JP2002075462A - Charge-discharge control method of nonaqueous secondary cell - Google Patents

Charge-discharge control method of nonaqueous secondary cell

Info

Publication number
JP2002075462A
JP2002075462A JP2000266410A JP2000266410A JP2002075462A JP 2002075462 A JP2002075462 A JP 2002075462A JP 2000266410 A JP2000266410 A JP 2000266410A JP 2000266410 A JP2000266410 A JP 2000266410A JP 2002075462 A JP2002075462 A JP 2002075462A
Authority
JP
Japan
Prior art keywords
charge
lithium
general formula
discharge control
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000266410A
Other languages
Japanese (ja)
Inventor
Yasutaka Furuyui
康隆 古結
Yoshiyuki Ozaki
義幸 尾崎
Takeshi Hatanaka
剛 畑中
Takaya Saito
貴也 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Battery Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Battery Industrial Co Ltd filed Critical Matsushita Battery Industrial Co Ltd
Priority to JP2000266410A priority Critical patent/JP2002075462A/en
Publication of JP2002075462A publication Critical patent/JP2002075462A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charge-discharge control method enabling a nonaqueous secondary cell to improve cycle property and preservation property. SOLUTION: For the charge-discharge control method of the nonaqueous secondary cell, comprising a positive pole using lithium-manganese double oxide expressed by the general formula; Li1+aMn2-a-yMyO4 (M represents one or more kinds of elements chosen from metal elements excluding manganese, or transition metal elements, 0<=a<=0.5, 0<=y<=y<=0.5) as an activator, and a negative pole using lithium, lithium alloy, or carbon material reversibly occluding and releasing lithium as an activator, the charge-discharge control is carried out so that the range of x in the general formula; Lix+aMn2-a-yMyO4, using the coefficient x (0<=x<=1) determined by adding or removing Li, becomes 0<x<=0.6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウムマンガン複
合酸化物を正極活物質とする非水電解液二次電池の充放
電制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge / discharge control method for a non-aqueous electrolyte secondary battery using a lithium manganese composite oxide as a positive electrode active material.

【0002】[0002]

【従来の技術】近年、電子機器のポータブル化、コード
レス化が進むにつれ、その駆動用電源として、小型、軽
量でかつ高エネルギー密度を有する二次電池の開発が要
望されている。非水電解液二次電池に用いる正極材料と
してはLiCoO2 、LiNiO2 、LiMn2 4
のリチウムと3d軌道に電子を有する遷移金属との複合
酸化物が知られている。特に、リチウムマンガン複合酸
化物は他の酸化物と比べ低公害性、安価、安全性が高い
という利点を有し、この観点から研究開発が盛んになっ
てきている。
2. Description of the Related Art In recent years, as electronic devices have become more portable and cordless, there is a demand for the development of a small, lightweight, and high energy density secondary battery as a power supply for driving the electronic devices. As a positive electrode material used for a nonaqueous electrolyte secondary battery, a composite oxide of lithium and a transition metal having an electron in a 3d orbit, such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 , is known. In particular, lithium manganese composite oxides have the advantages of low pollution, low cost, and high safety compared to other oxides, and research and development have been active from this viewpoint.

【0003】この研究開発では電池容量や安全性を向上
させる検討の他に、以下のような課題に対しても検討が
なされている。電気自動車用途の非水電解液二次電池に
おいては、小型民生機器と比べて過酷な環境試験が必要
不可欠な要素となっており、例えば高温多湿での使用や
保存、低温環境での使用を想定した試験等が必要とな
る。特に、リチウムマンガン複合酸化物を正極活物質に
用いた非水電解液二次電池においては、高温環境下に保
存された非水電解液二次電池がその電池特性を劣化させ
るということが深刻な問題となっている。
In this research and development, in addition to the study to improve the battery capacity and the safety, the following issues have been studied. In non-aqueous electrolyte secondary batteries for electric vehicles, severe environmental tests are indispensable elements compared to small consumer devices.For example, use in high temperature and high humidity, storage, and use in low temperature environment are assumed. Required tests and the like. In particular, in a non-aqueous electrolyte secondary battery using a lithium manganese composite oxide as a positive electrode active material, it is serious that a non-aqueous electrolyte secondary battery stored in a high-temperature environment deteriorates its battery characteristics. It is a problem.

