KR100194614B1 - Method of manufacturing lithium-manganese oxide for lithium secondary battery - Google Patents

Method of manufacturing lithium-manganese oxide for lithium secondary battery Download PDF

Info

Publication number
KR100194614B1
KR100194614B1 KR1019950051459A KR19950051459A KR100194614B1 KR 100194614 B1 KR100194614 B1 KR 100194614B1 KR 1019950051459 A KR1019950051459 A KR 1019950051459A KR 19950051459 A KR19950051459 A KR 19950051459A KR 100194614 B1 KR100194614 B1 KR 100194614B1
Authority
KR
South Korea
Prior art keywords
lithium
manganese oxide
secondary battery
lithium secondary
present
Prior art date
Application number
KR1019950051459A
Other languages
Korean (ko)
Other versions
KR970054744A (en
Inventor
장순호
강성구
장기호
Original Assignee
정선종
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정선종, 한국전자통신연구원 filed Critical 정선종
Priority to KR1019950051459A priority Critical patent/KR100194614B1/en
Priority to JP8337943A priority patent/JPH09180723A/en
Publication of KR970054744A publication Critical patent/KR970054744A/en
Application granted granted Critical
Publication of KR100194614B1 publication Critical patent/KR100194614B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬 2차전지용 리튬-망간 산화물의 제조방법에 관한 것이다.The present invention relates to a method for producing a lithium-manganese oxide for a lithium secondary battery.

좀 더 구체적으로, 본 발명은 입자크기가 증가되고 결정성이 증가되어 우수한 전극특성을 지닌 리튬 2차전지의 양극물질인 LiMn2O4를 고온고상반응법을 사용하여 제조하는 방법에 관한 것이다.More specifically, the present invention relates to a method for producing LiMn 2 O 4 , which is a cathode material of a lithium secondary battery having excellent electrode properties due to increased particle size and crystallinity, using a high temperature solid state reaction method.

본 발명에 따른 리튬 2차전지용 리튬-망간 산화물 제조방법은, 리튬 2차전지용 양극 활성물질인 리튬-망간 산화물을 제조함에 있어서, LiOH, LiCO3및 LiNO3로 부터 선택된 1종의 리튬 화합물과 망간 산화물을 혼합하여 840 내지 860℃의 온도에서 28 내지 32시간 동안 열처리하는 공정을 포함하는 것을 특징으로 한다.For lithium secondary battery of lithium in accordance with the invention a manganese oxide production method, a lithium secondary battery positive electrode active material a lithium-In preparing the manganese oxide, LiOH, LiCO 3, and a lithium compound and the manganese of one member selected from the LiNO 3 Mixing the oxide is characterized in that it comprises a step of heat treatment for 28 to 32 hours at a temperature of 840 to 860 ℃.

본 발명의 리튬-망간 산화물의 제조방법은 입자크기가 증가되고 결정성이 증가되어 우수한 전극특성을 지닌 리튬 2차전지의 양극물질인 리튬-망간 산화물을 제조할 수 있을 뿐 아니라, 제조량의 증가에 따른 전극특성의 열화를 방지할 수 있다는 것이 확인되었다.The method of manufacturing lithium-manganese oxide of the present invention increases the particle size and increases the crystallinity, and can produce lithium-manganese oxide, which is a cathode material of a lithium secondary battery having excellent electrode characteristics, and also increases the production amount. It was confirmed that deterioration of the electrode characteristics can be prevented.

Description

리튬 2차전지용 리튬-망간 산화물의 제조방법Method of manufacturing lithium-manganese oxide for lithium secondary battery

제1도는 본 발명의 바람직한 실시예에서 얻어진 리튬-망간 산화물에 대한 X-선 회절분석 결과를 나타낸 그래프.1 is a graph showing the results of X-ray diffraction analysis on the lithium-manganese oxide obtained in the preferred embodiment of the present invention.

제2도는 열처리 반복횟수에 따른 본 발명의 리튬-망간 산화물의 전자현미경(SEM) 사진.2 is an electron micrograph (SEM) of the lithium-manganese oxide of the present invention according to the number of heat treatment iterations.

