JPH03127453A - Manufacture of positive electrode active material for lithium secondary battery - Google Patents

Manufacture of positive electrode active material for lithium secondary battery

Info

Publication number
JPH03127453A
JPH03127453A JP1262390A JP26239089A JPH03127453A JP H03127453 A JPH03127453 A JP H03127453A JP 1262390 A JP1262390 A JP 1262390A JP 26239089 A JP26239089 A JP 26239089A JP H03127453 A JPH03127453 A JP H03127453A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
mno2
capacity
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1262390A
Other languages
Japanese (ja)
Other versions
JP2797528B2 (en
Inventor
Junichi Yamaura
純一 山浦
Yukio Nishikawa
幸雄 西川
Teruyoshi Morita
守田 彰克
Nobuo Eda
江田 信夫
Hide Koshina
秀 越名
Hiromi Okuno
奥野 博美
Yoshiyuki Ozaki
義幸 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1262390A priority Critical patent/JP2797528B2/en
Publication of JPH03127453A publication Critical patent/JPH03127453A/en
Application granted granted Critical
Publication of JP2797528B2 publication Critical patent/JP2797528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To produce a positive electrode active material which has both stable discharge capacity and high energy density by calcining MnO2 and LiNO3 by a specified method. CONSTITUTION:MnO2, if desirable, electrolyte manganese deoxides shall be used. MnO2 and LiNO3 are mixed with each other using water as a medium so as to be calcined, after LiNO3 has been dissolved into water in advance. MnO2 and LiN3 are mixed at a mole ratio, that is, Mn:Li=2.2:1.0 through 1.8:1.0 while they are clcined in air at the temperature range equal to or more than 880 deg.C but less than 1000 deg.C. By the use of a positive electrode active material produced as mentioned above, a 4V class battery with both cycle reversibility and high energy density can thereby be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、リチウムを負極活物質とした高エネルギ密度
を有する有機電解質リチウム二次電池、特にその正極活
物質の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an organic electrolyte lithium secondary battery having a high energy density using lithium as a negative electrode active material, and particularly to a method for producing its positive electrode active material.

従来の技術 リチウム電池として正極にMnO2を用いた一次電池は
既に実用化されている。リチウム電池の場合、水分の存
在が電池性能に悪影響を及ぼすため、従来においては、
MnO2を250℃から400℃の温度で加熱処理して
付着水および結合水を除去しリチウム電池の正極として
用いていた。M n 02の結晶構造としては、特公昭
49−25571号に開示されているように250℃〜
350℃の温度で熱処理したγ−β型、あるいは米国特
許第4133856号に開示されているように350℃
〜430℃の温度で熱処理したβ型と考えられる。しか
し、その後の検討で、空気中で400℃で熱処理したM
nO2もγ−β型MnO2といわれており、結合水も完
全には除去できていないとされている。
BACKGROUND OF THE INVENTION A primary battery using MnO2 as a positive electrode has already been put into practical use as a lithium battery. In the case of lithium batteries, the presence of moisture has a negative effect on battery performance, so conventionally,
MnO2 was heat-treated at a temperature of 250°C to 400°C to remove attached water and bound water, and was used as a positive electrode of a lithium battery. As disclosed in Japanese Patent Publication No. 49-25571, the crystal structure of M n 02 is 250°C ~
γ-β type heat treated at a temperature of 350°C or 350°C as disclosed in U.S. Pat. No. 4,133,856.
It is considered to be the β type heat treated at a temperature of ~430°C. However, in subsequent studies, M
nO2 is also said to be γ-β type MnO2, and it is said that bound water cannot be completely removed.

しかし、結合水を完全に除去するとγ−β型が維持でき
ず、電池活物質としてきわめて活性の低いβ型M n 
O2になってしまうといわれている。
However, if bound water is completely removed, the γ-β type cannot be maintained, and the β-type M n has extremely low activity as a battery active material.
It is said that it becomes O2.

