JPH03126830A - High strength copper alloy - Google Patents

High strength copper alloy

Info

Publication number
JPH03126830A
JPH03126830A JP26387489A JP26387489A JPH03126830A JP H03126830 A JPH03126830 A JP H03126830A JP 26387489 A JP26387489 A JP 26387489A JP 26387489 A JP26387489 A JP 26387489A JP H03126830 A JPH03126830 A JP H03126830A
Authority
JP
Japan
Prior art keywords
copper alloy
strength
alloy
thermal conductivity
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26387489A
Other languages
Japanese (ja)
Inventor
Nobuaki Nakajima
信昭 中島
Mitsumasa Hiroi
廣井 光正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26387489A priority Critical patent/JPH03126830A/en
Publication of JPH03126830A publication Critical patent/JPH03126830A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the high strength Cu alloy having high strength and high thermal conductivity by incorporating specified amounts of Si, Ti, Mg and Ni into Cu. CONSTITUTION:A Cu alloy having a compsn. constituted of, by weight, 0.01 to 1.0% Si, 0.01 to 2.0% Ti, 0.01 to 1.0% Mg, 0.1 to 3.0% Ni and the balance Cu is refined into an ingot, which is thereafter forged into a billet. The billet is hot-rolled, is rapidly cooled, e.g. from 600 deg.C, is subjected to soln. treatment and is thereafter cold-rolled into a sheet material, which is subjected to aging treatment, so that a Cu alloy material suitable for a member requiring high strength and thermal conductivity such as a lead frame and a connector for a semiconductor integrated circuit can be obtd.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は高力銅合金に関し、さらに詳しくはICなどの
半導体用リードフレーム、あるいはコネクターなどに用
いられる高力銅合金に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a high-strength copper alloy, and more particularly to a high-strength copper alloy used in lead frames for semiconductors such as ICs, connectors, etc. .

(従来の技術) 従来、ICなどの半導体用リードフレームには例えばF
e−42Ni系合金等のFe系合金を用いている。これ
はFe系合金の有する性質、つまり引張り強度あるいは
硬度などの機械的強度が優れているためである。
(Prior art) Conventionally, lead frames for semiconductors such as ICs have, for example, F.
Fe-based alloys such as e-42Ni-based alloys are used. This is because the Fe-based alloy has excellent mechanical strength such as tensile strength and hardness.

一方、熱伝導性を向上させるためにCuに微量の元素を
添加した、例えばCu−Cr−Zr合金などのCu合金
を用いることも行われている。
On the other hand, in order to improve thermal conductivity, Cu alloys such as Cu-Cr-Zr alloys, in which trace amounts of elements are added to Cu, have also been used.

(発明が解決しようとする課題) 上記したような従来のFe系合金あるいはCu系合金に
おいて、まずFe系合金は熱伝導性が低いために近年の
ICチップなどの高集積化。
(Problems to be Solved by the Invention) Regarding the conventional Fe-based alloys or Cu-based alloys as described above, first of all, Fe-based alloys have low thermal conductivity, so they have become highly integrated in recent years such as IC chips.

高出力化に伴う発熱に対して、放熱効果が不十分であり
配線の断線などの不具合を起こす原因となる場合があり
、他方Cu系合金は熱伝導性は良好であるが強度におい
てFe系合金はど高くなく不十分であるため、たとえば
リードフレームとして用いた場合に基板への挿入、取扱
い、ハンダデイッ゛プなどにおいてリードの強度、特に
高集積化に伴うリードの微細化において問題を生じる場
合があった。
The heat dissipation effect is insufficient for the heat generated by high output, which may cause problems such as wiring breakage.On the other hand, Cu-based alloys have good thermal conductivity, but Fe-based alloys have poor strength. For example, when used as a lead frame, problems may arise in the strength of the leads during insertion into a board, handling, solder dipping, etc., especially in the miniaturization of leads due to higher integration. there were.

