JPH0312970A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0312970A
JPH0312970A JP1146814A JP14681489A JPH0312970A JP H0312970 A JPH0312970 A JP H0312970A JP 1146814 A JP1146814 A JP 1146814A JP 14681489 A JP14681489 A JP 14681489A JP H0312970 A JPH0312970 A JP H0312970A
Authority
JP
Japan
Prior art keywords
semiconductor region
layer
semiconductor
main surface
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1146814A
Other languages
Japanese (ja)
Other versions
JPH0783125B2 (en
Inventor
Mutsuhiro Mori
睦宏 森
Yasumichi Yasuda
安田 保道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1146814A priority Critical patent/JPH0783125B2/en
Priority to KR1019900008598A priority patent/KR0173778B1/en
Publication of JPH0312970A publication Critical patent/JPH0312970A/en
Priority to US07/762,793 priority patent/US5208471A/en
Priority to US08/017,420 priority patent/US5262339A/en
Publication of JPH0783125B2 publication Critical patent/JPH0783125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)

Abstract

PURPOSE:To enable high-speed and large-breakdown-proof-quantity turnoff operation by placing a contact point of a second main electrode and a second semiconductor region in said second semiconductor region in contact with a fourth semiconductor region closer to the force semiconductor region than to a third semiconductor region. CONSTITUTION:A plurality of p-layers 13 are arranged in parallel so that the outer one may come into contact with a surrounding p-layer 15 and an n<+> layer 14 is formed in the outer p-layer 13 or the next p-layer 13 to place a contact point of the same p-layer 13 and a second main electrode 3 closer to the surrounding p-layer 15 than to the n<+> layer 14. By this placing the contact point of the second main electrode 3, the surrounding p-layer 15, and the p-layer 13 closer to the surrounding p-layer 15, and the p-layer 13 closer to the surrounding p-layer 15 than the nearest n<+> layer 14, a hole current and a charging current stored around substrate are drawn quickly in turnoff and a parasitic thyristor and a parasitic transistor are not activated by said hole current and charging current. Thereby high-speed and large-breakdwon-proof-quantity turnoff operation can be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、絶縁ゲートをもっトランジスタに係り、特に
高速性と破壊耐量の優れた構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a transistor having an insulated gate, and particularly to a structure with excellent high speed and breakdown resistance.

〔従来の技術〕[Conventional technology]

最近、高周波で動作できる高耐圧のパワースイッチング
素子として、パワーMO3FET (MetalOxi
de−5emiconductor Field Ef
fect Trans]5tor)やIGBT (絶縁
ゲートバイポーラトランジスタ。
Recently, power MO3FET (MetalOxi
de-5emiconductor Field Ef
trans]5tor) and IGBT (insulated gate bipolar transistor).

In5ulated Gate Bipolar Tr
ans4stor)が多用されるようになってきている
。第5図は、それらの表面から見た模式図を示す。パワ
ーMO5FETやIGBT 1では、半導体基板1上に
第1の絶縁ゲート電極4が例えばストライプ状に形成さ
れ、それら第1の絶縁ゲート電極4は周囲の第2の絶縁
ゲート電極6に電気的に接続している。10は絶縁ゲー
ト電極4,6に制御電力を供給する電極線である。
In5lated Gate Bipolar Tr
ans4stor) is becoming widely used. FIG. 5 shows a schematic view from their surface. In a power MO5FET or an IGBT 1, first insulated gate electrodes 4 are formed, for example, in a stripe shape on a semiconductor substrate 1, and these first insulated gate electrodes 4 are electrically connected to a surrounding second insulated gate electrode 6. are doing. Reference numeral 10 denotes an electrode line that supplies control power to the insulated gate electrodes 4 and 6.

第6図は、第5図のVI−Vlの断面構造を示している
(富士時報VoQ、61.Na1l第697〜7oO頁
)。
FIG. 6 shows a cross-sectional structure taken along VI-Vl in FIG. 5 (Fuji Jiho VoQ, 61.Na1l, pages 697-7oO).

第6図において、半導体基板1は一対の主表面101.
102を有し、一方の主表面101に隣接して高不純物
濃度を有するn十又はp+の基板領域]−1、基板領域
11に隣接してそれより低不純物濃度のn−層12、n
−層12内に幾何的に分離してn−層12より高不純物
濃度を有する複数個の2層13がそれぞれ形成されてい
る。さらに2層13内にそれより高不純物濃度のn中層
14が2個ずつ分離して形成されている。他方の主表面
102には、n−J112.2層13及びn+十層4が
露出している。2は基板領域11表面にオーミック接触
したコレクタ電極、3は他方の主表面に102において
、2個のn中層14及びその間に位置する2層13にオ
ーミック接触するエミッタ電極である。第1の絶縁ゲー
ト電極4は、絶縁膜5を介して、n−層12から2層1
3を越えてn中層14上に達するように形成されている
In FIG. 6, semiconductor substrate 1 has a pair of main surfaces 101.
102 and has a high impurity concentration adjacent to one main surface 101 and has an n+ or p+ substrate region]-1, an n− layer 12 and a lower impurity concentration adjacent to the substrate region 11;
A plurality of two layers 13 each having a higher impurity concentration than the n- layer 12 are formed in the − layer 12 and are geometrically separated from each other. Furthermore, within the two layers 13, two n-middle layers 14 each having a higher impurity concentration are formed separately. On the other main surface 102, the n-J112.2 layer 13 and the n+10 layer 4 are exposed. 2 is a collector electrode that is in ohmic contact with the surface of the substrate region 11, and 3 is an emitter electrode that is in ohmic contact with the two n-middle layers 14 and the two layers 13 located therebetween at 102 on the other main surface. The first insulated gate electrode 4 is formed from the n- layer 12 to the second layer 1 through the insulating film 5.
3 to reach above the n-middle layer 14.