さらに、γ−β型を維持したままでも、熱処理温度が高
くなるにつれて容量特性が劣化することが知られている
。これは、活物質表面が一部β型に変わったこともその
理由の一つであるが、主に活物質表面が部分的に還元さ
れる等の表面活性の低下が原因とされている。これらの
ことに鑑み、現状では350℃〜400℃程度の温度で
熱処理した結合水をわずかに残したγ−β型〜ino:
をリチウム電池では用いている。ところが、この結晶構
造を有するMnO2はリチウム二次電池として用いる場
合、充放電に伴う結晶構造の崩れによりサイクルととも
に容量低下する。さらに、結晶構造の崩れにともない残
存結合水が流出し、電池性能、特にサイクル特性と貯蔵
特性に悪影響を及ぼすと言われている。そこでサイクル
可逆性を必要とするリチウム二次電池用の正極活物質と
いう観点からMnO2の改良を含めたマンガン酸化物の
開発が盛んに行われ、いくつかの提案がなされてきた。
Furthermore, it is known that even if the γ-β type is maintained, the capacity characteristics deteriorate as the heat treatment temperature increases. One of the reasons for this is that the surface of the active material has partially changed to the β type, but the main cause is said to be a decrease in surface activity such as partial reduction of the surface of the active material. In view of these considerations, currently the γ-β type ~ ino, which is heat-treated at a temperature of about 350°C to 400°C and retains a small amount of bound water:
is used in lithium batteries. However, when MnO2 having this crystal structure is used as a lithium secondary battery, the capacity decreases with cycles due to the collapse of the crystal structure during charging and discharging. Furthermore, as the crystal structure collapses, residual bound water flows out, which is said to have an adverse effect on battery performance, particularly cycle characteristics and storage characteristics. Therefore, from the viewpoint of positive electrode active materials for lithium secondary batteries that require cycle reversibility, manganese oxide, including improvements to MnO2, has been actively developed, and several proposals have been made.

その一つにスピネル型構造を有する二酸化マンガンを正
極活物質とする試みがあり、特開昭58−220362
に示されたように固体電解質と組み合わせたもの、ある
いは特開昭63114065に示されたようにL i 
M n 204を主体とする正極などがある。
One such attempt was to use manganese dioxide, which has a spinel-type structure, as a positive electrode active material.
or in combination with a solid electrolyte as shown in JP-A No. 63114065.
There is a positive electrode mainly composed of M n 204.

発明が解決しようとする課題 スピネル型の二酸化マンガンは、L i M n 20
4の化学式で表され、第1図に示すように、二段放電で
あり、その高電位側の放電電圧は4■もあり、高エネル
ギ密度電池が期待できるというものである。さらに、充
放電サイクルによる構造の破壊もされに<<、かつ結合
水を一切含まない結晶形態であるため、リチウム二次電
池用の活物質としては有望なものとされている。LiM
n2O4の主な製法としては炭酸リチウl、に、M n
 203あるいはMnO2をMn:Li=2+1のモル
比で7昆合し、800℃〜900℃で加熱するもの(特
開昭63−187569号)、炭酸リチウムとMnO:
を上記モル比で混合し、窒素雰囲気中で400℃で加熱
するもの、またはヨウ化リチウムとM n O2を窒素
雰囲気中で300℃で加熱するもの(特開昭63−11
4065号)が報告されている。しかし現状では、サイ
クル可逆性に優れても二段放電をするような電池は実用
上使い難く、例えば高電位側だけを用いるとすると容量
が小さくなってしまい、たとえ電圧が高くとも、そのエ
ネルギ密度の優位性は低くなってしまう。
Problem to be Solved by the Invention Spinel type manganese dioxide has L i M n 20
As shown in FIG. 1, it is a two-stage discharge, and the discharge voltage on the high potential side is as high as 4.5 cm, making it possible to expect a high energy density battery. Furthermore, its structure is not destroyed by charge/discharge cycles, and it is in a crystalline form that does not contain any bound water, so it is considered to be a promising active material for lithium secondary batteries. LiM
The main manufacturing methods for n2O4 are lithium carbonate, Mn
203 or MnO2 at a molar ratio of Mn:Li=2+1 and heated at 800°C to 900°C (Japanese Unexamined Patent Publication No. 187569/1983), lithium carbonate and MnO:
are mixed at the above molar ratio and heated at 400°C in a nitrogen atmosphere, or lithium iodide and MnO2 are heated at 300°C in a nitrogen atmosphere (Japanese Patent Application Laid-Open No. 63-11).
No. 4065) has been reported. However, at present, batteries that perform two-stage discharge are difficult to use in practice even if they have excellent cycle reversibility; for example, if only the high potential side is used, the capacity will be small, and even if the voltage is high, the energy density will have a lower advantage.

本発明の目的は、サイクルの進行に対して常に安定した
放電容量を有し、高エネルギ密度のリチウム二次電池を
提供することである。そして、本発明の課題は、スピネ
ル型二酸化マンガンの高電位側の容量を向上させ、サイ
クル可逆性ばかりでなく、エネルギ密度にも優れた4■
級の電池とすることである。
An object of the present invention is to provide a lithium secondary battery that has a discharge capacity that is always stable over the course of cycles and has a high energy density. The object of the present invention is to improve the high-potential side capacity of spinel-type manganese dioxide, and to improve not only cycle reversibility but also excellent energy density.
battery.