【0004】劣化原因の一つは、マンガンイオンの溶出
であり、この観点から正極活物質よりマンガンの溶出を
抑制させるような材料の検討がなされてきた。例えば、
特開平9−82360号公報においては、正極活物質の
表面にリチウムイオン伝導性固体電解質層を形成させる
ことでマンガンイオンの溶出を抑制させる手段が検討さ
れている。また、特開平11−332115号公報にお
いては、充電深度SOC(State Of Char
ge)の高い領域でのマンガンイオンの溶出量が多く劣
化率が高いことから、充電深度SOC50%以下で制御
する方法も提案されている。
One of the causes of deterioration is the elution of manganese ions. From this viewpoint, materials that can suppress the elution of manganese from the positive electrode active material have been studied. For example,
In Japanese Patent Application Laid-Open No. 9-82360, means for suppressing the elution of manganese ions by forming a lithium ion conductive solid electrolyte layer on the surface of a positive electrode active material has been studied. Also, in Japanese Unexamined Patent Application Publication No. 11-332115, a state of charge (SOC) is described.
Since the amount of manganese ions eluted in a high region of (ge) is large and the deterioration rate is high, a method of controlling the SOC at a SOC of 50% or less has also been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の従来技術では、低充電深度SOC領域で放置した場合
に、電池のインピーダンスが上昇するという問題があ
る。特に、Lix+a Mn2- a-y y 4 のx値の範囲が
x>0.6となる充電深度SOCでの電池のインピーダ
ンスの上昇率が高くなり、インピーダンスが上昇する
と、電池の出力が減少するため、特に高出力用の電源に
対して長期信頼性を確保することができないという問題
があった。
However, these conventional techniques have a problem that the impedance of the battery increases when the battery is left in the low SOC state. In particular, the rate of increase in the impedance of the battery at the depth of charge SOC where the range of the x value of Li x + a Mn 2- ay My O 4 satisfies x> 0.6 becomes high. Therefore, there is a problem that long-term reliability cannot be ensured especially for a power supply for high output.

【0006】本発明は、上記従来の問題点に鑑み、高温
環境下で使用したり、長期間保存されたりした場合で
も、インピーダンスの上昇を防ぐことができる非水電解
液二次電池の充放電制御方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a non-aqueous electrolyte secondary battery capable of preventing an increase in impedance even when used in a high-temperature environment or stored for a long period of time. It is an object to provide a control method.

【0007】[0007]

【課題を解決するための手段】本発明の非水電解液二次
電池の充放電制御方法は、一般式Li1+a Mn2-a-y
y 4 (Mはマンガン以外の金属元素または遷移金属元
素から選ばれた一種または二種以上の元素、0≦a ≦
0.5、0≦y≦0.5)で示されるリチウムマンガン
複合酸化物を正極活物質とし、リチウム、リチウム合金
またはリチウムを可逆的に吸蔵、放出する炭素材料を負
極活物質とした非水電解液二次電池の充放電方法であっ
て、Liの挿脱入による係数x(0≦x≦1)を用いた
一般式Li x+a Mn2-a-y y 4 のx値の範囲が、0
<x≦0.6となるように充放電制御を行うものであ
る。
The non-aqueous electrolyte secondary of the present invention
The charge / discharge control method of the battery is represented by the general formula Li1 + aMn2-ayM
yOFour(M is a metal element other than manganese or a transition metal element
One or two or more elements selected from the group consisting of 0 ≦ a ≦
0.5, 0 ≦ y ≦ 0.5) lithium manganese
Using a composite oxide as the positive electrode active material, lithium, lithium alloy
Or negatively impact carbon materials that occlude and release lithium reversibly.
This is a method for charging and discharging non-aqueous electrolyte
The coefficient x (0 ≦ x ≦ 1) by insertion and extraction of Li was used.
General formula Li x + aMn2-ayMyOFourIs in the range of 0
The charge / discharge control is performed so that <x ≦ 0.6.
You.

【0008】これにより、上記一般式中のx値 x>
0.6の範囲、特にx値が0.75付近で保存した場合
に発生する電池のインピーダンス上昇を防ぐことができ
る。すなわち、上記リチウムマンガン複合酸化物は、そ
のx値の範囲が、x>0.6においては結晶構造が不安
定であり、充放電または保存によって結晶構造が壊れて
しまうために、電池のインピーダンスが上昇するものと
推定される。
Accordingly, the x value x> in the above general formula
It is possible to prevent an increase in the impedance of the battery which occurs when the battery is stored in the range of 0.6, particularly when the x value is around 0.75. That is, the lithium manganese composite oxide has an unstable crystal structure when the range of the x value is x> 0.6, and the crystal structure is destroyed by charge / discharge or storage. It is estimated to rise.