第2の絶縁ゲート電極6は寄生容量を減らすため、周縁
上に位置する2層13の周縁側に位置するように一体に
形成された2層13より厚い周辺p上層15」二に絶縁
膜7を介して形成されている。エミッタ電極3は絶縁膜
8で第1.第2の絶縁ゲー1へ電極4,6から絶縁分離
さオしている。
In order to reduce parasitic capacitance, the second insulated gate electrode 6 has a peripheral p upper layer 15 that is thicker than the two layers 13 that are integrally formed so as to be located on the peripheral side of the two layers 13 located on the peripheral edge. is formed through. The emitter electrode 3 is formed by the first insulating film 8. The second insulating gate 1 is insulated and separated from the electrodes 4 and 6.

以上のように、パワーMO5FET及びI G B T
は、各節1の絶縁ゲート電極4を中心としたユニツ1−
セルが繰り返し形成された領域■と、それ以外の周辺領
域■に分けられる。
As mentioned above, power MO5FET and IGBT
is a unit 1- centered around the insulated gate electrode 4 of each node 1.
It is divided into a region (2) in which cells are repeatedly formed and the other peripheral region (2).

このような半導体装置をオン状態にするには、エミッタ
電極3に対してコレクタ電極2を正の電位とし、さらに
第1.第2の絶縁ゲート電極4゜6をエミッタ電極3に
対して正の電位にする。これにより、絶縁膜5に隣接す
る1層13の表面がnilに反転し、電子がエミッタ電
極3、n中層14、反転したn層、n−層12を通って
p子基板領域11へ流れ込む。その結果、P子基板領域
11から正の電荷であるポール■が注入が促され、ポー
ル■はn−層12.1層13を通ってエミッタ電極3へ
流れ込む。以上の電子及びホールの流れにより、電流が
コレクタ電極12からエミッタ電極3へ流れる。さらに
オン状態をオフ状態にするには、第1.第2の絶縁ゲー
ト電極4,6の電位を取り除けば良い。反転したn層が
消滅し、電子電流が遮断される結果、ホールの注入もな
くなり、電流が流れなくなる。
To turn on such a semiconductor device, the collector electrode 2 is set to a positive potential with respect to the emitter electrode 3, and then the first . The second insulated gate electrode 4.6 is brought to a positive potential with respect to the emitter electrode 3. As a result, the surface of the first layer 13 adjacent to the insulating film 5 is inverted to nil, and electrons flow into the p-substrate region 11 through the emitter electrode 3, the n-layer 14, the inverted n-layer, and the n- layer 12. As a result, the injection of positive charge pole (2) from the P-substrate region 11 is promoted, and the pole (2) flows into the emitter electrode 3 through the n- layer 12.1 layer 13. Due to the above flow of electrons and holes, a current flows from the collector electrode 12 to the emitter electrode 3. Furthermore, in order to change the on state to the off state, first. The potential of the second insulated gate electrodes 4 and 6 may be removed. The inverted n-layer disappears and the electron current is cut off, resulting in no hole injection and no current flow.

IGBTは基板領域11がp+であり、p十層基板領域
11、n−層12.p層13.n十層14の4層構造と
なっているため、寄生サイリスタが構成されている。こ
の寄生サイリスタが一旦動作し始めると第1.第2の絶
縁ゲート4,6で制御できなくなり、電流が暴走し、ジ
ュール熱による破壊に至る。これをラッチアップと言う
。このラッチアップは領域ののみならず、周辺領域■に
おいても起きる。その構造によっては、領域■の方がラ
ッチアップしやすく、IGBTの破壊耐量が領域■で決
まることがある。第6図は、それを対策した構造である
。つまり、1層13と周辺p中層15を接触させ、領域
■にあるn中層14を通して電子電流が流れないように
工夫されている。つまり、第2の絶縁ゲート6下で周辺
p中層15がn型に反転しにくいように周辺p中層15
のキャリア濃度を1層13より高くするとともに、絶縁
膜7を厚くする。その結果、領域■に存在するホール■
の量が、領域■より少なくなり、n層M14下の抵抗R
p とホール電流で生じる1層13、周辺p十層15中
の電圧降下が1層13、周辺p中層15とn中層14の
拡散電位(室温では約0.7V)より下まわるようにな
り、通常のオン状態ではラッチアップしなくなる。しか
も、周辺p中層15がごく近傍の領域■と領域■の境界
でエミッタ電極3に短絡されているため、少量のホール
もターンオフ時に急速に収集されるため、ターンオフ時
間も短くなる。
The IGBT has a p+ substrate region 11, a p ten-layer substrate region 11, an n- layer 12 . p layer 13. Since it has a four-layer structure of n10 layers 14, a parasitic thyristor is formed. Once this parasitic thyristor starts operating, the first. The second insulated gates 4 and 6 become uncontrollable, resulting in runaway current and destruction due to Joule heat. This is called latch-up. This latch-up occurs not only in the area but also in the peripheral area (2). Depending on the structure, latch-up may occur more easily in region (2), and the breakdown resistance of the IGBT may be determined by region (2). FIG. 6 shows a structure that takes measures against this problem. In other words, the first layer 13 and the peripheral p-middle layer 15 are brought into contact with each other so that no electron current flows through the n-middle layer 14 in the region (2). In other words, the peripheral p-middle layer 15 is designed so that the peripheral p-middle layer 15 is not easily inverted to n-type under the second insulated gate 6.
The carrier concentration of the insulating film 7 is made higher than that of the single layer 13, and the insulating film 7 is made thicker. As a result, the hole ■ that exists in the area ■
The amount of resistance R under the n-layer M14 is smaller than that in the region ■.
The voltage drop in the 1st layer 13 and the 10 peripheral p layers 15 caused by the p and hole currents becomes lower than the diffusion potential of the 1st layer 13, the peripheral p middle layer 15, and the n middle layer 14 (approximately 0.7 V at room temperature), Latch-up will not occur in normal on state. Furthermore, since the peripheral p-middle layer 15 is short-circuited to the emitter electrode 3 at the boundary between the very nearby regions (1) and (2), a small amount of holes are rapidly collected at the time of turn-off, so that the turn-off time is also shortened.