課題を解決するための手段 本発明は、スピネル型二酸化マンガンの改良に係るもの
で、MnO2とT、 i N O3をM n : L 
i=2.2:1.0〜1.8:1.0のモル比で混合し
、空気中において880℃以上、1000℃以下の温度
範囲で焼成し得られるリチウムとマンガンからなる酸化
物を活物質とするものである。
Means for Solving the Problems The present invention relates to the improvement of spinel type manganese dioxide, in which MnO2 and T, i N O3 are combined into M n : L
An oxide consisting of lithium and manganese obtained by mixing at a molar ratio of i = 2.2:1.0 to 1.8:1.0 and firing in air at a temperature range of 880°C or higher and 1000°C or lower. It is used as an active material.

さらに、MnO2は電解二酸化マンガン(EMD)であ
ることが好ましく、LiNO3とMnO2の1見金時に
媒体として水を用い、LiNO3を予め水に溶解した後
、上記所定温度で焼成することが好ましい。本発明の製
造法を用いることにより、サイクル可逆性ばかりでなく
、高電位側の放電gffiに優れた正極となり、4■級
の高エネルギ密度電池が達成できる。
Further, MnO2 is preferably electrolytic manganese dioxide (EMD), and it is preferable to use water as a medium during one test of LiNO3 and MnO2, and to dissolve LiNO3 in water in advance, and then to sinter it at the above-mentioned predetermined temperature. By using the manufacturing method of the present invention, a positive electrode having not only cycle reversibility but also excellent discharge gffi on the high potential side can be obtained, and a high energy density battery of 4■ class can be achieved.

なお、本発明の正極活物質を適用した電池において、そ
の負極は、金属Liの他、Liとの合金、Liをドープ
した高分子材料、またはL iを吸蔵可能なカーボン材
料でも良い。
In addition, in a battery to which the positive electrode active material of the present invention is applied, the negative electrode may be made of metal Li, an alloy with Li, a polymer material doped with Li, or a carbon material capable of occluding Li.

作用 従来、スピネル型M’ n O2はγ−β型MnO2の
熱処理温度に比べ、かなりの高温、または窒素ガス中な
どの還元雰囲気で合成される。すなわち、γ−β型M 
n O2を高温で熱処理した時のように活物質の表面は
部分的に還元され、きわめて電池反応に対して不活性な
状態になっていると予想される。そのために活物質利用
率が低く、容量も小さかったと考えられる。一方、本発
明のようにLi源にLiN0+を用いると、高温で処理
しているにも関わらず、従来のものと比べ容量が大きく
なった。
Function Conventionally, spinel type M' n O2 is synthesized at a much higher temperature than the heat treatment temperature of γ-β type MnO2 or in a reducing atmosphere such as in nitrogen gas. That is, γ-β type M
It is expected that the surface of the active material is partially reduced, as is the case when nO2 is heat-treated at a high temperature, and becomes extremely inert to battery reactions. This is probably why the active material utilization rate was low and the capacity was also small. On the other hand, when LiN0+ was used as the Li source as in the present invention, the capacity was increased compared to the conventional one despite the high temperature treatment.

そこで、何等かの結晶構造の変化が生じた可能性がある
ので、従来のスピネル型MnO2と本発明の活物質(特
にMn:Lf=2.0:1.0のモル比のもの)のX線
回折分析を行った。その結果、いずれも基本的にはスピ
ネル型であることがわかったが、本発明のものには従来
のものにはほとんど観察されない正体不明のピークが存
在していた。従って、何等かの異なる結晶フェーズがで
きていると思われるが、その詳細は明らかではない。
Therefore, since there is a possibility that some kind of change in the crystal structure has occurred, the X Linear diffraction analysis was performed. As a result, it was found that all of them were basically spinel type, but the one of the present invention had an unidentified peak that was hardly observed in the conventional one. Therefore, it seems that some kind of different crystal phase is formed, but the details are not clear.

また、L i NO:lの分解温度は600℃であるに
もかかわらず、本発明の焼成過程の昇温時において、4
00℃付近からLiNC)+の分解によるものと思われ
るNO8の著しい発生がみられた。このことから、Mn
0=を触媒とするLiNO3の分解反応を併発している
ことが予想される。
Furthermore, although the decomposition temperature of Li NO:l is 600°C, when the temperature is increased in the firing process of the present invention,
Significant generation of NO8 was observed from around 00°C, which was thought to be due to decomposition of LiNC)+. From this, Mn
It is expected that a decomposition reaction of LiNO3 using 0= as a catalyst occurs simultaneously.