【0009】詳しく説明すると、本発明にかかるリチウ
ムマンガン複合酸化物は、一般式Li1+a Mn2-a-y
y 4 (Mはマンガン以外の金属元素または遷移金属元
素から選ばれた一種または二種以上の元素、0≦a ≦
0.5、0≦y≦0.5)で示される。このように結晶
構造中のマンガンの一部を金属元素または遷移金属元素
で置換した化合物、例えば、ナトリウム(Na)、マグ
ネシウム(Mg)、クロム(Cr)、コバルト(C
o)、鉄(Fe)などにより選ばれる一種以上の元素で
置換した置換体においては、無置換体と比べて、上記の
様にLiの挿脱入による係数xの範囲が0<x≦0.6
であれば、電池のインピーダンスの上昇率を少なくでき
る。
More specifically, the lithium manganese composite oxide according to the present invention has the general formula Li 1 + a Mn 2-ay M
y O 4 (M is one or more elements selected from metal elements or transition metal elements other than manganese, 0 ≦ a ≦
0.5, 0 ≦ y ≦ 0.5). Compounds in which a part of manganese in the crystal structure is substituted with a metal element or a transition metal element, for example, sodium (Na), magnesium (Mg), chromium (Cr), cobalt (C
o) In the substituted body substituted by one or more elements selected from iron (Fe) and the like, the range of the coefficient x by the insertion and extraction of Li is 0 <x ≦ 0, as compared with the unsubstituted body. .6
If so, the rate of increase in the impedance of the battery can be reduced.

【0010】Liの挿脱入による係数xが0<x≦0.
6となるように充放電を制御するためには、電池の設計
に応じて、初回の充放電による不可逆容量と、所定の満
充電までの充電容量からx値と電池のSOCの関係を把
握して、必要なSOC範囲を求めればよい。さらに、S
OCと電池電圧及び電流値との関係を把握し電圧及び電
流検知からSOC制御する方法と、電池に入出する電流
容量の計算値からSOCを制御する方法とが可能であ
る。
When the coefficient x due to the insertion / removal of Li is 0 <x ≦ 0.
In order to control the charge / discharge to be 6, the relationship between the x value and the SOC of the battery is determined from the irreversible capacity by the first charge / discharge and the charge capacity up to a predetermined full charge according to the design of the battery. Then, the required SOC range may be obtained. Furthermore, S
A method of grasping the relationship between the OC and the battery voltage and the current value and controlling the SOC based on the detection of the voltage and the current, and a method of controlling the SOC based on the calculated value of the current capacity flowing into and out of the battery are possible.

【0011】[0011]

【発明の実施の形態】まず、本発明の一実施形態におい
て用いる円筒形の非水電解液二次電池を図1を参照して
説明する。図1において、1は負極で、人造黒鉛を主材
料とし、これと結着剤PVDFとを重量比で100:9
の割合で混合したものを銅箔の両面に塗着して乾燥し、
圧延した後所定の大きさに切断したものである。2は負
極1にスポット溶接したニッケル製の負極リードであ
る。3は正極で、活物質であるLi1.1 Mn2 4 に導
電剤カーボンブラックと結着剤PVDFを重量比で10
0:3:4の割合で混合したものをアルミニウム箔の両
面に塗着して乾燥し圧延後所定の大きさに切断したもの
である。4は正極3に超音波溶接したアルミ製の正極リ
ードである。5はポリエチレン製の微多孔フィルムから
なるセパレータで、負極1と正極3との間に介在させて
渦巻き状に旋回することにより極板群を構成している。
6は極板群の上部に配したプロピレン製の上部絶縁板、
7は極板群の下部に配した下部絶縁板である。8は極板
群を収納したケースで、鉄にニッケルメッキを施したも
のである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a cylindrical non-aqueous electrolyte secondary battery used in an embodiment of the present invention will be described with reference to FIG. In FIG. 1, reference numeral 1 denotes a negative electrode, which is made of artificial graphite as a main material, and which has a weight ratio of 100: 9 with a binder PVDF.
The mixture in the ratio of is applied to both sides of the copper foil and dried,
After rolling, it is cut into a predetermined size. Reference numeral 2 denotes a nickel negative electrode lead spot-welded to the negative electrode 1. Reference numeral 3 denotes a positive electrode, in which Li 1.1 Mn 2 O 4 as an active material is mixed with a conductive agent carbon black and a binder PVDF in a weight ratio of 10%.
A mixture mixed at a ratio of 0: 3: 4 was applied to both sides of an aluminum foil, dried, rolled, and cut into a predetermined size. Reference numeral 4 denotes an aluminum positive electrode lead ultrasonically welded to the positive electrode 3. Reference numeral 5 denotes a separator made of a microporous film made of polyethylene. The separator 5 is interposed between the negative electrode 1 and the positive electrode 3 and is swirled to form an electrode plate group.
6 is an upper insulating plate made of propylene disposed above the electrode plate group,
Reference numeral 7 denotes a lower insulating plate disposed below the electrode group. Reference numeral 8 denotes a case in which an electrode group is housed, which is obtained by plating nickel on iron.