上記したような問題により合圧のICの高集積化には対
応できなくなってきたため、新たに熱伝導性が高くかつ
強度もFe系合金と同等の高強度を有する材料が求めら
れてきた。
Due to the above-mentioned problems, it has become impossible to cope with the high integration of combined pressure ICs, so a new material with high thermal conductivity and strength comparable to that of Fe-based alloys has been sought.

本発明者らは上記問題を解決するために、高熱伝導性を
有するCu合金を採用し、高強度を付与するための方法
について検討を重ねた。
In order to solve the above problem, the present inventors adopted a Cu alloy having high thermal conductivity and repeatedly studied methods for imparting high strength.

ここで、高熱伝導性を有するCu系の材料の機械的強度
を向上させる方法について説明する。この方法としては
次に挙げる3種類の方法が考えられる。以下、その説明
を行なう。
Here, a method for improving the mechanical strength of a Cu-based material having high thermal conductivity will be described. The following three methods can be considered as this method. The explanation will be given below.

3つの方法とは、1)固溶強化、2)加工強化。The three methods are 1) solid solution strengthening and 2) processing strengthening.

3)析出強化の3種類である。3) There are three types of precipitation strengthening.

この3つの方法を比較・検討してみると、まず固溶強化
を行う場合、添加元素のCuへの固溶により熱伝導性が
低下するため好ましくない。また、加工強化を行なう場
合、使用時における温度上昇に伴い合金が軟化し、また
異方性が生じるため好ましくない。したがってCu系合
金の高熱伝導性を維持したままで機械的強度を向上させ
る方法としては析出強化が有、効である。
Comparing and examining these three methods, it is found that solid solution strengthening is not preferred because the thermal conductivity decreases due to solid solution of the additive element in Cu. In addition, when performing work strengthening, the alloy softens as the temperature rises during use and anisotropy occurs, which is not preferable. Therefore, precipitation strengthening is an effective method for improving the mechanical strength of Cu-based alloys while maintaining their high thermal conductivity.

本発明においてもこの析出強化の方法を採用し、Cu合
金中に金属間化合物を析出させることにより高熱伝導性
を維持したままでCu系合金の強度を向上しようとする
ものである。
The present invention also employs this method of precipitation strengthening, and attempts to improve the strength of the Cu-based alloy while maintaining high thermal conductivity by precipitating intermetallic compounds in the Cu alloy.

本発明は、高強度でかつ高熱伝導性を有する高力銅合金
の提供を目的とする。
The present invention aims to provide a high-strength copper alloy having high strength and high thermal conductivity.

[発明の構成] (課題を解決するための手段) 本発明は、Si:0.01wt%以上、  1wt%以
下;Ti:O,01wt%以上、2wt%以下;Mg:
Q、01wt%以上、1wt%以下。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides Si: 0.01 wt% or more and 1 wt% or less; Ti: O, 01 wt% or more and 2 wt% or less; Mg:
Q, 01wt% or more and 1wt% or less.

Ni:O,1wt%以上、3wt%以下;残部実質的に
Cuからなる高力銅合金である。
Ni:O, 1 wt% or more and 3 wt% or less; the balance is a high-strength copper alloy consisting essentially of Cu.

以下、本願発明の高力銅合金の添加成分の限定理由を詳
述する。
The reasons for limiting the additive components of the high-strength copper alloy of the present invention will be explained in detail below.

Si、Ti、MgはCu基地中にNiとの金属間化合物
よりなる析出物を析出することにより強度を向上する元
素であり、まずSiはあまりその量が少ないと得られる
銅合金中の析出物の量が少ないため強度が向上しに<<
、逆にあまりその量が多いとC,u中に固溶したりある
いは単体で残留するため、加工性および製造される銅合
金の熱伝導性、導電率が低下しやすく好ましくない。そ
のためSi量はO,01wt%以上、1wt%以下が好
ましい。
Si, Ti, and Mg are elements that improve strength by precipitating precipitates consisting of intermetallic compounds with Ni in the Cu base, and first of all, Si precipitates in the copper alloy obtained when the amount is too small. The strength is improved due to the small amount of
On the other hand, if the amount is too large, it becomes a solid solution in C and u or remains as a single substance, which is undesirable because workability and the thermal conductivity and electrical conductivity of the produced copper alloy tend to decrease. Therefore, the amount of Si is preferably 0.01 wt% or more and 1 wt% or less.