さらに、この分解過程で発生するNO:t、NO□等は
強い酸化剤として働くものなので、少なくともMnO,
の表面はきわめて活性な状態になっていると考えられる
。おそらく、これらが効果的に作用して、結晶構造に何
等かの変化を与え、さらにはMnoz表面活性の維持に
も寄与しているものと思われる。そのため従来のものと
比べ、容量の優れた活物質となったと考えられる。従っ
て、LiN0:iを用いた本発明の技術はきわめて興味
深いものである。
Furthermore, since NO:t, NO□, etc. generated during this decomposition process act as strong oxidizing agents, at least MnO,
It is thought that the surface of is in an extremely active state. Presumably, these act effectively to bring about some changes in the crystal structure, and also contribute to the maintenance of Mnoz surface activity. This is thought to be the reason why the active material has a superior capacity compared to conventional materials. Therefore, the technique of the present invention using LiN0:i is extremely interesting.

実施例 以下本発明の実施例を示す。Example Examples of the present invention will be shown below.

実施例1 本発明のL【とMnからなるスピネル型の酸化物は以下
のように調製した。まず、LiNO3を所定量水に溶解
させ、LiN0.の飽和水溶液に近いものを作る。これ
に所定量のMnO2粉末を加え、充分に攪拌混合し、水
分を一部蒸発させて泥状の塊にした後、電気炉を用いて
所定温度で4〜5時間焼成するというものである。
Example 1 A spinel-type oxide comprising L and Mn of the present invention was prepared as follows. First, a predetermined amount of LiNO3 is dissolved in water, and LiNO. Make something close to a saturated aqueous solution of A predetermined amount of MnO2 powder is added thereto, thoroughly stirred and mixed, and a portion of the water is evaporated to form a mud-like mass, which is then fired at a predetermined temperature for 4 to 5 hours using an electric furnace.

また、MnO2とLiNO3を予め粉末のまま混合して
から、水を加え練っても同じものが調製できた。しかし
、水を用いず、粉末同士を混合しただけのものを直接焼
成すると反応が均一に行われに<<、性能ばらつきが大
きくなってしまった。
Alternatively, the same product could be prepared by mixing MnO2 and LiNO3 in powder form in advance and then adding water and kneading. However, when the mixture of powders was directly fired without using water, the reaction did not occur uniformly, resulting in large variations in performance.

従って、混合には水を関与させることが好ましい。Therefore, it is preferable to involve water in the mixing.

実施例2 Mn0zとしてEMDを用い、LiN0:iを、Mn 
: L f=2.0 + 1.00モル比で混合し、9
00℃で焼成した本発明の活物質とEMDに炭酸リチウ
ムを上記と同モル比になるように混合して900℃で焼
成した従来の活物質を合成した。
Example 2 Using EMD as Mn0z, LiN0:i was
: Mixed at a molar ratio of L f = 2.0 + 1.00, 9
A conventional active material was synthesized by mixing the active material of the present invention fired at 00°C and EMD with lithium carbonate at the same molar ratio as above, and firing at 900°C.