【0012】そして、正極リード4をアルミ製の封口板
に、負極リード2をケース8の底部にスポット溶接した
後、所定量の非水電解液をケース8内の極板群に注入
し、ガスケット9を介してケース8の開口部を封口板1
0により封口して完成電池とする。なお、11は電池の
正極端子で、負極端子は電池のケース8がこれを兼ねて
いる。
After the positive electrode lead 4 is spot-welded to the aluminum sealing plate and the negative electrode lead 2 is spot-welded to the bottom of the case 8, a predetermined amount of non-aqueous electrolyte is injected into the electrode plate group in the case 8, and the gasket is 9 to the opening of the case 8 with the sealing plate 1
0 to complete the battery. In addition, 11 is a positive electrode terminal of the battery, and the negative electrode terminal is also the case 8 of the battery.

【0013】電解液としてはエチレンカーボネート、ジ
エチルカーボネートを体積比1:3で混合した有機溶媒
に支持電解質として六フッ化リン酸リチウムを1モル/
リットルの濃度で溶解した非水電解液を用いる。
As an electrolytic solution, lithium hexafluorophosphate (1 mol / mol) was used as a supporting electrolyte in an organic solvent obtained by mixing ethylene carbonate and diethyl carbonate at a volume ratio of 1: 3.
Use a non-aqueous electrolyte dissolved at a concentration of 1 liter.

【0014】(実験1)上記のように作製した円筒形の
非水電解液二次電池を評価電池とした。試験条件は、充
電電流130mA、充電終止電圧4.3V、放電電流1
30mA、放電終止電圧3V、環境温度25℃として充
放電を4回繰り返した。交流インピーダンス測定装置を
用いて、測定周波数を0.1Hzとしたときのインピー
ダンスの実数値を測定した。以下、この方法による測定
値をインピーダンス測定値とする。次に、下記の条件
(比較例1〜3、実施例1〜4)で充放電深度を調整
し、環境温度60℃で30日間保存した後、充放電を行
い、電池のインピーダンスを測定した。 [比較例1] リチウムマンガン複合酸化物、一般式L
x+0.1 Mn2 4 :x=0.9となるように調整後
(本実験におけるSOC0%)保存する。 [比較例2] リチウムマンガン複合酸化物、一般式L
x+0.1 Mn2 4 :x=0.85となるように調整後
(本実験におけるSOC5%)保存する。 [比較例3] リチウムマンガン複合酸化物、一般式L
x+0.1 Mn2 4 :x=0.75となるように調整後
(本実験におけるSOC20%)保存する。 [実施例1] リチウムマンガン複合酸化物、一般式L
x+0.1 Mn2 4 :x=0.6となるように調整後
(本実験におけるSOC40%)保存する。 [実施例2] リチウムマンガン複合酸化物、一般式L
x+0.1 Mn2 4 :x=0.45となるように調整後
(本実験におけるSOC60%)保存する。 [実施例3] リチウムマンガン複合酸化物、一般式L
x+0.1 Mn2 4 :x=0.3となるように調整後
(本実験におけるSOC80%)保存する。 [実施例4] リチウムマンガン複合酸化物、一般式L
x+0.1 Mn2 4 :x=0.15となるように調整後
(本実験におけるSOC100%)保存する。
(Experiment 1) The cylindrical non-aqueous electrolyte secondary battery produced as described above was used as an evaluation battery. The test conditions were a charge current of 130 mA, a charge end voltage of 4.3 V, and a discharge current of 1.
Charge and discharge were repeated four times at 30 mA, a discharge end voltage of 3 V, and an environmental temperature of 25 ° C. Using an AC impedance measuring device, the actual value of the impedance was measured when the measurement frequency was 0.1 Hz. Hereinafter, the measured value by this method is referred to as an impedance measured value. Next, the depth of charge and discharge was adjusted under the following conditions (Comparative Examples 1 to 3 and Examples 1 to 4). After storage at an ambient temperature of 60 ° C. for 30 days, charge and discharge were performed, and the impedance of the battery was measured. Comparative Example 1 Lithium manganese composite oxide, general formula L
ix + 0.1 Mn 2 O 4 : Adjusted so that x = 0.9 (SOC 0% in this experiment) and preserved. Comparative Example 2 Lithium manganese composite oxide, general formula L
ix + 0.1 Mn 2 O 4 : Adjusted so that x = 0.85 (SOC 5% in this experiment) and preserved. [Comparative Example 3] Lithium manganese composite oxide, general formula L
ix + 0.1 Mn 2 O 4 : Adjusted so that x = 0.75 (SOC 20% in this experiment) and preserved. [Example 1] Lithium manganese composite oxide, general formula L
ix + 0.1 Mn 2 O 4 : Adjusted so that x = 0.6 (SOC 40% in this experiment) and preserved. [Example 2] Lithium manganese composite oxide, general formula L
ix + 0.1 Mn 2 O 4 : Adjusted so that x = 0.45 (SOC 60% in this experiment) and preserved. [Example 3] Lithium manganese composite oxide, general formula L
ix + 0.1 Mn 2 O 4 : Adjusted so that x = 0.3 (SOC 80% in this experiment) and preserved. [Example 4] Lithium manganese composite oxide, general formula L
ix + 0.1 Mn 2 O 4 : Adjusted so that x = 0.15 (SOC 100% in this experiment) and preserved.