제3도는 본 발명의 리튬-망간 산화물을 사용한 2차전지의 3V 및 4V 영역에서의 1차 충방전 특성에 대한 결과를 나타낸 그래프.3 is a graph showing the results of the primary charge and discharge characteristics in the 3V and 4V region of the secondary battery using the lithium-manganese oxide of the present invention.

제4도는 본 발명의 리튬-망간 산화물을 역 사용한 2차전지의 4V 영역에서의 충방전 특성에 대한 결과를 나타낸 그래프.4 is a graph showing the results of charge and discharge characteristics in the 4V region of the secondary battery using the lithium-manganese oxide of the present invention in reverse.

본 발명은 리튬 2차전지용 리튬-망간 산화물의 제조방법에 관한 것이다.The present invention relates to a method for producing a lithium-manganese oxide for a lithium secondary battery.

좀 더 구체적으로, 본 발명은 입자크기가 증가되고 결정성이 증가되어 우수한 전극특성을 지닌 리튬 2차전지의 양극물질인 LiMn2O4를 고온고상반응법을 사용하여 제조하는 방법에 관한 것이다.More specifically, the present invention relates to a method for producing LiMn 2 O 4 , which is a cathode material of a lithium secondary battery having excellent electrode properties due to increased particle size and crystallinity, using a high temperature solid state reaction method.

일반적으로, 리튬 이온전지는 양 전극에 리튬-전이금속 산화물을 활물질로 사용하는데, 4V 영역에서 작동하는 전극물질로는 LiCoO2, LiNiO2및 LnMn2O4가 알려져 있다.In general, lithium ion batteries use lithium-transition metal oxides as active materials for both electrodes. LiCoO 2 , LiNiO 2, and LnMn 2 O 4 are known as electrode materials operating in the 4V region.

상기한 전극물질을 실험적으로 제조하는 방법은 이미 알려져 있는데, 이러한 방법으로는 고온고상반응법, 졸-겔(sol-gel)법과 침전법이 사용될 수 있다.A method of experimentally preparing the electrode material is already known, and as such a method, a high temperature solid state reaction method, a sol-gel method, and a precipitation method may be used.

상기한 전극물질 중 리튬-망간 산화물은 제조조건에 따라 산소의 양이 변화하고, 망간이 위치하는 육방정계의 왜곡(distortion)으로 인한 결정 구조의 변형에 의해 전극특성이 열화된다는 문제점을 지니고 있었다.Among the electrode materials, lithium-manganese oxide had a problem in that the amount of oxygen was changed according to manufacturing conditions, and electrode characteristics were deteriorated due to deformation of the crystal structure due to the distortion of the hexagonal system in which manganese was located.

특히, 제조량을 증가시킬 경우에는 이러한 전극특성의 열화는 더욱 심각해져, 리튬-망간 산화물의 제조시마다 그 결과를 예측할 수 없다는 문제점을 지니고 있었다.In particular, when the production amount is increased, the deterioration of the electrode characteristics becomes more serious, and there is a problem that the result cannot be predicted every time lithium-manganese oxide is produced.

또한, 상기한 리튬-망간 산화물에 대한 종래의 제조방법으로는 입자 크기와 결정성이 증가된 리튬-망간 산화물을 제조할 수 없으므로, 우수한 전극특성을 지닌 리튬-망간 산화물을 얻을 수 없다는 한계를 지니고 있었다.In addition, the conventional manufacturing method for the lithium-manganese oxide can not produce a lithium-manganese oxide with increased particle size and crystallinity, there is a limit that can not obtain a lithium-manganese oxide with excellent electrode properties there was.