Tiはあまりその量が少ないと得られる銅合金中の析出
物の量が少ないため強度が向上しにくく、逆にあまりそ
の量が多いとCu中に固溶したりあるいは単体で残留す
るため、加工性および製造される銅合金の熱伝導性、導
電率が低下しやすく好ましくない。そのためTi量は0
.01wt%以上、2wt%以下が好ましい。より好ま
しくはQ、1wt%以上、0.5wt%以下である。
If the amount of Ti is too small, the amount of precipitates in the resulting copper alloy will be small, making it difficult to improve the strength.On the other hand, if the amount is too large, it will dissolve in the Cu or remain alone, making it difficult to process. This is not preferable because it tends to lower the properties and the thermal conductivity and electrical conductivity of the copper alloy produced. Therefore, the amount of Ti is 0
.. The content is preferably 01 wt% or more and 2 wt% or less. More preferably, Q is 1 wt% or more and 0.5 wt% or less.

Mgはあまりその量が少ないと得られる銅合金中の析出
物の量が少ないため強度が向上しにくく、逆にあまりそ
の量が多いとCu中に固溶したりあるいは単体で残留す
るため、加工性および製造される銅合金の熱伝導性、導
電率が低下しやすく好ましくない。そのためMg量は0
゜01 w t%以上、1wt%以下が好ましい。より
好ましくは0.02wt%以上、Q、5wt%以下であ
る。
If the amount of Mg is too small, the amount of precipitates in the resulting copper alloy will be small, making it difficult to improve the strength.On the other hand, if the amount is too large, it will dissolve in the Cu or remain alone, making it difficult to process. This is not preferable because it tends to lower the properties and the thermal conductivity and electrical conductivity of the copper alloy produced. Therefore, the amount of Mg is 0
It is preferably at least 0.01 wt% and at most 1 wt%. More preferably, it is 0.02 wt% or more and Q, 5 wt% or less.

Niはあまりその量が少ないと各添加元素との金属間化
合物より得られる銅合金中の析出物の量が少ないため強
度が向上しにくく、逆にあまりその量が多いとCu中に
固溶したりあるいは単体で残留するため、加工性および
製造される銅合金の熱伝導性、導電率が低下しやすく好
ましくない。
If the amount of Ni is too small, the amount of precipitates in the copper alloy obtained from intermetallic compounds with each additive element will be small, making it difficult to improve the strength.On the other hand, if the amount is too large, it will form a solid solution in Cu. This is undesirable because it tends to reduce processability and the thermal conductivity and electrical conductivity of the copper alloy produced.

そのためNi量は011wt%以上、3wt%以下が好
ましい。より好ましくは0,5wt%以上。
Therefore, the amount of Ni is preferably 0.11 wt% or more and 3 wt% or less. More preferably 0.5 wt% or more.

1.5wt%以下である。It is 1.5 wt% or less.

ここでNiは他の3元素、すなわちSi、Ti。Here, Ni is the other three elements, namely Si and Ti.

Mgと金属間化合物となりCu基地中に析出するのであ
るが、各添加元素とNiとの関係は以下の関係が好まし
い。
It becomes an intermetallic compound with Mg and precipitates in the Cu base, and the relationship between each additional element and Ni is preferably as follows.

3、N1wt%(Si)、5 S iwt% Mgw t% Tiwt% N1wt% (T  d  d)=Niwt% (Si
)+N1wt%(Mg)十N1wt%(Tt)なお、本
明細書においてN1wt%(X)とは添加元素XとCu
合金中に析出するNiff1を表わすものとする。
3, N1wt% (Si), 5 Siwt% Mgwt% Tiwt% N1wt% (T d d) = Niwt% (Si
) + N1wt% (Mg) + N1wt% (Tt) In this specification, N1wt% (X) refers to the additive element X and Cu.
Let it represent Niff1 precipitated in the alloy.