【0015】(実験2)正極活物質をLi1.1 Mn1.9
Cr0.1 4 に変える以外は、すべて実験1と同様に電
池を作製した。次の条件の(比較例4〜6、実施例5〜
8)で充放電深度を調整し、環境温度60℃で30日間
保存した後、充放電を行い、電池のインピーダンスを測
定した。 [比較例4] リチウムマンガン複合酸化物、一般式L
x Mn1.9 Cr0. 1 4 :x=0.9となるように調
整後(本実験におけるSOC0%)保存する。 [比較例5] リチウムマンガン複合酸化物、一般式L
x Mn1.9 Cr0. 1 4 :x=0.85となるように
調整後(本実験におけるSOC5%)保存する。 [比較例6] リチウムマンガン複合酸化物、一般式L
x Mn1.9 Cr0. 1 4 :x=0.75となるように
調整後(本実験におけるSOC20%)保存する。 [実施例5] リチウムマンガン複合酸化物、一般式L
x Mn1.9 Cr0. 1 4 :x=0.6となるように調
整後(本実験におけるSOC40%)保存する。 [実施例6] リチウムマンガン複合酸化物、一般式L
x Mn1.9 Cr0. 1 4 :x=0.45となるように
調整後(本実験におけるSOC60%)保存する。 [実施例7] リチウムマンガン複合酸化物、一般式L
x Mn1.9 Cr0. 1 4 :x=0.3となるように調
整後(本実験におけるSOC80%)保存する。 [実施例8] リチウムマンガン複合酸化物、一般式L
x Mn1.9 Cr0. 1 4 :x=0.15となるように
調整後(本実験におけるSOC100%)保存する。
(Experiment 2) The cathode active material was Li 1.1 Mn 1.9
A battery was fabricated in the same manner as in Experiment 1 except that the battery was changed to Cr 0.1 O 4 . Under the following conditions (Comparative Examples 4 to 6, Example 5)
The charge / discharge depth was adjusted in 8), and the battery was stored at an ambient temperature of 60 ° C. for 30 days, charged / discharged, and the impedance of the battery was measured. [Comparative Example 4] Lithium manganese composite oxide, general formula L
i x Mn 1.9 Cr 0. 1 O 4: Adjusted so that x = 0.9 (SOC0% in this experiment) Save. [Comparative Example 5] Lithium manganese composite oxide, general formula L
i x Mn 1.9 Cr 0. 1 O 4: Adjusted so that x = 0.85 (SOC5% in this experiment) Save. [Comparative Example 6] Lithium manganese composite oxide, general formula L
i x Mn 1.9 Cr 0. 1 O 4: Adjusted so that x = 0.75 (SOC20% in this experiment) Save. Example 5 Lithium-manganese composite oxide, general formula L
i x Mn 1.9 Cr 0. 1 O 4: Adjusted so that x = 0.6 (SOC40% in this experiment) Save. Example 6 Lithium-manganese composite oxide, general formula L
i x Mn 1.9 Cr 0. 1 O 4: Adjusted so that x = 0.45 (SOC60% in this experiment) Save. Example 7 Lithium manganese composite oxide, general formula L
i x Mn 1.9 Cr 0. 1 O 4: Adjusted so that x = 0.3 (SOC80% in this experiment) Save. Example 8 Lithium-manganese composite oxide, general formula L
i x Mn 1.9 Cr 0. 1 O 4: Adjusted so that x = 0.15 (SOC100% in this experiment) Save.