一方、基板領域11をn層としたものが、パワーMO3
FETである。パワーMO3FETをオン状態にするに
は、IGBTと同様にコレクタ極(ドレイン電極)2に
正の電位を加えた状態でさらに第1.第2の絶縁ゲート
電極4,6に正の電位を印加する。
On the other hand, when the substrate region 11 is an n layer, the power MO3
It is an FET. To turn on the power MO3FET, a positive potential is applied to the collector electrode (drain electrode) 2, and then the first . A positive potential is applied to the second insulated gate electrodes 4 and 6.

これにより、1層13の絶縁膜5表面に反転層ができ、
電子電流がn中層14、反転層、n−層12、n子基板
領域11へ流れ、結果としてドレイン電極2からエミッ
タ電極(ソース電極)3へ電流が流れる。このパワーM
O3FETをオフするには、− 絶縁ゲート電極の電位を取り除けば良い。これにより反
転層が消滅し、電流は遮断される。ところで、パワーM
O3FETは、n子基板領域11、n−層12.1層1
3(周辺p中層15)からなるpnダイオードを内蔵し
ている。これをフィー1〜・バック・ダイオードとして
利用することも進められている。つまり、パワーMO3
FETのソース電極3にトレイン電極2に比べ正の電位
が加わった場合、このダイオードを使って順方向に電流
を流す。このとき、1層13、p十層14よりn−層1
2ヘホール■が注入される。次に、ソース電極3がドレ
イン電極2の電位に比べ負になった瞬間、このホール■
はソース電極3へ吸収される。この場合、周辺P中層1
5が第6図のように、周辺p中層15の近傍でソース電
極3に短絡されているとホールの吸収時に抵抗となる周
辺p中層15の長さが短くなり、高速にダイオードが回
復する。この時、ホール■電流は最も周辺領域■側にあ
るn層Jii114下の1層13(周辺p中層15)を
流れる。
As a result, an inversion layer is formed on the surface of the insulating film 5 of the first layer 13,
An electron current flows to the n-layer 14, the inversion layer, the n-layer 12, and the n-substrate region 11, and as a result, a current flows from the drain electrode 2 to the emitter electrode (source electrode) 3. This power M
To turn off the O3FET, the potential of the insulated gate electrode can be removed. As a result, the inversion layer disappears and the current is interrupted. By the way, power M
The O3FET has an n-substrate region 11, an n-layer 12.1 layer 1
3 (peripheral p-middle layer 15). Progress is also being made in using this as a feedback diode. In other words, power MO3
When a positive potential is applied to the source electrode 3 of the FET compared to the train electrode 2, current flows in the forward direction using this diode. At this time, from the 1st layer 13 and the p10 layer 14, the n- layer 1
2 Hehole ■ is injected. Next, at the moment when the potential of the source electrode 3 becomes negative compared to the potential of the drain electrode 2, this hole
is absorbed into the source electrode 3. In this case, the peripheral P middle layer 1
5 is short-circuited to the source electrode 3 in the vicinity of the peripheral p-layer 15, as shown in FIG. 6, the length of the peripheral p-layer 15, which acts as a resistance when holes are absorbed, becomes shorter, and the diode recovers quickly. At this time, the hole (2) current flows through the first layer 13 (peripheral p middle layer 15) below the n layer Jii 114 which is closest to the peripheral region (2).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

」二記従来技術では、I G B TやパワーMO3F
ETがオン状態からオフ状態に高速に変化する時に寄生
サイリスタや寄生1−ランジスタの動作を確実に防止す
る構造となっておらす、破壊しやすいという問題があっ
た。つまり、最も周辺領域■側にあるn十層14下の9
層13(周辺p中層15)の抵抗R2と注入したホール
■電流、pn接合の放電電流によりpn接合が順バイア
スされ、p子基板(n子基板)11、n−層]2.9層
13、n+J114からなる寄生サイリスタ(寄生トラ
ンジスタ)が動作すると言う不具合があった。
” 2. In the conventional technology, IGBT and power MO3F
Although the structure is designed to reliably prevent the operation of the parasitic thyristor and parasitic transistor when the ET changes rapidly from the on state to the off state, there is a problem in that it is easily destroyed. In other words, the 9th layer below the nth layer 14 closest to the peripheral area ■
The p-n junction is forward biased by the resistance R2 of the layer 13 (peripheral p-middle layer 15), the injected hole current, and the discharge current of the p-n junction, and the p-substrate (n-substrate) 11, n-layer]2.9 layer 13 There was a problem that a parasitic thyristor (parasitic transistor) consisting of , n+J114 would operate.