より好ましくは、 N1wt%(Si)号4,2 S i w t% N1wt%(Mg) −,1,2 Mgwt% N i w t%(’rD 、、 7 Tiwt% である。More preferably, N1wt% (Si) No. 4,2 S i w t% N1wt% (Mg) -, 1, 2 Mgwt% N i w t%('rD ,, 7 Tiwt% It is.

上記添加元素の他に、本発明の効果がより顕著になる元
素を若干量添加することは何等問題はない。その中でも
Cr、Zrが好ましい。その量としてはCrは、O,Q
5wt%以上、  0. 4wt%以下;Zrは、0.
01wt%以上、  0. 3wt%以下である。
In addition to the above additive elements, there is no problem in adding a small amount of an element that makes the effect of the present invention more pronounced. Among them, Cr and Zr are preferred. The amount of Cr is O, Q
5wt% or more, 0. 4wt% or less; Zr is 0.
01 wt% or more, 0. It is 3wt% or less.

Crは0.05wt%未満では製造される銅合金の強度
が向上しにくいため好ましくなく、また、0.4wt%
を超える場合には製造される銅合金の導電率および曲げ
疲労強度が低下しやすく、また鋳造しにくいため好まし
くない。好ましいCr量は0,2wt%以上、0.35
wt%以下である。
If Cr is less than 0.05 wt%, it is difficult to improve the strength of the copper alloy produced, so it is not preferable, and if Cr is less than 0.4 wt%
If it exceeds the above range, the electrical conductivity and bending fatigue strength of the produced copper alloy tend to decrease, and it is difficult to cast, which is not preferable. The preferable amount of Cr is 0.2 wt% or more, 0.35
wt% or less.

Zrは0.01wt%未満では製造される銅合金の強度
が向上しにくいため好ましくなく、また、0.3wt%
を超える場合には製造される銅合金の導電率および曲げ
強度が低下しやすく、また鋳造しにいため好ましくない
。好ましいZr量は0.03wt%以上、0.15wt
%以下である。
Zr is not preferable if it is less than 0.01 wt% because it is difficult to improve the strength of the produced copper alloy, and if it is less than 0.3 wt%
If it exceeds this value, the electrical conductivity and bending strength of the produced copper alloy tend to decrease, and it becomes difficult to cast, which is not preferable. The preferred amount of Zr is 0.03wt% or more, 0.15wt
% or less.

以下、本発明の組成の銅合金を製造する具体的な手段・
工程の1例を説明する。
Hereinafter, specific means for producing the copper alloy having the composition of the present invention will be described.
An example of the process will be explained.

まず、本発明の組成の銅合金をそれぞれ常法により溶解
・鋳造してインゴットを製造する。その後、800〜1
000°Cにて鍛造してビレットを形成する。その後、
750〜1000℃にて熱間圧延を行い、600℃以上
の温度より急冷することにより溶体化処理を行う。その
後、冷間加工を施し、200〜500℃にて時効処理を
行い本発明の銅合金を製造する。
First, each copper alloy having the composition of the present invention is melted and cast by a conventional method to produce an ingot. After that, 800-1
A billet is formed by forging at 000°C. after that,
Hot rolling is performed at 750 to 1000°C, and solution treatment is performed by rapidly cooling from a temperature of 600°C or higher. Thereafter, cold working is performed and aging treatment is performed at 200 to 500°C to produce the copper alloy of the present invention.