결국, 본 발명은 상기한 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 입자크기가 증가되고 결정성이 증가되어 우수한 전극 특성을 지닌 리튬 2차전지의 양극물질인 리튬-망간 산화물을 제조할 수 있을 뿐 아니라, 제조량의 증가에 따른 전극특성의 열화를 방지할 수 있는 리튬-망간 산화물의 제조방법을 제공함에 있다.As a result, the present invention is to solve the above problems of the prior art, an object of the present invention is to increase the particle size and crystallinity to increase the lithium-manganese oxide which is a positive electrode material of a lithium secondary battery having excellent electrode characteristics Not only can it be produced, but also to provide a method for producing a lithium-manganese oxide that can prevent the deterioration of the electrode characteristics according to the increase in the production amount.

상기한 목적을 달성하는 본 발명에 따른 리튬 2차전지용 리튬-망간 산화물 제조방법은, 리튬 2차전지용 양극 활성물질인 리튬-망간 산화물을 제조함에 있어서, LiOH, LiCO3및 LiNO3로 부터 선택된 1종의 리튬 화합물과 망간 산화물을 혼합하여 840 내지 860℃의 온도에서 28 내지 32시간 동안 열처리하는 공정을 포함하는 것을 특징으로 한다.For lithium secondary battery of lithium in accordance with the present invention for achieving the above object-manganese oxide production method, a lithium secondary battery positive electrode active material a lithium-In preparing the manganese oxide, LiOH, LiCO 3, and LiNO from 3 selected 1 It characterized in that it comprises a step of mixing a lithium compound of the species and manganese oxide and heat treatment for 28 to 32 hours at a temperature of 840 to 860 ℃.

이때, 상기한 망간 산화물로는 전기화학적 방법에 의해 제조된 망간산화물인 EMD, 또는 화학적 방법에 의해 제조된 망간 산화물인 CMD를 사용하는 것이 바람직하다.In this case, as the manganese oxide, it is preferable to use EMD, which is a manganese oxide prepared by an electrochemical method, or CMD, which is a manganese oxide prepared by a chemical method.

또한, 상기한 제조방법에 있어서, 균일하고 입자크기가 증가되어 결정성이 보다 우수한 리튬-망간 산화물을 얻기 위해서는, 상기한 열처리 공정을 2회 이상 반복하는 것이 바람직하며, 상기한 열처리 공정 후 온도 강하과정으로는 급냉과정을 거치는 것이 바람직하다.In addition, in the above-described manufacturing method, in order to obtain a lithium-manganese oxide which is uniform in particle size and has better crystallinity, it is preferable to repeat the above heat treatment step two or more times, and the temperature drop after the above heat treatment process is performed. It is preferable to go through a quenching process.

아울러, 합성되는 화합물의 비화학양론적 조성을 얻기 위해서는, 상기한 리튬 화합물의 첨가량은 10% 이내에서 과량 첨가하는 것이 바람직하다.In addition, in order to obtain the nonstoichiometric composition of the compound synthesize | combined, it is preferable to add an excess amount of the said lithium compound in 10% or less.

상기한 본 발명의 제조방법에 따르면, 균일한 결정 입자크기를 지니며 결정성 및 전극특성이 우수한 리튬 2차건지용 양극 활성물질인 스피넬(spinel) 구조를 지닌 LiMn2O4의 리튬-망간 산화물을 제조할 수 있다.According to the manufacturing method of the present invention, a lithium-manganese oxide of LiMn 2 O 4 having a spinel structure, which is a cathode active material for lithium secondary batteries having a uniform crystal grain size and excellent crystallinity and electrode characteristics. Can be prepared.

이하, 본 발명의 리튬 2차전지용 리튬-망간 산화물의 제조방법에 대한 바람직한 실시예를 통하여 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to a preferred embodiment of the method for producing a lithium-manganese oxide for a lithium secondary battery of the present invention.

[실시예 1]:Example 1

리튬 화합물인 LiOH 1.1 mol과 β/γ형 망간 산화물인 β/γ-EMD 1 mol을 균일하게 혼합하고, 850℃의 온도에서 30시간 동안 열처리하는 과정을 3회 반복한 후, 상온으로 급냉시켜, 리튬 2차전지용 양극 활성물질인 스피넬 구조를 지닌 LiMn2O4의 리튬-망간 산화물을 제조하였다.1.1 mol of LiOH, a lithium compound, and 1 mol of β / γ-EMD, a β / γ-type manganese oxide, are uniformly mixed, and the heat treatment is repeated three times for 30 hours at a temperature of 850 ° C., followed by quenching to room temperature, A lithium-manganese oxide of LiMn 2 O 4 having a spinel structure, which is a cathode active material for a lithium secondary battery, was prepared.