本発明は、IGBTやパワーMO5FEIのスイッチン
グ、特にターンオフの高速性を維持しながら、寄生サイ
リスタや寄生1−ランジスタが動作しない構造を提供す
ることにある。
An object of the present invention is to provide a structure in which a parasitic thyristor or a parasitic transistor does not operate while maintaining high-speed switching, especially turn-off, of an IGBT or a power MO5FEI.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する本発明半導体装置の特徴とする構成
は、複数個並設した9層13のうちの最外周側に位置し
て周辺9層15に接するように9層13を設け、最外周
側に位置する9層13又は1個内側のp層]3内にn十
層1/1を設け、そのp十層3と第2の主電極3との接
触個所がn+層よりも周辺1層に近接している点にある
The characteristic structure of the semiconductor device of the present invention that achieves the above object is that the nine layers 13 are provided so as to be located on the outermost side of the nine layers 13 arranged in parallel and in contact with the peripheral nine layers 15; Nine layers 13 located on the side or one p layer inside] 1/1 are provided in the 3, and the contact point between the p 10 layers 3 and the second main electrode 3 is closer to the periphery 1 than the n+ layer. It is located in close proximity to the layer.

〔作用〕[Effect]

第2の主電極3と周辺9層15及び9層13との接触個
所が最も近いn十層より周辺9層15に近接することに
よって、ターンオフ時に基板の周辺に蓄えられたホール
電流及び充電電流をすみやかに引き抜き、かつこのホー
ル電流や充電電流で寄生サイリスクや寄生1−ランジス
タが動作しないことから、高速でかつ破壊耐量の大きな
ターンオフ動作を実現できる。
Because the contact points between the second main electrode 3 and the nine peripheral layers 15 and 13 are closer to the nine peripheral layers 15 than to the nearest nine layers, the Hall current and charging current accumulated around the substrate at turn-off. Since the transistor is quickly pulled out and the hall current and charging current do not operate parasitic transistors or transistors, a turn-off operation can be achieved at high speed and with high breakdown resistance.

〔実施例〕〔Example〕

以下、本発明を実施例として示した図面を用いて説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to drawings showing examples thereof.

第1図は、本発明半導体装置の一実施例を示すもので、
1は一対の主表面101,102を有し、主表面間に、
一方の主表面1.01に隣接するp+又はn+の基板領
域1]、基板領域11及び他方の主表面102に隣接し
基板領域1]より低不純1 物濃度を有するn−512、他方の主表面102からn
−層12内に延び、他方の主表面」−02に露出してい
る部分は細長い形状を有しかつ長手方向を揃えて並設さ
れているn−層12より高不純物濃度を有する複数個の
p Fm −13、他方の主表面102から各9層13
内に延び、他方の土表面102に露出している部分は9
層13と長手方向を同一方向とした細長い形状を有しか
っ13層13より高不純物濃度を有するn十層14、他
方の主表面102からn−層12内に9層13より深く
延び、複数個の9層13を包囲しかつ9層13に接して
配置された環状の周辺9層15が形成された半導体基板
である。複数個の9層13のうちそれらの長手方向と直
角をなす方向の最外側に位置する9層13内には1個の
n十層14が、他の9層13内には2個のn十層14が
それぞれ形成されている。2は半導体基板1の一方の主
表面1.01において基板領域11にオーミック接触し
た第1の主電極、3は半導体基板1の他方の主表面10
2においてn十層14及びp十層3にオーミック接触し
た第2の主電極である。この第2の主電極3は、最外側
に位置する9層13においてはn十層14の周辺9層1
5側で、他のp十層3においては2個のn中層]4の間
に露出する部分てそれぞれp十層3とオーミック接触し
ている。また、9層13の長手方向の両端においては、
第2の土竜1勇3かn十層14よりも周辺側に延びてp
WJ13にオーミック接触している。4は半導体基板」
の他方の主表面102において、絶縁膜5を介して、隣
接する9層13の一方内に形成されたn+十層−4上か
ら他方内に形成されたn+14上まで延びるように設け
られた第1の絶縁ゲート電極、6は半導体基板1の他方
の主表面102において、絶縁膜7を介して、周辺2層
15上に周辺1層]5に沿って設けられた第2の絶縁ゲ
ート電極で、第」の絶縁ゲート電極4と第2の絶縁ゲー
1へ電極6とは電気的に接続されている。8及び9は第
1及び第2の絶縁ゲー1へ電極4,6上に形成された絶
縁膜である。第2の主電極3は絶縁膜8上に延び隣接す
る第2の主電極3と接続されている。
FIG. 1 shows an embodiment of the semiconductor device of the present invention.
1 has a pair of main surfaces 101 and 102, and between the main surfaces,
p+ or n+ substrate region 1] adjacent to one main surface 101, substrate region 11 and n-512 having a lower impurity concentration than substrate region 1] adjacent to the other main surface 102; surface 102 to n
- The portion extending into the n-layer 12 and exposed to the other main surface "-02 has an elongated shape and has a higher impurity concentration than the n-layer 12, which is arranged in parallel in the longitudinal direction. p Fm −13, each 9 layers 13 from the other main surface 102
The portion extending inward and exposed to the other soil surface 102 is 9
It has an elongated shape with its longitudinal direction being the same as that of the layer 13, and has a higher impurity concentration than the 13th layer 13. The n-layer 14 extends deeper than the 9th layer 13 from the other main surface 102 into the n-layer 12, and has a plurality of layers. This is a semiconductor substrate on which a ring-shaped peripheral nine layer 15 is formed, which surrounds the nine layers 13 and is arranged in contact with the nine layers 13. Among the nine layers 13, the outermost nine layers 13 in the direction perpendicular to the longitudinal direction thereof have one n layer 14, and the other nine layers 13 have two n layers 14. Ten layers 14 are formed respectively. 2 is a first main electrode in ohmic contact with the substrate region 11 on one main surface 1.01 of the semiconductor substrate 1; 3 is the other main surface 10 of the semiconductor substrate 1;
2, the second main electrode is in ohmic contact with the n+ layer 14 and the p+ layer 3. This second main electrode 3 is connected to the peripheral nine layers 1 of the n ten layers 14 in the outermost nine layers 13.
On the 5 side, in the other p-layer 3, the exposed portion between the two n-layers 4 is in ohmic contact with the p-layer 3, respectively. Moreover, at both ends of the nine layers 13 in the longitudinal direction,
Extends to the peripheral side of the second earth dragon 1 Yu 3 or n 10th layer 14 p
It is in ohmic contact with WJ13. 4 is a semiconductor substrate.”
On the other main surface 102 of A second insulated gate electrode 6 is provided on the other main surface 102 of the semiconductor substrate 1 on the second peripheral layer 15 and along the first peripheral layer 5 on the other main surface 102 of the semiconductor substrate 1. , the second insulated gate electrode 4 and the electrode 6 to the second insulated gate 1 are electrically connected. 8 and 9 are insulating films formed on the electrodes 4 and 6 of the first and second insulating gates 1. The second main electrode 3 extends over the insulating film 8 and is connected to the adjacent second main electrode 3 .