【0016】以上の実験1の実施例1〜4、比較例1〜
3及び実験2の実施例5〜8、比較例4〜6の非水電解
液二次電池について、上記測定条件で測定したインピー
ダンスを、保存する前のインピーダスを100として比
較した変化率(以下、インピーダンス上昇率と記す)に
換算した。
Examples 1 to 4 of Experiment 1 and Comparative Examples 1 to
For the non-aqueous electrolyte secondary batteries of Examples 3 to 8 and Comparative Examples 4 and 6 of Experiment 2 and Experiment 2, the rate of change obtained by comparing the impedance measured under the above measurement conditions with the impedance before storage as 100 (hereinafter, referred to as the impedance). , Impedance rise rate).

【0017】実験1、実験2のインピーダンス上昇率と
上記リチウムマンガン複合酸化物の一般式中のx値(以
下x値)との関係を図2に示す。
FIG. 2 shows the relationship between the impedance increase rate in Experiments 1 and 2 and the x value (hereinafter referred to as x value) in the general formula of the lithium manganese composite oxide.

【0018】図2から分かるように、x値の範囲におい
て、0≦x≦0.6(実施例1〜8)は、x>0.6
(比較例1〜6)と比較して高温環境下における保存後
のインピーダンス上昇率が低いことが分かる。x>0.
6の範囲においてインピーダンス上昇率が高いのは、リ
チウムマンガン複合化合物が上記範囲で不安定であり、
高温保存による結晶構造の崩れが原因と推定される。
As can be seen from FIG. 2, in the range of x value, 0 ≦ x ≦ 0.6 (Examples 1 to 8)
It can be seen that the rate of increase in impedance after storage in a high-temperature environment is lower than that of (Comparative Examples 1 to 6). x> 0.
The reason why the impedance increase rate is high in the range of 6 is that the lithium manganese composite compound is unstable in the above range,
It is presumed that the crystal structure collapsed due to high-temperature storage.

【0019】このようにリチウムマンガン複合酸化物を
正極とする非水電解液二次電池において、一般式Li
x+a Mn2-a-y y 4 のxの範囲が、x>0.6で保
存されることがないように非水電解液二次電池を制御す
ることで、インピーダンスの上昇を防止することができ
る。
As described above, in the nonaqueous electrolyte secondary battery using the lithium manganese composite oxide as a positive electrode, the general formula Li
range of x + a Mn 2-ay M y O 4 of x is, by controlling the non-aqueous electrolyte secondary battery so as not to be stored in x> 0.6, to prevent an increase in impedance be able to.

【0020】なお、実験1ではリチウムマンガン複合酸
化物の一般式Lix+a Mn2-a-y y 4 において、a
=0.1、y=0の例を示したが、0≦a≦0.5、0
≦y≦0.5においては同様の効果が得られる。また、
実験2では一般式中のMの代表例としてクロム(Cr)
を選択したが、例えばナトリウム(Na)、マグネシウ
ム(Mg)、コバルト(Co)、鉄(Fe)のような金
属元素または遷移金属元素から選ばれた一種又は二種混
合の元素でも同様な効果が得られる。
In Experiment 1, the lithium manganese composite acid was used.
General formula Lix + aMn2-ayM yOFourIn a
= 0.1, y = 0, but 0 ≦ a ≦ 0.5, 0
The same effect can be obtained when ≦ y ≦ 0.5. Also,
In Experiment 2, chromium (Cr) was used as a typical example of M in the general formula.
Was selected, for example, sodium (Na), magnesium
Gold such as aluminum (Mg), cobalt (Co), iron (Fe)
One or two selected from the group elements or transition metal elements
A similar effect can be obtained with the combined element.