本発明の高力銅合金は、例えばICなどの半導体用リー
ドフレーム、あるいはコネクターなど高強度でかつ熱伝
導性が要求される用途において用いられるものであり、
これらの特性が要求される用途であれば何等限定される
ものではない。
The high-strength copper alloy of the present invention is used in applications that require high strength and thermal conductivity, such as lead frames for semiconductors such as ICs, or connectors.
There are no limitations as long as the use requires these characteristics.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第1表に示す組成を有する合金成分をそれぞれ常法によ
り溶解・鋳造してインゴットを製造した後、850℃に
て鍛造してビレットを形成した。
Ingots were produced by melting and casting alloy components having the compositions shown in Table 1 using conventional methods, and then forged at 850° C. to form billets.

そのビレットを900℃で熱間圧延を行い、直接600
℃以上の温度で急冷して溶体化処理を行った。その後冷
間加工を施し、厚さ0.25mmとして300℃にて時
効処理を行い高力銅合金を製造した。
The billet was hot rolled at 900℃ and directly rolled at 600℃.
Solution treatment was performed by rapid cooling at a temperature of ℃ or higher. Thereafter, it was cold-worked to a thickness of 0.25 mm and aged at 300°C to produce a high-strength copper alloy.

第1表に本発明の実施例で用いた高力銅合金の組成を示
す。なお第1表には比較として、従来の銅合金の1種で
あるCu−Cr−Zr合金をNo。
Table 1 shows the composition of the high strength copper alloy used in the examples of the present invention. For comparison, Table 1 shows Cu-Cr-Zr alloy, which is a type of conventional copper alloy.

8に、Cu−Cr−Z r−T i合金をNo、、9に
、さらに従来のFe−42Ni合金をNo、1.0に併
せて示す。
8 shows the Cu-Cr-Zr-Ti alloy as No. 9, and the conventional Fe-42Ni alloy as No. 1.0.

以 下 余 白 このようにして製造した高力銅合金の引張強度(k g
 / m m ” ) +  ビッカース硬度(Hv)
、導電率(IAC8%)、折曲げ回数を測定した。その
結果を第2表に示す。なお、本発明の高力銅合金との比
較のため、第1表に示した比較例の測定結果も併せて示
す。
The following margin shows the tensile strength (kg g) of the high strength copper alloy produced in this way.
/ mm”) + Vickers hardness (Hv)
, electrical conductivity (IAC 8%), and number of bends were measured. The results are shown in Table 2. For comparison with the high-strength copper alloy of the present invention, the measurement results of comparative examples shown in Table 1 are also shown.

なお、熱伝導性についてはこれと比例関係にある導電率
を測定することにより代替した。
Note that thermal conductivity was replaced by measuring electrical conductivity, which is in a proportional relationship.

以下余白 第2表から明らかなように、本発明の組成の銅合金とす
ることにより、従来のFe系合金と同等な強度を有し、
かつ従来のCu系合金と導電性。
As is clear from Table 2 below, by using the copper alloy with the composition of the present invention, it has strength equivalent to that of conventional Fe-based alloys,
and conductivity compared to conventional Cu-based alloys.

放熱性において同等な、高強度でかつ高熱伝導性の高力
銅合金が得られている。
A high-strength, high-thermal-conductivity, high-strength copper alloy with comparable heat dissipation properties has been obtained.

[発明の効果] 以上詳述してきたように、本発明の組成の銅合金とする
ことにより、従来のFe系合金と同等な強度を有し、か
つ従来のCu合金と導電率、放熱性などにおいて同等な
、高強度でかつ高熱伝導性の高力銅合金が得られる。本
発明により近年の高集積化に対応した優れた高力銅合金
が得られる。
[Effects of the Invention] As detailed above, the copper alloy having the composition of the present invention has strength equivalent to that of conventional Fe-based alloys, and has superior conductivity, heat dissipation, etc. to conventional Cu alloys. A high-strength copper alloy with high strength and high thermal conductivity equivalent to the above can be obtained. The present invention provides an excellent high-strength copper alloy that is compatible with the recent trend toward higher integration.