제1도는 본 실시예에서 얻어진 본 발명의 리튬-망간 산화물에 대한 X-선 회절분석 결과를 나타낸 그래프로서, 그래프에서 보듯이, 정방정계의 스피넬 구조에 대한 피크를 확인할 수 있었다.FIG. 1 is a graph showing the X-ray diffraction analysis results of the lithium-manganese oxide of the present invention obtained in this example. As shown in the graph, the peaks for the spinel structure of the tetragonal system were confirmed.

또한, 제2도는 본 발명의 열처리 반복횟수에 따른 본 발명의 리튬-망간 산화물의 전자현미경(SEM) 사진으로서, 제2(a)도는 열처리를 1회 수행한 경우에 대한 결과로, 결정입자의 크기가 균일하지 않고 작으나, 제2(b)도는 본 실시예와 같이, 열처리 과정을 반복한 경우에 대한 결과로, 입자의 크기가 약 4Å 정도로 균일하고 입자의 크기가 크게 형성되었음을 확인할 수 있었다.FIG. 2 is an electron micrograph (SEM) of the lithium-manganese oxide of the present invention according to the repetition number of heat treatments of the present invention. FIG. 2 (a) is a result of one time of heat treatment. Although the size is not uniform and small, the second (b) is a result of repeating the heat treatment process, as in this embodiment, it was confirmed that the size of the particles are uniform about 4Å and the size of the particles are formed large.

일반적으로, 입자크기의 성장은 온도 강하속도에 따라 크게 변화하지만, 본 발명에서와 같이 일정한 온도에서 열처리한 후, 급냉을 거치는 경우에는 입자크기 및 결정성의 증가를 나타냄을 알 수 있었다.In general, the growth of the particle size is largely changed depending on the temperature drop rate, but after the heat treatment at a constant temperature, as shown in the present invention, it can be seen that the increase in particle size and crystallinity when subjected to rapid cooling.

본 실시예에서 얻어진 리튬 2차전지용 전극물질의 전극특성을 확인하기 위하여, 3V 및 4V 영역에서 1차 충방전 시험을 연속적으로 수행하였다.In order to confirm the electrode characteristics of the electrode material for a lithium secondary battery obtained in the present embodiment, the primary charge and discharge tests were continuously performed in the 3V and 4V regions.

제3도는 본 발명의 리튬-망간 산화물을 사용한 2차전지의 3V 및 4V 영역에서의 1차 충방전 특성에 대한 결과를 나타낸 그래프로서, 제3(a)도는 시간변화에 따른 충방전곡선을 나타낸 그래프이고, 제3(b)도는 리튬양(X)에 따른 충방전 곡선을 나타낸 그래프이다.3 is a graph showing the results of the primary charge and discharge characteristics in the 3V and 4V region of the secondary battery using the lithium-manganese oxide of the present invention, Figure 3 (a) shows the charge and discharge curve over time 3 (b) is a graph showing charge and discharge curves according to lithium amount (X).

제3도에서 보듯이, 4V 영역에서는 전압이 연속적으로 변화하는 고용체(solid solution) 영역을 나타내지만, 3V 영역에서는 전압이 변하지 않는 바이페이즈(biphase) 상을 나타내며, 충방전이 거듭되면서 용량도 변화하여 용량을 일정하게 유지하는 것이 어렵다는 것을 확인할 수 있었다.As shown in FIG. 3, in the 4V region, a solid solution region in which the voltage changes continuously is shown, but in the 3V region, a biphase phase is shown in which the voltage does not change. It was confirmed that it is difficult to keep the dose constant.