【0021】なお、x値と電池容量に対するSOCまた
は電池電圧との関係は、電池材料や設計及び充放電方法
で決定される。実施例1〜8及び比較例1〜6に用いた
非水電解液二次電池では負極に人造黒鉛を用いているた
め、電池作製後数サイクルにわたって負極に不可逆容量
が存在する。このため、非水電解液二次電池のSOC0
%に相当する一般式Lix+a Mn2-a-y y 4 のx値
は、1から不可逆容量相当の換算Li量の差を計算した
0.9となる。また、SOC100%に相当するx値
は、0.9から充電容量相当の換算Liの差を計算した
0.15となる。SOC0〜100%間はx値とSOC
が比例関係にある。これらの値は実験より各SOCに対
して正極電極を取り出し、化学分析をすることでより正
確に確認することができる。以上より、電池設計及び充
放電条件の非水電解液二次電池に対して、上記x値と対
応するSOCを見いだし、これを所定値に制御すること
でx値を0<x≦0.6の範囲に制御することができ
る。なおSOCの制御方法は電圧検知や非水電解液二次
電池に入出する電流容量の計算値管理等の従来方法を用
いることができる。
The relationship between the x value and the SOC or the battery voltage with respect to the battery capacity is determined by the battery material, design, and charging / discharging method. In the non-aqueous electrolyte secondary batteries used in Examples 1 to 8 and Comparative Examples 1 to 6, since artificial graphite was used for the negative electrode, the negative electrode has an irreversible capacity for several cycles after the battery was manufactured. Therefore, the SOC0 of the nonaqueous electrolyte secondary battery
X value of the general formula Li x + a Mn 2-ay M y O 4 , which corresponds to percentages of 0.9, which calculates the difference irreversible capacity equivalent terms Li amount from 1. The x value corresponding to 100% SOC is 0.15, which is the difference between the converted Li equivalent to the charging capacity and the calculated Li from 0.9. X value and SOC between SOC0 and 100%
Are in a proportional relationship. These values can be more accurately confirmed by taking out the positive electrode for each SOC from an experiment and performing chemical analysis. As described above, for the nonaqueous electrolyte secondary battery under the battery design and charge / discharge conditions, the SOC corresponding to the above-mentioned x value is found, and by controlling this to a predetermined value, the x value is set to 0 <x ≦ 0.6. Can be controlled within the range. As the SOC control method, a conventional method such as voltage detection or management of the calculated value of the current capacity flowing into and out of the nonaqueous electrolyte secondary battery can be used.

【0022】[0022]

【発明の効果】本発明の非水電解液二次電池の充放電制
御方法によれば、以上のように保存特性が優れ、充放電
サイクル特性も向上するため、長期信頼性を有すること
が可能となる。
According to the charge / discharge control method for a nonaqueous electrolyte secondary battery of the present invention, the storage characteristics are excellent as described above, and the charge / discharge cycle characteristics are also improved, so that long-term reliability can be obtained. Becomes

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態における非水電解液二次電
池の縦断面図である。
FIG. 1 is a longitudinal sectional view of a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.

【図2】同一実施形態における非水電解液二次電池の6
0℃20日保存時のSOCとインピーダンス維持率の関
係の説明図である。
FIG. 2 illustrates a non-aqueous electrolyte secondary battery 6 according to the same embodiment.
It is explanatory drawing of the relationship between SOC at the time of storage at 0 degreeC for 20 days, and an impedance maintenance rate.

【符号の説明】[Explanation of symbols]

1 負極 3 正極 5 セパレータ 8 ケース 1 negative electrode 3 positive electrode 5 separator 8 case

───────────────────────────────────────────────────── フロントページの続き (72)発明者 畑中 剛 大阪府守口市松下町1番1号 松下電池工 業株式会社内 (72)発明者 齊藤 貴也 大阪府守口市松下町1番1号 松下電池工 業株式会社内 Fターム(参考) 5H029 AJ04 AK03 AL06 AM03 AM05 AM07 BJ02 BJ14 CJ16 HJ02 5H030 AA10 AS20 BB01 BB21 5H050 AA05 AA09 BA16 BA17 CA09 CB07 CB12 GA18 HA02  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takeshi Hatanaka 1-1, Matsushita-cho, Moriguchi-shi, Osaka Matsushita Battery Industry Co., Ltd. (72) Takaya Saito 1-1-1, Matsushita-cho, Moriguchi-shi, Osaka Matsushita Battery F-term in Industrial Co., Ltd. (reference) 5H029 AJ04 AK03 AL06 AM03 AM05 AM07 BJ02 BJ14 CJ16 HJ02 5H030 AA10 AS20 BB01 BB21 5H050 AA05 AA09 BA16 BA17 CA09 CB07 CB12 GA18 HA02

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一般式Li1+a Mn2-a-y y 4 (M
はマンガン以外の金属元素または遷移金属元素から選ば
れた一種または二種以上の元素、0≦a ≦0.5、0≦
y≦0.5)で示されるリチウムマンガン複合酸化物を
正極活物質とし、リチウム、リチウム合金またはリチウ
ムを可逆的に吸蔵、放出する炭素材料を負極活物質とし
た非水電解液二次電池の充放電方法であって、Liの挿
脱入による係数x(0≦x≦1)を用いた一般式Li
x+a Mn2-a-y y 4 のx値の範囲が、0<x≦0.
6となるように充放電制御を行うことを特徴とする非水
電解液二次電池の充放電制御方法。
1. A general formula Li 1 + a Mn 2-ay M y O 4 (M
Is one or more elements selected from metal elements or transition metal elements other than manganese, 0 ≦ a ≦ 0.5, 0 ≦
y ≦ 0.5) of a non-aqueous electrolyte secondary battery in which a lithium manganese composite oxide represented by the following formula is used as a positive electrode active material, and a lithium, lithium alloy or a carbon material that reversibly stores and releases lithium is a negative electrode active material. A charge / discharge method using a general formula Li using a coefficient x (0 ≦ x ≦ 1) by insertion / removal of Li
x + a Mn range of 2-ay M x value of y O 4 is, 0 <x ≦ 0.
6. A charge / discharge control method for a non-aqueous electrolyte secondary battery, wherein charge / discharge control is performed so as to be 6.
JP2000266410A 2000-09-04 2000-09-04 Charge-discharge control method of nonaqueous secondary cell Pending JP2002075462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000266410A JP2002075462A (en) 2000-09-04 2000-09-04 Charge-discharge control method of nonaqueous secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000266410A JP2002075462A (en) 2000-09-04 2000-09-04 Charge-discharge control method of nonaqueous secondary cell

Publications (1)

Publication Number Publication Date
JP2002075462A true JP2002075462A (en) 2002-03-15

Family

ID=18753499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000266410A Pending JP2002075462A (en) 2000-09-04 2000-09-04 Charge-discharge control method of nonaqueous secondary cell

Country Status (1)

Country Link
JP (1) JP2002075462A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042861A1 (en) * 2002-11-05 2004-05-21 Japan Storage Battery Co., Ltd. Method for charging nonaqueous electrolytic secondary cell and nonaqueous electrolytic secondary cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09180723A (en) * 1995-12-18 1997-07-11 Korea Electron Telecommun Manufacture of lithium-manganese oxide for lithium secondary battery
JP2000058134A (en) * 1998-07-31 2000-02-25 Mitsuru Sano Use of secondary battery using spinel-structured lithium manganese oxide as positive electrode
JP2000195558A (en) * 1998-12-28 2000-07-14 Toyota Central Res & Dev Lab Inc Charging/discharging control device for nonaqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09180723A (en) * 1995-12-18 1997-07-11 Korea Electron Telecommun Manufacture of lithium-manganese oxide for lithium secondary battery
JP2000058134A (en) * 1998-07-31 2000-02-25 Mitsuru Sano Use of secondary battery using spinel-structured lithium manganese oxide as positive electrode
JP2000195558A (en) * 1998-12-28 2000-07-14 Toyota Central Res & Dev Lab Inc Charging/discharging control device for nonaqueous electrolyte secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042861A1 (en) * 2002-11-05 2004-05-21 Japan Storage Battery Co., Ltd. Method for charging nonaqueous electrolytic secondary cell and nonaqueous electrolytic secondary cell
JPWO2004042861A1 (en) * 2002-11-05 2006-03-09 日本電池株式会社 Nonaqueous electrolyte secondary battery charging method and nonaqueous electrolyte secondary battery
JP4984390B2 (en) * 2002-11-05 2012-07-25 株式会社Gsユアサ Non-aqueous electrolyte secondary battery charging method

Similar Documents

Publication Publication Date Title
CN101242011B (en) Cell unit
JP3206604B2 (en) Rechargeable lithium battery with increased reversible capacity
Ramadass et al. Performance study of commercial LiCoO2 and spinel-based Li-ion cells
JP5866987B2 (en) Secondary battery control device and SOC detection method
JP4945967B2 (en) Non-aqueous electrolyte secondary battery
KR20010051629A (en) Non-aqueous Secondary Electrolyte Battery
JP2005521220A (en) Lithium secondary battery containing overdischarge inhibitor
JP7135833B2 (en) Manufacturing method of lithium ion battery and lithium ion battery
JPH10208730A (en) Non-aqueous electrolyte secondary battery
JP3032338B2 (en) Non-aqueous electrolyte secondary battery
JP2007184261A (en) Lithium-ion secondary battery
CN101232095A (en) Lithium ion battery positive pole active materials and battery
KR101520118B1 (en) Method for improving cycle performance of lithium secondary battery
JP2001126765A (en) Nonaqueous electrolyte secondary battery
JP3032339B2 (en) Non-aqueous electrolyte secondary battery
JPH0541244A (en) Nonaqueous electrolyte secondary battery
JPH113698A (en) Lithium ion secondary battery
JP2002075462A (en) Charge-discharge control method of nonaqueous secondary cell
Li et al. Compatibility of lithium difluoro (sulfato) borate-based electrolyte for LiMn2O4 cathode
JPH1154122A (en) Lithium ion secondary battery
JP2730641B2 (en) Lithium secondary battery
JPH08162154A (en) Secondary battery having nonaqueous solvent electrolyt
Matsuki et al. General concepts
JPH0917446A (en) Non-aqueous electrolyte secondary battery
JP4250781B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070606

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081007

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090526

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091026

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20100120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329