かかる半導体装置によれば、並設した細長い2層13の
長手方向及び長手方向と直角をなす方向の最外側におい
て第2の主電極と接触している個所がn土層14より周
辺9層」5に近接しているため、周辺pN15に隣接す
るr)−層」2に注入されたホール■及びpn接合の充
電電荷をターンオフ時にスムーズに第2の主電極3へ引
き出すことができ、かつ周辺2層15の積層方向に寄生
サイリスタ及び寄生1−ランジスタが存在しないため高
速かつ破壊耐量の大きなIGBTまたはパワーMO5F
ETを得ることができる。また、周辺9層」5は2層1
3より高不純物濃度にすることにより、更に高速かつ破
壊耐量を向」ニすることができる。
According to such a semiconductor device, the outermost portion of the two elongated layers 13 arranged side by side in the longitudinal direction and in the direction perpendicular to the longitudinal direction is in contact with the second main electrode in the nine surrounding layers from the n-soil layer 14. 5, the holes injected into the r)-layer 2 adjacent to the peripheral pN 15 and the charge charged in the pn junction can be smoothly drawn out to the second main electrode 3 at turn-off, and Since there are no parasitic thyristors or parasitic 1-transistors in the stacking direction of the second layer 15, the IGBT or power MO5F has high speed and high breakdown resistance.
You can get ET. Also, the surrounding 9 layers" 5 is 2 layers 1
By increasing the impurity concentration higher than 3, it is possible to further improve the speed and breakdown resistance.

第2図は本発明の他の実施例を示すもので、第1、図に
示した実施例とは、p、 J?! 1.3が他方の主表
面において矩形状を有し、それに伴ってp層]3内に形
成されるn+J114が矩形状になっている点で異なっ
ている。この実施例においても、並設されたp層]3の
最外周側にあって周辺9層15に接している2層13内
に形成されるn十層1−4は、第2の主電極3とpWJ
3.3との接触個所より周辺9層15から遠くに位置す
るように設けられており、第1−図の実施例と同等の効
果を奏することができる。
FIG. 2 shows another embodiment of the present invention. The first embodiment shown in FIG. ! 1.3 has a rectangular shape on the other main surface, and accordingly, the n+J 114 formed in the p layer 3 has a rectangular shape. In this embodiment as well, the n10 layers 1-4 formed within the two layers 13 that are on the outermost side of the juxtaposed p layers 3 and in contact with the nine peripheral layers 15 are connected to the second main electrode. 3 and pWJ
3.3 is located farther from the surrounding nine layers 15 than the point of contact with the third layer, and can produce the same effect as the embodiment shown in FIG.

第3図は本発明の更に異なる実施例を示すもので、第1
図に示す実施例とは最外周側に位置するn土層14の外
周側における第2の主電極3と2層13及び周辺2層1
5との接触面積を大きくした点で異なっている。第1図
の実施例では、第2の主電極3とp層]3との接触面積
が他方の主表面1.02全面において略等しくなってい
る。このため最外周側に位置するn土層14の外周側に
おける第2の主電極3と2層13との接触抵抗Rcか大
きく、ターンオフ時のホール電流及び放電電流による電
圧降下が大きくなり、寄生サイリスタ又は寄生1〜ラン
ジスタが動作する不都合が生じるおそれがある。この実
施例においては、第2の主電極3と2層13及び周辺9
層15との接触面積を大きくして接触抵抗Rc を小さ
くしているため、第1図において心配される不都合は除
去すること5 ができる。種々の実験の結果、接触抵抗Rcによるター
ンオフ時の電圧降下は0.1v以下にすることが望まし
いことが確認された。また、この実施例によれば、接触
抵抗Rcが小さいためオン状態でn−層12に注入され
たホールや充電々荷をす速く第2の主電極3に引き抜く
ことができ、第1図の実施例に比較して高速ターンオフ
も可能となる利点もある。尚、第3図の実施例における
2層13及びn土層14は、第1図(b)及び第2図に
示すように形成することができる。
FIG. 3 shows a further different embodiment of the present invention.
The embodiment shown in the figure is the second main electrode 3 and the second layer 13 on the outer circumferential side of the n-soil layer 14 located on the outermost circumferential side, and the two peripheral layers 1
The difference is that the contact area with 5 is increased. In the embodiment shown in FIG. 1, the contact area between the second main electrode 3 and the p layer 3 is approximately equal over the entire other main surface 1.02. For this reason, the contact resistance Rc between the second main electrode 3 and the second layer 13 on the outer periphery side of the n-soil layer 14 located on the outermost periphery side is large, and the voltage drop due to the Hall current and discharge current at turn-off becomes large, causing parasitic There is a risk that the thyristor or the parasitic transistor may operate. In this embodiment, the second main electrode 3 and the second layer 13 and the peripheral 9
Since the contact resistance Rc is reduced by increasing the contact area with the layer 15, the disadvantages that may occur in FIG. 1 can be eliminated. As a result of various experiments, it has been confirmed that it is desirable to keep the voltage drop at turn-off due to contact resistance Rc to 0.1 V or less. Further, according to this embodiment, since the contact resistance Rc is small, holes and charges injected into the n-layer 12 in the on state can be quickly extracted to the second main electrode 3, as shown in FIG. There is also the advantage that high-speed turn-off is possible compared to the embodiment. The second layer 13 and the n-soil layer 14 in the embodiment shown in FIG. 3 can be formed as shown in FIG. 1(b) and FIG. 2.

第4図は本発明の他の実施例を示すもので、第1図に示
す実施例とは最外周側に位置して周辺9層15と接する
2層13内にはn+JjiF14を形成せず1個内側の
pJW13内にn+li4を形成した点で相違している
。この実施例においても、その2層13における第2の
主電極3と2層13との接触個所がn土層14より周辺
9層15に近接するように構成されている。この構成に
よれば、ターンオフ時に主としてホール電流及び充電々
流の通路となる最近周側のP層]3及び周辺pJF76 15と第2の主電極3との接触個所からn土層14を離
して設けであるため、第1図から第3図の実施例に比較
して寄生サイリスタ又は寄生トランジスタ効果をより確
実に除去することができる。
FIG. 4 shows another embodiment of the present invention, which differs from the embodiment shown in FIG. The difference is that n+li4 is formed in pJW13 on the inner side. In this embodiment as well, the contact point between the second main electrode 3 and the second layer 13 in the two layers 13 is configured to be closer to the nine surrounding layers 15 than to the n soil layer 14. According to this configuration, the n-soil layer 14 is separated from the contact point between the second main electrode 3 and the nearest P layer 3 and the surrounding pJF76 15, which mainly serve as a path for Hall current and charging current during turn-off. Because of this arrangement, parasitic thyristor or parasitic transistor effects can be more reliably eliminated compared to the embodiments shown in FIGS. 1 to 3.

この実施例におけるp F! 13及びn十層1−4は
、第1−図(b)及び第2図に示すように形成すること
ができる。
pF! in this example. 13 and n10 layers 1-4 can be formed as shown in FIG. 1(b) and FIG. 2.

以」二は本発明の代表的な実施例を例に挙げて説明した
が、本発明はこれに限らず種々の変形が可能である。
Although the following description has been given of typical embodiments of the present invention, the present invention is not limited thereto and can be modified in various ways.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、TGBTやパワーMO5FETの半導
体基板周辺領域における少数キャリアの蓄積電荷やpn
接合の充電電荷をすみやかに引出すことができ、また周
辺領域近傍における寄生サイリスタや寄生1〜ランシス
タ効果を防止できるため、高速にかつ破壊耐量の大きな
ターンオフ動作が可能な半導体装置を実現できる。
According to the present invention, the accumulated charge of minority carriers and the pn
Since the charge in the junction can be quickly drawn out and the parasitic thyristor and parasitic 1 to 1-run cisister effects in the vicinity of the peripheral region can be prevented, it is possible to realize a semiconductor device that can perform a turn-off operation at high speed and with high breakdown resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第」図は本発明半導体装置の一実施例を示す概略断面図
及び平面図、第2図は本発明の異なる実施例を示す平面
図、第3図は本発明の更に異なる実施例を示す概略断面
図、第4図は本発明の他の実施例を示す概略断面図、第
5図は従来の半導体装置の平面図、第6図は第5図の■
−■線に沿う断面図である。 ]・・・半導体基板、2・・−第1の主電極、3 第2
の主電極、4・第1の絶縁ゲート電極、6 第2の絶縁
ゲート電極、11・・基板領域、12− n−層、9 第 2 図 特開平 12970 (7)
2 is a schematic sectional view and a plan view showing one embodiment of the semiconductor device of the present invention, FIG. 2 is a plan view showing a different embodiment of the present invention, and FIG. 3 is a schematic diagram showing a further different embodiment of the present invention. 4 is a schematic sectional view showing another embodiment of the present invention, FIG. 5 is a plan view of a conventional semiconductor device, and FIG. 6 is a schematic sectional view showing another embodiment of the present invention.
It is a cross-sectional view along the -■ line. ]...Semiconductor substrate, 2...-first main electrode, 3 second
main electrode, 4. first insulated gate electrode, 6. second insulated gate electrode, 11..substrate region, 12- n-layer, 9. Fig. 2 JP-A-12970 (7)

Claims (1)

【特許請求の範囲】 1、一方の主表面を有し、この主表面に第1の主電極を
もつ第1の導電型または第2の導電型の半導体基板領域
と、この半導体基板領域上に形成された他方の主表面を
有する第1の導電型の第1の半導体領域と、他方の主表
面に露出し、部分的にかつ規則的に連続して複数個形成
された第2の導電型の第2の半導体領域と、この第2の
半導体領域内に形成された第1の導電型の第3の半導体
領域と、第1の半導体領域が露出する他方の主表面上に
絶縁膜を介して、隣接する一方の第2の半導体領域内の
第3の半導体領域から他方の第2の半導体領域内の第3
の半導体領域にまたがつて形成された複数個の第1の絶
縁ゲート電極と、複数個の第2の半導体領域のうち他方
の主表面の周辺に位置するものの周辺側に直接隣接しか
つ第2の半導体領域より深く形成された他方の主表面に
露出する第2導電型の第4の半導体領域と、この第4の
半導体領域が露出する他方の主表面に絶縁膜を介して形
成され、第1の絶縁ゲート電極と電気的に接続された第
2の絶縁ゲート電極と、他方の主表面において第2の半
導体領域と第3の半導体領域に低抵抗に接触した第2の
主電極とを有し、第4の半導体領域に接している第2の
半導体領域における第2の主電極と第2の半導体領域と
の接触個所が第3の半導体領域より第4の半導体領域に
接近していることを特徴とする半導体装置。 2、特許請求の範囲第1項において、第4の半導体領域
の不純物濃度が第2の半導体領域のそれより高いことを
特徴とする半導体装置。 3、一対の主表面を有し、主表面間に、他方の主表面に
隣接して形成された一方導電型を有する第1の半導体領
域と、他方の主表面から第1の半導体領域内に延び互い
に第1の半導体領域によつて分離して形成された他方導
電型を有する複数個の第2の半導体領域と、他方の主表
面から各第2の半導体領域内に延びるように形成された
一方導電型を有する第3の半導体領域と、他方の主表面
から第1の半導体領域内に第2の半導体領域より深く延
び、複数個の第2の半導体領域を包囲し、周辺に位置す
る第2の半導体領域に接して形成された他方導電型を有
する第4の半導体領域とを有する半導体基板、 半導体基板の一方の主表面にオーミック接触した第1の
主電極、 半導体基板の他方の主表面において、第3の半導体領域
及び第2の半導体領域にオーミック接触した第2の主電
極、 半導体基板の他方の主表面において、絶縁膜を介して、
隣接する第2の半導体領域の一方内に形成された第3の
半導体領域上から他方内に形成された第3の半導体領域
上まで延びるように設けられた第1の絶縁ゲート電極、 半導体基板の他方の主表面において、絶縁膜を介して、
第4の半導体領域上に第4の半導体領域に沿つて設けら
れ、第1の絶縁ゲート電極と電気的に接続された第2の
絶縁ゲート電極、を具備し、第4の半導体領域に接して
いる第2の半導体領域における第2の主電極と第2の半
導体領域との接触個所が第3の半導体領域より第4の半
導体領域に接近していることを特徴とする半導体装置。 4、特許請求の範囲第3項において、半導体基板が一方
の主表面に隣接して第1の半導体領域より高不純物濃度
を有する一方導電型の半導体基板領域を具備することを
特徴とする半導体装置。 5、特許請求の範囲第3項において、半導体基板が一方
の主表面に隣接して第1の半導体領域より高不純物濃度
を有する他方導電型の半導体基板領域を具備することを
特徴とする半導体装置。 6、特許請求の範囲第3項、第4項または第5項におい
て、第4の半導体領域は第2の半導体領域より高不純物
濃度を有していることを特徴とする半導体装置。
[Claims] 1. A semiconductor substrate region of a first conductivity type or a second conductivity type having one main surface and having a first main electrode on this main surface; a first conductivity type first semiconductor region having the other main surface formed thereon; and a plurality of second conductivity type regions exposed on the other main surface and partially and regularly formed continuously. A second semiconductor region, a third semiconductor region of the first conductivity type formed in the second semiconductor region, and an insulating film formed on the other main surface where the first semiconductor region is exposed. from the third semiconductor region in one of the adjacent second semiconductor regions to the third semiconductor region in the other second semiconductor region.
a plurality of first insulated gate electrodes formed astride semiconductor regions; a fourth semiconductor region of the second conductivity type exposed on the other main surface formed deeper than the semiconductor region; a second insulated gate electrode electrically connected to the first insulated gate electrode; and a second main electrode in low resistance contact with the second semiconductor region and the third semiconductor region on the other main surface. However, the contact point between the second main electrode and the second semiconductor region in the second semiconductor region that is in contact with the fourth semiconductor region is closer to the fourth semiconductor region than the third semiconductor region. A semiconductor device characterized by: 2. The semiconductor device according to claim 1, wherein the impurity concentration of the fourth semiconductor region is higher than that of the second semiconductor region. 3. Having a pair of main surfaces, a first semiconductor region having one conductivity type formed between the main surfaces and adjacent to the other main surface, and a region from the other main surface into the first semiconductor region. a plurality of second semiconductor regions having the other conductivity type, which are separated from each other by the first semiconductor region; a third semiconductor region having one conductivity type; a fourth semiconductor region having the other conductivity type formed in contact with a second semiconductor region; a first main electrode in ohmic contact with one main surface of the semiconductor substrate; the other main surface of the semiconductor substrate. a second main electrode in ohmic contact with the third semiconductor region and the second semiconductor region; on the other main surface of the semiconductor substrate, with an insulating film interposed therebetween;
a first insulated gate electrode provided to extend from a third semiconductor region formed in one of adjacent second semiconductor regions to a third semiconductor region formed in the other; On the other main surface, via an insulating film,
a second insulated gate electrode provided on the fourth semiconductor region along the fourth semiconductor region and electrically connected to the first insulated gate electrode; A semiconductor device characterized in that a contact point between the second main electrode and the second semiconductor region in the second semiconductor region is closer to the fourth semiconductor region than to the third semiconductor region. 4. A semiconductor device according to claim 3, characterized in that the semiconductor substrate has a semiconductor substrate region of one conductivity type adjacent to one main surface and having a higher impurity concentration than the first semiconductor region. . 5. A semiconductor device according to claim 3, wherein the semiconductor substrate has a semiconductor substrate region of the other conductivity type adjacent to one main surface and having a higher impurity concentration than the first semiconductor region. . 6. A semiconductor device according to claim 3, 4, or 5, wherein the fourth semiconductor region has a higher impurity concentration than the second semiconductor region.
JP1146814A 1989-06-12 1989-06-12 Semiconductor device Expired - Lifetime JPH0783125B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1146814A JPH0783125B2 (en) 1989-06-12 1989-06-12 Semiconductor device
KR1019900008598A KR0173778B1 (en) 1989-06-12 1990-06-12 Semiconductor device and method of manufacturing the same
US07/762,793 US5208471A (en) 1989-06-12 1991-09-19 Semiconductor device and manufacturing method therefor
US08/017,420 US5262339A (en) 1989-06-12 1993-02-10 Method of manufacturing a power semiconductor device using implants and solid diffusion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1146814A JPH0783125B2 (en) 1989-06-12 1989-06-12 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0312970A true JPH0312970A (en) 1991-01-21
JPH0783125B2 JPH0783125B2 (en) 1995-09-06

Family

ID=15416133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1146814A Expired - Lifetime JPH0783125B2 (en) 1989-06-12 1989-06-12 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0783125B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897168A (en) * 1994-07-04 1996-04-12 Sgs Thomson Microelettronica Spa Manufacture of high dense mos type electric power device andhigh dense type electric power device manufactured by its method
JP2008016763A (en) * 2006-07-10 2008-01-24 Denso Corp Insulated gate bipolar transistor
JP2014140063A (en) * 2014-03-26 2014-07-31 Toshiba Corp Semiconductor device
USRE48259E1 (en) 2010-08-02 2020-10-13 Kabushiki Kaisha Toshiba Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545674A (en) * 1977-06-15 1979-01-17 Sony Corp Semiconductor device
JPS57130468A (en) * 1981-02-06 1982-08-12 Hitachi Ltd Insulating gate protecting semiconductor device
JPS6184865A (en) * 1984-10-02 1986-04-30 Nec Corp Semiconductor device
JPS61289667A (en) * 1985-06-18 1986-12-19 Tdk Corp Semiconductor device and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545674A (en) * 1977-06-15 1979-01-17 Sony Corp Semiconductor device
JPS57130468A (en) * 1981-02-06 1982-08-12 Hitachi Ltd Insulating gate protecting semiconductor device
JPS6184865A (en) * 1984-10-02 1986-04-30 Nec Corp Semiconductor device
JPS61289667A (en) * 1985-06-18 1986-12-19 Tdk Corp Semiconductor device and manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897168A (en) * 1994-07-04 1996-04-12 Sgs Thomson Microelettronica Spa Manufacture of high dense mos type electric power device andhigh dense type electric power device manufactured by its method
JP2008016763A (en) * 2006-07-10 2008-01-24 Denso Corp Insulated gate bipolar transistor
USRE48259E1 (en) 2010-08-02 2020-10-13 Kabushiki Kaisha Toshiba Semiconductor device
JP2014140063A (en) * 2014-03-26 2014-07-31 Toshiba Corp Semiconductor device

Also Published As

Publication number Publication date
JPH0783125B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
US6051850A (en) Insulated gate bipolar junction transistors having built-in freewheeling diodes therein
EP0581246B1 (en) MIS-type semiconductor device
US6667515B2 (en) High breakdown voltage semiconductor device
JP3346825B2 (en) Power semiconductor device and method of manufacturing the same
US6724043B1 (en) Bipolar MOSFET device
US5629535A (en) Bidirectional thyristor with MOS turn-on and turn-off capability
JP3447884B2 (en) High voltage semiconductor device
JPH11345969A (en) Power semiconductor device
IE52758B1 (en) Gate enhanced rectifier
JPH10209432A (en) Improvement in semiconductor device
JPH06196705A (en) Reverse-current carrying type insulated gate bipolar transistor and manufacture thereof
JPH10178174A (en) Semiconductor device and power converting device using the same
US5793066A (en) Base resistance controlled thyristor structure with high-density layout for increased current capacity
JP3367747B2 (en) Insulated gate type semiconductor device
JPH04312977A (en) Semiconductor device
JP3522887B2 (en) High voltage semiconductor device
JPH0312970A (en) Semiconductor device
JP2021125681A (en) Semiconductor device
JP4031371B2 (en) High voltage semiconductor element
JPS639386B2 (en)
JPS5931869B2 (en) Electrostatic induction thyristor
JPS5933988B2 (en) Electrostatic induction thyristor
JP3551153B2 (en) Semiconductor device
JP3249175B2 (en) Thyristor with insulated gate and high breakdown voltage semiconductor device
JP2856257B2 (en) P-channel insulated gate bipolar transistor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 14