まずこの二つの活物質について第2図のようなボタン型
電池を組み立てて、その特性比較を行った。第2図にお
いて、正極1は活物質に導電剤の炭素粉末(活物質に対
して5重量%)と結着剤のポリ4フツ化エチレン樹脂粉
末(活物質に対して7重量%)を混合したもので、正極
ケース内側にスポット溶接で固定したチタンネット2上
にプレス成形したものである。また、活物質量はいずれ
も100mgとした。そして、ポリプロピレン製のセパ
レータ3.封口板4に圧着した金属リチウムの負極5及
び電解液6(1モル/lのLiAsF6を炭酸プロピレ
ンと炭酸エチレンの混合溶媒中に溶かしたもの)と共に
ポリプロピレン製のガスケット7を介して密封し、直径
20m1W1高さ1.6閣の電池としている。また、こ
の電池は正極の特性を比較する目的で試作したもので、
正極の容量に対し負極の容量を約4倍充填しており、充
放電特性に負極の欠乏等による影響が現れないようにし
ている。充放電試験は、1.0mAの定電流充放電を充
電終止電圧を4.5 V、放電終止電圧を2、OVと設
定して行った。第3図は上記二種類の活物質を用いた電
池の5サイクル目の放電曲線を示したものである。第3
図において曲線8は従来のスピネル型Mn0=の特性で
、曲線9は本発明の活物質のものである。いずれも、4
■付近と3V付近に電圧平坦部を持つ、いわゆる典型的
なスピネル型MnO2の二段放電となっている。ところ
が、この両者を比べてみると、明らかに本発明の活物質
において、上の4V付近の放電容量が従来のものより一
段と大きくなっていることがわかる。また、下の3v付
近の容量も大きくなっているが、その容量差は上に比べ
て小さい。例えば、従来のものでは上の放電容量と下の
放電容量はほぼ等しいが、本発明のものは上下の比率が
3:2程度になっている。総容量(上下の放電容量の和
)の増大は、活物質の表面活性に起因すると思われるが
、上下の容量バランスの変化は結晶構造の変化により生
じたものと推定される。
First, a button-type battery as shown in Figure 2 was assembled using these two active materials, and their characteristics were compared. In Figure 2, the positive electrode 1 is a mixture of carbon powder as a conductive agent (5% by weight based on the active material) and polytetrafluoroethylene resin powder as a binder (7% by weight based on the active material). It is press-formed onto a titanium net 2 fixed to the inside of the positive electrode case by spot welding. Further, the amount of active material was 100 mg in each case. And a polypropylene separator 3. The metallic lithium negative electrode 5 and the electrolytic solution 6 (1 mol/l LiAsF6 dissolved in a mixed solvent of propylene carbonate and ethylene carbonate) are sealed together via a polypropylene gasket 7, which is press-bonded to the sealing plate 4. The battery is 20m1W1 and 1.6cm high. In addition, this battery was prototyped for the purpose of comparing the characteristics of the positive electrode.
The capacity of the negative electrode is filled to about four times the capacity of the positive electrode, so that the charging and discharging characteristics are not affected by the lack of the negative electrode. The charge/discharge test was performed by constant current charging/discharging at 1.0 mA with the end-of-charge voltage set at 4.5 V and the end-of-discharge voltage set at 2.OV. FIG. 3 shows the discharge curve of the battery using the above two types of active materials at the 5th cycle. Third
In the figure, curve 8 is the characteristic of the conventional spinel type Mn0=, and curve 9 is the characteristic of the active material of the present invention. Both are 4
This is a so-called typical spinel-type MnO2 two-stage discharge with voltage plateaus near (1) and 3V. However, when comparing the two, it is clear that the active material of the present invention has a much larger discharge capacity near the above 4V than the conventional one. Also, the capacitance near the bottom 3V is also large, but the difference in capacitance is small compared to the top. For example, in the conventional case, the upper discharge capacity and the lower discharge capacity are almost equal, but in the case of the present invention, the upper and lower ratio is about 3:2. The increase in the total capacity (the sum of the upper and lower discharge capacities) is thought to be due to the surface activity of the active material, but it is presumed that the change in the upper and lower capacity balance is caused by a change in the crystal structure.

そこで、実使用では二段とも利用することはあり得ない
ので、特に高エネルギ密度が期待できる上の部分だけを
使った充放電試験を行ってみた。
Therefore, since it is impossible to use both stages in actual use, we conducted a charge/discharge test using only the upper part, which is expected to have particularly high energy density.

充放電試験は、2mAの定電流充放電で、充電終止電圧
を4.5V、放電終止電圧を3,5vに設定して行った
。第4図は容量−サイクル特性を示したもので、従来の
活物質の特性(曲線10)と本発明の活物質の特性(曲
線11)を比較したものである。第4図を見ても明らか
なように、本発明の活物質は従来のものと比べ少なくと
も25%以上は高容量であり、さらにサイクル可逆性も
わずかではあるが向上していると思われる。また、この
両者についてかさ密度を測定したが、はぼ同一であり、
体積効率でも本発明の活物質が優れている。
The charging and discharging test was performed by constant current charging and discharging at 2 mA, with the end-of-charge voltage set at 4.5 V and the end-of-discharge voltage set at 3.5 V. FIG. 4 shows the capacity-cycle characteristics, and compares the characteristics of the conventional active material (curve 10) and the characteristics of the active material of the present invention (curve 11). As is clear from FIG. 4, the active material of the present invention has a capacity that is at least 25% higher than that of the conventional active material, and it seems that the cycle reversibility is also slightly improved. I also measured the bulk density of both, and they were almost the same.
The active material of the present invention is also excellent in volumetric efficiency.

次に、化学合成二酸化マンガン(CMD)を原材料とし
、LiNO3と共に上記と同様の条件で焼成した活物質
についても検討した。その結果、活物質を同重量用いた
ボタン型電池では、E M Dの場合とほぼ同じ放電特
性を有し、容量も変わらなかった。しかしかさ密度を測
定した結果、EMDに比べ20%近くかさ高く、体積効
率ではEMDを用いた従来の活物質に対し優位性はなか
った。
Next, an active material prepared by using chemically synthesized manganese dioxide (CMD) as a raw material and firing it together with LiNO3 under the same conditions as above was also investigated. As a result, a button type battery using the same weight of active material had almost the same discharge characteristics as an EMD, and the capacity remained unchanged. However, as a result of measuring the bulk density, it was found to be nearly 20% bulkier than EMD, and had no superiority in volumetric efficiency over conventional active materials using EMD.