제4도는 본 발명의 리튬-망간 산화물을 사용한 2차전지의 4V 영역에서의 충방전 특성에 대한 결과를 나타낸 그래프로서, 제4(a)도는 합성된 물질로부터 4.1V까지 충전한 후 2.1V까지 방전한 곡선을 시간의 함수로 나타낸 그래프이고, 제4(b)도는 제4(a)도를 리튬의 양인 X의 함수로 나타낸 그래프이다.4 is a graph showing the results of charge and discharge characteristics in the 4V region of the secondary battery using the lithium-manganese oxide of the present invention, and FIG. 4 (a) shows 2.1V after charging to 4.1V from the synthesized material. A graph showing the discharged curve as a function of time, and FIG. 4 (b) is a graph showing the fourth (a) diagram as a function of X, the amount of lithium.

제4도의 결과로부터 알 수 있듯이, 본 발명의 고온고상반응법에 의해 제조된 리튬-망간 산화물은, 충방전시 0.9e-이 충전되고 0.7e-이 방전되어 약 80%의 높은 효율을 나타내며, 충전시와 방전시의 전압차이가 약 0.05V로 매우 작은 수치를 나타내는 것으로 미루어, 본 발명의 제조방법에 의해 제조된 물질은 전도도가 매우 높고, 분극화(polarization)도 작다는 것을 알 수 있었다.As can be seen from the result of four degrees, the lithium produced by high temperature solid state reaction method of the present invention has manganese oxide, during the charge and discharge 0.9e - is charged 0.7e - is a discharge denotes a high efficiency of about 80%, From the fact that the voltage difference between charging and discharging is about 0.05V, which is very small, it was found that the material produced by the manufacturing method of the present invention has a very high conductivity and a small polarization.

이상에서 상세히 설명하고 입증하였듯이, 본 발명의 리튬-망간 산화물의 제조방법은 입자크기가 증가되고 결정성이 증가되어 우수한 전극특성을 지닌 리튬 2차전지의 양극물질인 리튬-망간 산화물을 제조할 수 있을 뿐 아니라, 제조량의 증가에 따른 전극특성의 열화를 방지할 수 있다는 것이 확인되었다.As described and demonstrated in detail above, the method for producing lithium-manganese oxide of the present invention can increase the particle size and crystallinity can be produced lithium-manganese oxide which is a positive electrode material of a lithium secondary battery having excellent electrode characteristics In addition, it was confirmed that the deterioration of the electrode characteristics due to the increase in the production amount can be prevented.

Claims (4)

리튬 2차전지용 양극 활성물질인 리튬-망간 산화물을 제조함에 있어서, LiOH, LiCO3및 LiNO3로 부터 선택된 1종의 리튬 화합물과 망간 산화물을 혼합하여 840 내지 860℃의 온도에서 28 내지 32시간 동안 열처리한 후, 상온에서 급냉하는 온도 강하 공정으로 이루어진 것을 특징으로 하는 리튬 2차전지용 리튬-망간 산화물의 제조방법.For lithium secondary battery positive electrode active material a lithium-In preparing the manganese oxide, LiOH, LiCO 3, and LiNO at a temperature of 31 kinds of the lithium compound and the manganese oxide and mixed with 840 to the 860 ℃ of selected from the 28 to 32 hours After the heat treatment, a method for producing a lithium-manganese oxide for a lithium secondary battery, characterized in that it consists of a temperature lowering step of quenching at room temperature. 제1항에 있어서, 상기한 망간산화물로는 전기화학적 방법에 의해 제조된 망간 산화물인 EMD를 사용하는 것을 특징으로 하는 리튬 2차전지용 리튬-망간 산화물의 제조방법.The method of claim 1, wherein the manganese oxide is a manganese oxide prepared by an electrochemical method, and EMD is used. 제1항에 있어서, 상기한 열처리 공정은 2회 이상 반복 수행하는 것을 특징으로 하는 리튬 2차전지용 리튬-망간 산화물의 제조방법.The method of claim 1, wherein the heat treatment is repeated two or more times. 제1항에 있어서, 상기한 리튬 화합물의 첨가량은 10% 이내에서 과량 첨가하는 것을 특징으로 하는 리튬 2차전지용 리튬-망간 산화물의 제조방법.The method of manufacturing a lithium-manganese oxide for a lithium secondary battery according to claim 1, wherein the amount of the lithium compound added is excessively added within 10%.
KR1019950051459A 1995-12-18 1995-12-18 Method of manufacturing lithium-manganese oxide for lithium secondary battery KR100194614B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019950051459A KR100194614B1 (en) 1995-12-18 1995-12-18 Method of manufacturing lithium-manganese oxide for lithium secondary battery
JP8337943A JPH09180723A (en) 1995-12-18 1996-12-18 Manufacture of lithium-manganese oxide for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950051459A KR100194614B1 (en) 1995-12-18 1995-12-18 Method of manufacturing lithium-manganese oxide for lithium secondary battery