さらに、ニッケルが高価であるためFe−42Nl系合
金自体も高価であったことなども考慮すると、本発明の
組成のCu合金とすることにより、高価なNiの使用量
を大幅に低減でき、安価に製造することが可能となった
ため製造コストが低減した。
Furthermore, considering the fact that nickel is expensive and the Fe-42Nl alloy itself is also expensive, by creating a Cu alloy with the composition of the present invention, the amount of expensive Ni used can be significantly reduced, making it inexpensive. The manufacturing cost has been reduced as it has become possible to manufacture the

Claims (1)

【特許請求の範囲】[Claims] Si:0.01wt%以上,1wt%以下;Ti:0.
01wt%以上,2wt%以下;Mg:0.01wt%
以上,1wt%以下,Ni:0.1wt%以上,3wt
%以下;残部実質的にCuからなることを特徴とする高
力銅合金。
Si: 0.01 wt% or more, 1 wt% or less; Ti: 0.
01wt% or more, 2wt% or less; Mg: 0.01wt%
or more, 1wt% or less, Ni: 0.1wt% or more, 3wt
% or less: A high-strength copper alloy characterized in that the remainder essentially consists of Cu.
JP26387489A 1989-10-12 1989-10-12 High strength copper alloy Pending JPH03126830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26387489A JPH03126830A (en) 1989-10-12 1989-10-12 High strength copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26387489A JPH03126830A (en) 1989-10-12 1989-10-12 High strength copper alloy

Publications (1)

Publication Number Publication Date
JPH03126830A true JPH03126830A (en) 1991-05-30

Family

ID=17395442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26387489A Pending JPH03126830A (en) 1989-10-12 1989-10-12 High strength copper alloy

Country Status (1)

Country Link
JP (1) JPH03126830A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5668814B1 (en) * 2013-08-12 2015-02-12 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5668814B1 (en) * 2013-08-12 2015-02-12 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars
JP2015036433A (en) * 2013-08-12 2015-02-23 三菱マテリアル株式会社 Copper alloy for electronic/electric apparatus, copper alloy sheet for electronic/electric apparatus, component for electronic/electric apparatus, terminal and bus bar
US10392680B2 (en) 2013-08-12 2019-08-27 Mitsubishi Materials Corporation Copper alloy for electric and electronic devices, copper alloy sheet for electric and electronic devices, component for electric and electronic devices, terminal, and bus bar

Similar Documents

Publication Publication Date Title
US8257515B2 (en) Copper alloy containing cobalt, nickel and silicon
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JP3800269B2 (en) High strength copper alloy with excellent stamping workability and silver plating
JP5291494B2 (en) High strength high heat resistance copper alloy sheet
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPS6160846A (en) Lead material of copper alloy for semiconductor device
JPH09157775A (en) Copper alloy for electronic equipment
JP2732355B2 (en) Manufacturing method of high strength and high conductivity copper alloy material for electronic equipment
JP2956696B1 (en) High strength and high conductivity copper alloy and its processing method
JP2732490B2 (en) Manufacturing method of high strength and high conductivity copper alloy for electronic equipment
JPH0718355A (en) Copper alloy for electronic appliance and its production
JPH03126830A (en) High strength copper alloy
JP4132451B2 (en) High strength and high conductivity copper alloy with excellent heat resistance
JPH0978162A (en) Copper alloy for electronic equipment and its production
JPS6142772B2 (en)
JPS62250136A (en) Copper alloy terminal and connector
JP2576853B2 (en) Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method
JPH0469217B2 (en)
JPH09143597A (en) Copper alloy for lead frame and its production
JPH10298679A (en) High strength and high conductivity copper alloy
JPH0696757B2 (en) Method for producing high-strength, high-conductivity copper alloy with excellent heat resistance and bendability
JP3117852B2 (en) Fe-Cu alloy IC lead frame and method of manufacturing the same
JPS62238343A (en) Copper alloy for electronic equipment
JP3059484B2 (en) Beryllium copper alloy excellent in strength, workability and heat resistance and method for producing the same
JPS63192835A (en) Lead material for ceramic package