すなわち、同形状、同寸法の正極とする場合(−般に実
用電池では寸法規制となる) 、CMDではメリットは
小さい。従って、高エネルギ密度を実現するためには、
原材料MnO,はEMDが好ましい。
That is, when using positive electrodes of the same shape and size (generally, there are size restrictions in practical batteries), CMD has little advantage. Therefore, in order to achieve high energy density,
The raw material MnO is preferably EMD.

実施例3 上述のように、EMDと[,1NO3を組み合わせて合
成した本発明のスピネル型のM n O2が優れた活物
質になることがわかったので、次にその合成時の焼成温
度について検討した。
Example 3 As mentioned above, it was found that the spinel-type M n O2 of the present invention synthesized by combining EMD and [,1NO3 is an excellent active material. Next, we investigated the firing temperature during its synthesis. did.

EMDとLiNO3はMn : L i=2.0 + 
1.0のモル比で混合し、焼成温度を800℃、850
℃、900℃、950℃、100O℃、1050℃及び
1100℃としたそれぞれの活物質について実施例2と
同条件の電池を構成し、充放電試験を行った。充放電試
験は、1.0mAの定電流充放電で、充電終止電圧を4
.5 V、放電終止電圧を3.5vに設定して行った。
EMD and LiNO3 are Mn: Li=2.0 +
Mixed at a molar ratio of 1.0 and fired at a temperature of 800°C and 850°C.
C., 900.degree. C., 950.degree. C., 1000.degree. C., 1050.degree. C. and 1100.degree. C., respectively.Batteries were constructed under the same conditions as in Example 2, and a charge/discharge test was conducted. The charge/discharge test was conducted at a constant current charge/discharge of 1.0 mA, and the end-of-charge voltage was set to 4.
.. 5 V, and the discharge end voltage was set to 3.5 V.

第5図は、それぞれの活物質の容量−サイクル特性で、
いずれも実施例2で用いた従来の活物質(図中破線で示
す曲線)の容量より大きくなっているが、サイクル可逆
性をみるかぎり、800℃のもの(曲線12)と850
℃のもの(曲線13)は、従来のものに劣る。また、9
00℃〜1000℃のもの(曲線14〜16)はサイク
ル可逆性ならびに容量も従来のものより優れている。し
かし、焼成温度が1050℃以上のもの(曲線17〜1
8)になると、サイクル可逆性は優れているが、容量が
低くなることがわかる。そこで、放電下限電圧を2Vと
して、下の段の放電を行った結果、下の容量も低くなっ
ていることがわかった。
Figure 5 shows the capacity-cycle characteristics of each active material.
Both have a capacity larger than that of the conventional active material used in Example 2 (curve shown by the broken line in the figure), but as far as cycle reversibility is concerned, the capacity of the active material at 800°C (curve 12) and the active material at 850°C (curve 12)
℃ (curve 13) is inferior to the conventional one. Also, 9
00° C. to 1000° C. (curves 14 to 16) are superior to conventional ones in terms of cycle reversibility and capacity. However, those with a firing temperature of 1050°C or higher (curves 17 to 1)
8), the cycle reversibility is excellent, but the capacity is low. Therefore, as a result of discharging the lower stage by setting the discharge lower limit voltage to 2V, it was found that the lower capacity was also lowered.

すなわち、これは活物質の表面活性の低下に起因すると
思われる。
That is, this seems to be due to a decrease in the surface activity of the active material.

以上のように、焼成温度は900℃〜1000℃付近が
良好であるとわかったので、さらにこの温度範囲付近で
、細かく焼成温度を検討してみた。その結果、880℃
〜1000℃の範囲で、900℃〜1000℃のものと
ほぼ同じ良好な特性が得られた。従って、LiN0:+
をL i源として合成する本発明の活物質の焼成温度は
880℃〜1000℃が好ましい。
As mentioned above, since it was found that a firing temperature of around 900°C to 1000°C is good, the firing temperature was further examined in detail around this temperature range. As a result, 880℃
In the range from 900°C to 1000°C, almost the same good properties as those obtained at 900°C to 1000°C were obtained. Therefore, LiN0:+
The firing temperature of the active material of the present invention synthesized using Li as a Li source is preferably 880°C to 1000°C.