Publications (2)

Publication Number Publication Date
KR970054744A KR970054744A (en) 1997-07-31
KR100194614B1 true KR100194614B1 (en) 1999-06-15

Family

ID=19441058

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950051459A KR100194614B1 (en) 1995-12-18 1995-12-18 Method of manufacturing lithium-manganese oxide for lithium secondary battery

Country Status (2)

Country Link
JP (1) JPH09180723A (en)
KR (1) KR100194614B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11180717A (en) * 1997-12-22 1999-07-06 Ishihara Sangyo Kaisha Ltd Lithium manganate, its production and lithium cell produced by using the same
JP2002075462A (en) * 2000-09-04 2002-03-15 Matsushita Battery Industrial Co Ltd Charge-discharge control method of nonaqueous secondary cell

Also Published As

Publication number Publication date
KR970054744A (en) 1997-07-31
JPH09180723A (en) 1997-07-11

Similar Documents

Publication Publication Date Title
KR100772829B1 (en) Electrode active material powder with size dependent composition and method to prepare the same
US7314682B2 (en) Lithium metal oxide electrodes for lithium batteries
US6692665B2 (en) Lithium managanese oxide, cathode material for lithium secondary battery, cathode, lithium secondary battery and process for manufacturing lithium manganese oxide
US5393622A (en) Process for production of positive electrode active material
US6087042A (en) Positive electrode material for secondary lithium battery
US5951919A (en) Method of preparing cathode material for lithium ion cell
US20020197532A1 (en) Electrochemical cell
JPH0672708A (en) Lithium transition metal oxide
JPH08306360A (en) Manufacture of cathode active material for nonaqueous battery
US5496664A (en) Process for producing a positive electrode for lithium secondary batteries
KR20040111488A (en) Positive-electrode active material for non-aqueous electrolyte secondary cell and process for preparing the same
DE69722528T2 (en) A rechargeable lithium battery
KR100872370B1 (en) Spinel type Cathode Active Material for Lithium Secondary Batteries and Manufacturing Method for the Same
US7771875B2 (en) Positive electrodes for rechargeable batteries
JP3229425B2 (en) Positive electrode for lithium secondary battery and method for producing the same
JP7205114B2 (en) Method for producing transition metal composite hydroxide and method for producing positive electrode active material for lithium ion secondary battery
TW202044659A (en) Positive electrode active material for lithium ion secondary battery, method for manufacturing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
KR100194614B1 (en) Method of manufacturing lithium-manganese oxide for lithium secondary battery
JP4234334B2 (en) Lithium manganese composite oxide for secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP7205198B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
KR100266074B1 (en) Lifemn2-xo4 as positive electrode material for 5v lithium secondary batteries
JPH0822826A (en) Synthesizing method for positive active material of nonaqueous secondary battery
KR100326456B1 (en) A positive active material for a lithium secondary battery and A method of preparing the same
KR100406982B1 (en) Process for Manufacturing Lithium Manganese Oxide Powders for Lithium Ion Secondary Battery Cathode
KR100312151B1 (en) Method of Preparing Amorphous Lithium Manganese Oxide for Lithium Ion Secondary Battery Cathode

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090202

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee