の圧縮機(1)の液バツ
ク運転を未然に防ぐ。
That is, when the operation is stopped, as shown in the figure, both the on-off valves (88) and (8b) of the first branch are closed, and the second flow rate control device (13) is also fully closed, thereby shutting down the heat source. By separating and shutting off the machine (AJ side and indoor unit ω) and (C1, ■) side, and holding a considerable amount of refrigerant on the indoor unit (3) and (C1,) side, This prevents excessive refrigerant from returning to the compressor (1) and prevents liquid back operation of the compressor (1) at the next startup.

次に、上記一実施例における4方弁、開閉弁、及び運転
停止時の第2の流量制御装置の制御について、第6図、
第7図を用いて説明する。第6図は上記制御のブロック
図、第7図はそのフローチャートである。
Next, FIG. 6 shows the control of the four-way valve, the on-off valve, and the second flow rate control device when the operation is stopped in the above embodiment.
This will be explained using FIG. FIG. 6 is a block diagram of the above control, and FIG. 7 is a flowchart thereof.

第6図において、各室内機運転モード決定手段(14)
、及び各室内機容量決定手段(15)により、運転モー
ド決定手段(16)で運転停止及び冷暖房運転容量の比
率を求め、それに応じて、4方弁動作決定手段(17)
、開閉弁動作決定手段(18)、第2の流量制御装置開
度決定手段(19)により、上記4方弁(21、開閉弁
(8a)及び(8b)、第2の流量制御装置(13)の
動作を決定し、4方弁駆動装置(20)、開閉弁駆動装
置(21)、第2の流量制御装置駆動装置ff(22)
により上記4方弁伐)、開閉弁(8a)及び(8b)、
第2の流量制御装置(13)を駆動する。
In FIG. 6, each indoor unit operation mode determining means (14)
, and each indoor unit capacity determination means (15), the operation mode determination means (16) determines the ratio of operation stop and cooling/heating operation capacity, and accordingly, the four-way valve operation determination means (17)
, the on-off valve operation determining means (18), and the second flow rate control device opening degree determining means (19), the four-way valve (21, the on-off valves (8a) and (8b), the second flow rate control device (13) ), and determines the operation of the four-way valve drive device (20), the on-off valve drive device (21), and the second flow control device drive device ff (22).
According to the above four-way valve), on-off valves (8a) and (8b),
Drive the second flow control device (13).

第7図に、上記4方弁(2)、開閉弁(8a)及び(8
b)、第2の流量制御装置(13)の動作決定制御のフ
ローチャートを示す。
Figure 7 shows the four-way valve (2), the on-off valve (8a), and the on-off valve (8a).
b) shows a flowchart of operation decision control of the second flow rate control device (13).

同図において、ステップ(23)で運転室内機の有無を
判定し、運転室内機がある場合はステップ(24)へ、
そうでない場合はステップ(31)へ進む。
In the same figure, in step (23) it is determined whether there is an indoor unit for the operator, and if there is an indoor unit for the operator, the process proceeds to step (24);
If not, proceed to step (31).

ステップ(24)は運転室内機のうち冷房運転を行う冷
房運転容量と暖房運転を行う暖房運転容量を比較判定し
、冷房運転容量の方が大きい場合はステップ(25)へ
、そうでない場合はステップ(26)へ進むロ ステップ(25)では、運転室内機が冷房運転のみであ
るかどうかを判定し、冷房運転のみである場合はステッ
プ(27)へ、そうでない場合はステップ(28)へ進
む。一方、ステップ(カ)では、運転室内機が暖房運転
のみであるかどうかを判定し、暖房運転のみである場合
はステップ(29)へ、そうでない場合はステップ(3
0)へ進む。
Step (24) compares and determines the cooling operation capacity for cooling operation and the heating operation capacity for heating operation among the operating indoor units, and if the cooling operation capacity is larger, proceed to step (25), otherwise proceed to step Proceed to step (26). In step (25), it is determined whether the operating indoor unit is only in cooling operation. If it is only in cooling operation, proceed to step (27); otherwise, proceed to step (28). . On the other hand, in step (f), it is determined whether the operating indoor unit is only in heating operation, and if it is only in heating operation, the process goes to step (29), otherwise, step (3)
Proceed to 0).

以上の判定により分離されたステップ(27)〜(31
)が、それぞれ、第2図乃至第5図で説明した運転状態
の実施例に対応する。
Steps (27) to (31) separated by the above determination
) respectively correspond to the embodiments of the operating states described in FIGS. 2 to 5.

すなわち、ステップ(27)は第2図で説明した冷房運
転のみの場合であり、4方弁(2)は冷房側、開閉弁(
8a)は開路、開閉弁(8b)は閉路とする。
That is, step (27) is for only the cooling operation explained in FIG. 2, and the four-way valve (2) is on the cooling side,
8a) is open, and on-off valve (8b) is closed.

ステップ(28)は第4図で説明した冷暖房同時運転に
おける冷房主体の場合であり、4方弁(2)は冷房側、
冷房しようとする各室内機に接続される開閉弁(88)
は開路、開閉弁(8b)は閉路に、また暖房しようとす
る各室内機に接続される開閉弁(8a)は閉路、開閉弁
(8b)は開路とする。
Step (28) is the case where cooling is the main component in the simultaneous heating and cooling operation explained in FIG. 4, and the four-way valve (2) is on the cooling side,
Opening/closing valve (88) connected to each indoor unit to be cooled
is open, the on-off valve (8b) is closed, the on-off valve (8a) connected to each indoor unit to be heated is closed, and the on-off valve (8b) is open.

ステップ(29)は第2図で説明した暖房運転のみの場
合であり、4方弁(2)は暖房側、開閉弁(8a)は開
路、開閉弁(8b)は閉路とする。
Step (29) is for only the heating operation described in FIG. 2, and the four-way valve (2) is on the heating side, the on-off valve (8a) is open, and the on-off valve (8b) is closed.

ステップ(30)は第3図で説明した冷暖房同時運転に
おける暖房主体の場合であり、4方弁(2)は暖房側、
暖房しようとする各室内機に接続される開閉弁(8a)
は開路、開閉弁(8h)は閉路K、また冷房しようとす
る各室内機に接続される開閉弁(8a)は閉路、開閉弁
(8b)は開路とする。
Step (30) is the case where heating is the main component in the simultaneous cooling and heating operation explained in FIG. 3, and the four-way valve (2) is on the heating side,
Opening/closing valve (8a) connected to each indoor unit to be heated
is open, the on-off valve (8h) is closed, the on-off valve (8a) connected to each indoor unit to be cooled is closed, and the on-off valve (8b) is open.

ステップ(31)は第5図で説明した運転停止時の場合
であり、4方弁(2)は冷m側、開閉弁(8a)は閉路
、開閉弁(8b)は閉路、第2の流量制御装置(13)
は全閉状態とする。
Step (31) is the case when the operation is stopped as explained in FIG. Control device (13)
is fully closed.

なお、ステップ(27)〜(30)においては第2の流
量制御装置(13)の開度決定は行わない。
Note that in steps (27) to (30), the opening degree of the second flow rate control device (13) is not determined.

[発明の効果〕 以上説明した通り、この発明の空気調和装Mは圧縮機、
4方弁、熱源機側熱交換器、アキュムレータ等よりなる
1台の熱源機と、室内側熱交換器、第1の流量制御装置
等からなる複数台の室内機とを、第1−第2の接続配管
を介して接続したものにおいて、上記複数台の室内側熱
交換器の一方を上記、第1の接続配管、または、第2の
接続配管に切り替え可能に接続する弁装置を有する第1
の分岐部と、上記複数台の室内側熱交換器の他方に、第
1の流量制御装置を介して接続され、かつ第2の流量制
御装置を介して第2の接続配管に接続してなる第2の分
岐部と、上記弁装置及び上記第2の流量制御装置を駆動
する駆動装置とを備え、運転停止時には、上記駆動装置
により上記弁装置及び上記第2の流量制御装置を閉路さ
せるようにしたものである。従って、冷暖房を選択的に
、かつ、一方の室内機では冷房、他方の室内機では暖房
を同時に行うことができ、しかも運転停止時に、上記弁
装置及び第2の流量制御装置を閉じることにより、上記
弁装置及び第2の流量制御装置より各室内機側は封鎖さ
れ、運転時とほぼ同量の冷媒量をその封鎖部分に保持す
るので、熱源機に過剰な冷媒が戻ることがなく、停止時
に圧縮機内に多量の冷媒が寝込むことがなく、圧縮機の
起動時の液圧縮もなく、アキュムレータからの液パツク
運転も防止できる。
[Effects of the Invention] As explained above, the air conditioner M of the present invention includes a compressor,
One heat source device consisting of a four-way valve, a heat exchanger on the heat source side, an accumulator, etc., and a plurality of indoor units consisting of an indoor heat exchanger, a first flow rate control device, etc. A first connection pipe having a valve device that connects one of the plurality of indoor heat exchangers to the first connection pipe or the second connection pipe in a switchable manner.
and the other of the plurality of indoor heat exchangers via a first flow rate control device, and connected to a second connection pipe via a second flow rate control device. a second branching portion; and a drive device that drives the valve device and the second flow rate control device, and the drive device closes the valve device and the second flow rate control device when the operation is stopped. This is what I did. Therefore, heating and cooling can be performed selectively, cooling with one indoor unit and heating with the other indoor unit at the same time.Moreover, by closing the valve device and the second flow rate control device when the operation is stopped, Each indoor unit side is sealed off from the above valve device and second flow rate control device, and almost the same amount of refrigerant as during operation is held in the sealed portion, so excess refrigerant does not return to the heat source equipment and the unit is stopped. At times, a large amount of refrigerant does not stay in the compressor, there is no liquid compression when the compressor is started, and liquid pack operation from the accumulator can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の空気調和装置の冷媒系を
中心とする全体構成図、第2図は第1図で示した一実施
例の冷房または暖房のみの運転動作状態図、第3図は第
1図で示した一実施例の暖房主体(暖房運転容量か冷房
運転容量より大きい場合)の運転Ilc!I作状態図、
第4図は第1図で示した一実施例の冷房主体(冷房運転
容量が暖房運転容量より大きい場合)を示す運転動作状
態図、第5図は第1図に示した一実施例で運転停止時の
状態図、第6図は第1図で示した一実施例の制御ブロッ
ク図、第7図はそのフローチャートである。 図において、(A)は熱源機、(B)、 (C1,Uh
室内!、田)は中継機、(1)は圧縮機、(2)は熱源
機の4方弁、(3)/fi勲源機mJ熱交換器、(4)
はアキュムレータ、・(5)は室内側熱交換器、(6)
は第1の接続配管、(6b)(6c) 、  (6d)
は室内機側の第1接続配管、(7)は第2の接続配管、
(7b)、  (7c) 、  (u)は室内機側の第
2の接続配管、(8a)・(8b)は開閉弁、(9)は
第1の流量制御装置、(lO)は第1の分岐部、(11
)は第2の分岐部、(13)は第2の流量制御装置であ
る。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is an overall configuration diagram centered on the refrigerant system of an air conditioner according to an embodiment of the present invention, FIG. Figure 3 shows the operation Ilc! mainly for heating (when the heating operation capacity is larger than the cooling operation capacity) in the embodiment shown in Figure 1. I production state diagram,
FIG. 4 is an operational state diagram showing the cooling-main operation (when the cooling operation capacity is larger than the heating operation capacity) of the embodiment shown in FIG. 1, and FIG. 5 is the operation state diagram of the embodiment shown in FIG. 1. FIG. 6 is a control block diagram of the embodiment shown in FIG. 1, and FIG. 7 is a flowchart thereof. In the figure, (A) is a heat source machine, (B), (C1, Uh
Indoors! , 田) is the repeater, (1) is the compressor, (2) is the four-way valve of the heat source machine, (3) is the heat exchanger, (4)
is an accumulator, (5) is an indoor heat exchanger, (6)
are the first connection pipes, (6b) (6c), (6d)
is the first connection pipe on the indoor unit side, (7) is the second connection pipe,
(7b), (7c), and (u) are the second connection pipes on the indoor unit side, (8a) and (8b) are on-off valves, (9) is the first flow rate control device, and (lO) is the first Branch of (11
) is the second branch, and (13) is the second flow rate control device. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、4方弁、熱源機側熱交換器、アキュムレータ等
よりなる1台の熱源機と、室内側熱交換器、第1の流量
制御装置等からなる複数台の室内機とを、第1、第2の
接続配管を介して接続したものにおいて、上記複数台の
室内側熱交換器の一方を上記第1の接続配管、または第
2の接続配管に切り替え可能に接続する弁装置を有する
第1の分岐部と、上記複数台の室内側熱交換器の他方に
、第1の流量制御装置を介して接続され、かつ第2の流
量制御装置を介して第2の接続配管に接続してなる第2
の分岐部と、上記弁装置及び上記第2の流量制御装置を
駆動する駆動装置とを備え、運転停止時には上記駆動装
置により上記弁装置及び上記第2の流量制御装置を閉路
させるようにしたことを特徴とする空気調和装置。
One heat source machine consisting of a compressor, a four-way valve, a heat exchanger on the heat source side, an accumulator, etc., and a plurality of indoor units consisting of an indoor heat exchanger, a first flow rate control device, etc. , which is connected via a second connection pipe, and has a valve device that connects one of the plurality of indoor heat exchangers to the first connection pipe or the second connection pipe in a switchable manner. 1 branch part and the other of the plurality of indoor heat exchangers via a first flow rate control device, and connected to a second connection pipe via a second flow rate control device. becoming second
and a drive device for driving the valve device and the second flow rate control device, and the drive device closes the circuit between the valve device and the second flow rate control device when the operation is stopped. An air conditioner featuring:
JP1274396A 1989-10-19 1989-10-19 Air conditioner Expired - Lifetime JPH0752043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1274396A JPH0752043B2 (en) 1989-10-19 1989-10-19 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1274396A JPH0752043B2 (en) 1989-10-19 1989-10-19 Air conditioner

Publications (2)

Publication Number Publication Date
JPH03134444A true JPH03134444A (en) 1991-06-07
JPH0752043B2 JPH0752043B2 (en) 1995-06-05

Family

ID=17541086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1274396A Expired - Lifetime JPH0752043B2 (en) 1989-10-19 1989-10-19 Air conditioner

Country Status (1)

Country Link
JP (1) JPH0752043B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219059A (en) * 2003-01-13 2004-08-05 Lg Electronics Inc Multi-air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219059A (en) * 2003-01-13 2004-08-05 Lg Electronics Inc Multi-air conditioner
JP4699689B2 (en) * 2003-01-13 2011-06-15 エルジー エレクトロニクス インコーポレイティド Multi air conditioner

Also Published As

Publication number Publication date
JPH0752043B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
JPH0754217B2 (en) Air conditioner
JPH01134172A (en) Air conditioner
JPH02118372A (en) Air-conditioning device
JP2522361B2 (en) Air conditioner
JP2944507B2 (en) Air conditioner
JP2598550B2 (en) Air conditioner
JPH03134444A (en) Air conditioner
JP2727733B2 (en) Air conditioner
JP2601052B2 (en) Air conditioner
JPH05172431A (en) Air conditioning apparatus
JP2503669B2 (en) Air conditioner
JP2621687B2 (en) Air conditioner
JP3092212B2 (en) Air conditioner
JPH0752044B2 (en) Air conditioner
JPH0754218B2 (en) Air conditioner
JPH0765825B2 (en) Air conditioner
JPH04347466A (en) Air conditioner
JPH04110573A (en) Air conditioner
JP2503668B2 (en) Air conditioner
JP3092214B2 (en) Air conditioner
JPH05322348A (en) Air conditioner
JPH0752045B2 (en) Air conditioner
JPH05172430A (en) Air conditioning apparatus
JPH05172432A (en) Air conditioning apparatus
JP2508310B2 (en) Air conditioner and air conditioner control method