実施例4 次に、活物質中のLiとMnのモル比(LiMn)につ
いての検討を行った。まず予備検討として、EMDとL
iN0.+の仕込み混合比と活物質中のLiとMnの比
の関係を活物質の化学分析によって調べた結果、焼成温
度に係わらず、互いに一致することが確認できた。
Example 4 Next, the molar ratio of Li to Mn (LiMn) in the active material was investigated. First, as a preliminary study, EMD and L
iN0. As a result of investigating the relationship between the mixing ratio of + and the ratio of Li to Mn in the active material by chemical analysis of the active material, it was confirmed that they matched with each other regardless of the firing temperature.

活物質の調製法は実施例1で示した通りで、焼成温度は
900℃に固定し、Mn:Li=2.41.0.2.2
 : 1.0. 2.0 + 1.0. 1.8 :1
.0. 1.6 : 1.0とした5種類の活物質を台
底した。次いで、それぞれについて実施例2と同条件の
電池を構成し充放電試験を行った。充放電試験は、1.
0mAの定電流充放電で、充電終止電圧を4.5V、放
電終止電圧を3.5vに設定して行った。第6図は上記
それぞれの活物質を用いた電池の容量−サイクル特性を
比較したものである。この図からも明らかなようにMn
+Li=2.4・1.0のもの(曲線19)は容量が小
さい。かつサイクル可逆性も悪い。そこで、放電下限電
圧を2Vとして、下の段の放電を行った結果、下の容量
は大きくなっていた。すなわち、Liの不足によって、
完成度の低いスピネル型の結晶構造になっていると予想
される。次に、Mn+Li=2.2 : 1.0 (曲
線20) 、2.0 : 1.0 (曲線21) 、1
.8 : 1.0 (曲線22)のものは、いずれもサ
イクル可逆性に優れ、かつ容量も大きかった。
The method for preparing the active material was as shown in Example 1, the firing temperature was fixed at 900°C, and Mn:Li = 2.41.0.2.2.
: 1.0. 2.0 + 1.0. 1.8:1
.. 0. 1.6: The five types of active materials with 1.0 reached the bottom. Next, batteries were constructed under the same conditions as in Example 2 for each, and a charge/discharge test was conducted. The charge/discharge test is as follows: 1.
The charging and discharging were performed at a constant current of 0 mA, with the charging end voltage set at 4.5 V and the discharging end voltage set at 3.5 V. FIG. 6 compares the capacity-cycle characteristics of batteries using each of the above active materials. As is clear from this figure, Mn
The one with +Li=2.4·1.0 (curve 19) has a small capacity. Moreover, cycle reversibility is also poor. Therefore, when the lower discharge limit voltage was set to 2V and the lower stage was discharged, the lower capacity was increased. In other words, due to the lack of Li,
It is expected to have a spinel-type crystal structure with a low degree of perfection. Next, Mn+Li=2.2: 1.0 (curve 20), 2.0: 1.0 (curve 21), 1
.. 8:1.0 (curve 22) had excellent cycle reversibility and large capacity.

また、この三者を比較してわかったことであるが、Mn
の含有量が増えるにしたがって容量は大きくなり、Li
の含有量が増えるにしたがってサイクル可逆性が向上す
る。ところが、Mn:Li−1,6: 1.0 (曲線
23)の場合、サイクル可逆性は1.8:1.0のもの
とほとんど変わらず、容量のみが低下していた。さらに
、体積効率の観点から比較すると1.6:1.0のもの
は著しくかさ密度も低くなり、その容量差はさらに大き
くなる。従って、Mn : L i=2.2 : 1.
0〜1.8:1.Oであることが好ましい。
Also, as we found by comparing these three, Mn
As the content of Li increases, the capacity increases, and Li
The cycle reversibility improves as the content increases. However, in the case of Mn:Li-1,6: 1.0 (curve 23), the cycle reversibility was almost the same as that of 1.8:1.0, and only the capacity was decreased. Furthermore, when compared from the viewpoint of volumetric efficiency, the bulk density of 1.6:1.0 is significantly lower, and the difference in capacity becomes even larger. Therefore, Mn:Li=2.2:1.
0-1.8:1. Preferably it is O.

発明の効果 本発明により、サイクル可逆性、ならびに高いエネルギ
密度を有する4V級のリチウム二次電池が提供できる。
Effects of the Invention According to the present invention, a 4V class lithium secondary battery having cycle reversibility and high energy density can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第3図は放電特性図であり、第2図は本発明の
実施例に用いた電池の縦断面図であり、第4図、第5図
、第6図は容量−サイクル特性の比較図である。 1・・・・・・正極、2・・・・・・チタンネット、3
・・・・・・セパレータ、4・・・・・・封口板、5・
・・・・・リチウム負極、6・・・・・・電解液、7・
・・・・・ガスケット。
Figures 1 and 3 are discharge characteristic diagrams, Figure 2 is a longitudinal cross-sectional view of a battery used in an example of the present invention, and Figures 4, 5, and 6 are capacity-cycle characteristics. FIG. 1...Positive electrode, 2...Titanium net, 3
... Separator, 4... Sealing plate, 5.
... Lithium negative electrode, 6 ... Electrolyte, 7.
·····gasket.

Claims (3)

【特許請求の範囲】[Claims] (1)二酸化マンガン(MnO_2)と硝酸リチウム(
LiNO_3)をMn:Li=2.2:1.0〜1.8
:1.0のモル比で混合し、空気中において880℃以
上、1000℃以下の温度範囲で焼成してリチウムとマ
ンガンからなる酸化物とすることを特徴とするリチウム
二次電池用正極活物質の製造方法。
(1) Manganese dioxide (MnO_2) and lithium nitrate (
LiNO_3) Mn:Li=2.2:1.0~1.8
: A positive electrode active material for a lithium secondary battery, characterized in that it is mixed at a molar ratio of 1.0 and fired in air at a temperature range of 880°C or higher and 1000°C or lower to obtain an oxide consisting of lithium and manganese. manufacturing method.
(2)二酸化マンガンが電解二酸化マンガン(EMD)
であることを特徴とする特許請求の範囲第(1)項記載
のリチウム二次電池用正極活物質の製造方法。
(2) Manganese dioxide is electrolytic manganese dioxide (EMD)
A method for producing a positive electrode active material for a lithium secondary battery according to claim (1).
(3)硝酸リチウムと二酸化マンガンの混合時に媒体と
して水を用い、硝酸リチウムを予め水に溶解した後、上
記所定温度で焼成することを特徴とする特許請求の範囲
第(1)項記載のリチウム二次電池用正極活物質の製造
方法。
(3) Lithium according to claim (1), characterized in that water is used as a medium when lithium nitrate and manganese dioxide are mixed, and the lithium nitrate is dissolved in water in advance and then fired at the predetermined temperature. A method for producing a positive electrode active material for secondary batteries.
JP1262390A 1989-10-06 1989-10-06 Method for producing positive electrode active material for lithium secondary battery Expired - Fee Related JP2797528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1262390A JP2797528B2 (en) 1989-10-06 1989-10-06 Method for producing positive electrode active material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1262390A JP2797528B2 (en) 1989-10-06 1989-10-06 Method for producing positive electrode active material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH03127453A true JPH03127453A (en) 1991-05-30
JP2797528B2 JP2797528B2 (en) 1998-09-17

Family

ID=17375102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1262390A Expired - Fee Related JP2797528B2 (en) 1989-10-06 1989-10-06 Method for producing positive electrode active material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2797528B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807646A (en) * 1995-02-23 1998-09-15 Tosoh Corporation Spinel type lithium-mangenese oxide material, process for preparing the same and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807646A (en) * 1995-02-23 1998-09-15 Tosoh Corporation Spinel type lithium-mangenese oxide material, process for preparing the same and use thereof

Also Published As

Publication number Publication date
JP2797528B2 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
Xia et al. Studies on an Li Mn O spinel system (obtained by melt-impregnation) as a cathode for 4 V lithium batteries part 1. Synthesis and electrochemical behaviour of LixMn2O4
JP3502118B2 (en) Method for producing lithium secondary battery and negative electrode thereof
JP3064655B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JPS63187569A (en) Nonaqueous secondary battery
JP7212289B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JPH11185758A (en) Positive electrode material for nonaqueous secondary battery
JPH08306360A (en) Manufacture of cathode active material for nonaqueous battery
JPH09320588A (en) Manufacture of lithium battery positive electrode active material, and lithium battery
JPH02139860A (en) Non-aqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
KR102174720B1 (en) Lithium metal complex oxide and manufacturing method of the same
JP3695366B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JPH02139861A (en) Non-aqueous electrolyte secondary battery
KR100639060B1 (en) Method for preparing lithium manganate having spinel structure
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JPH11213999A (en) Positive electrode active material for lithium battery lithium battery using it, and manufacture of positive electrode active material for lithium battery
JP3429328B2 (en) Lithium secondary battery and method of manufacturing the same
JP2797526B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
JPH03127453A (en) Manufacture of positive electrode active material for lithium secondary battery
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH0367464A (en) Manufacture of organic electrolyte lithium secondary battery and composite oxide of lithium and manganese
JPH0734368B2 (en) Non-aqueous electrolyte secondary battery
JPH1145711A (en) Positive electrode active material and nonaqueous secondary battery using same
KR100194614B1 (en) Method of manufacturing lithium-manganese oxide for lithium secondary battery
KR100326456B1 (en) A positive active material for a lithium secondary battery and A method of preparing the same
JP3552167B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees